
electronic reprint

ISSN: 2053-2733

journals.iucr.org/a

Complex modeling: a strategy and software program for
combining multiple information sources to solve ill posed
structure and nanostructure inverse problems

Pavol Juhás, Christopher L. Farrow, Xiaohao Yang, Kevin R. Knox and
Simon J. L. Billinge

Acta Cryst. (2015). A71, 562–568

IUCr Journals
CRYSTALLOGRAPHY JOURNALS ONLINE

Copyright c© International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that
this cover page is retained. Republication of this article or its storage in electronic databases other than as
specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Acta Cryst. (2015). A71, 562–568 Pavol Juhás et al. · Complex modeling

http://journals.iucr.org/a/
http://dx.doi.org/10.1107/S2053273315014473
http://journals.iucr.org/services/authorrights.html
http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273315014473&domain=pdf&date_stamp=2015-09-22

562 http://dx.doi.org/10.1107/S2053273315014473 Acta Cryst. (2015). A71, 562–568

research papers

Complex modeling: a strategy and software
program for combining multiple information
sources to solve ill posed structure and
nanostructure inverse problems

Pavol Juhás,a Christopher L. Farrow,b Xiaohao Yang,b Kevin R. Knoxa and

Simon J. L. Billingea,b*

aCondensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York,

11973, USA, and bDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, 10027,

USA. *Correspondence e-mail: sb2896@columbia.edu

A strategy is described for regularizing ill posed structure and nanostructure

scattering inverse problems (i.e. structure solution) from complex material

structures. This paper describes both the philosophy and strategy of the

approach, and a software implementation, DiffPy Complex Modeling Infra-

structure (DiffPy-CMI).

1. Introduction

In recent years, advances in materials synthesis techniques

have enabled scientists to produce increasingly complex

functional materials with enhanced or novel macroscopic

properties. Modern engineered materials drive progress in

many scientific fields and are at the heart of next-generation

technologies in industrial fields including electronics (Dagotto

et al., 2003), energy production and storage (Rolison et al.,

2009), environmental engineering (Sun et al., 2006), and

biomedicine (Neuberger et al., 2005). As the optical, electronic

and mechanical properties of such materials are deeply

influenced by atomic structure, solving the structure of engi-

neered materials is of critical importance in unlocking their

potential. However, the structure of such materials is often

complex and non-periodic at the atomic scale or at the

nanoscale. For example, many of the best known thermo-

electric materials have structures that are crystallographic on

average, but derive their high thermoelectric figure of merit

from local atomic distortions (Mozharivskyj et al., 2004; Hsu et

al., 2004; Biswas et al., 2012; Lin et al., 2005). Disordered

collections of nanoparticles, on the other hand, have a high

degree of short-range order, but no long-range order beyond

the nanoscale (Steigerwald & Brus, 1989). Additionally, many

novel materials are composites, which exhibit complex

ordering on multiple length scales, such as core–shell nano-

particles or mesoporous materials, which are bulk materials

with porous regions of nanoscale dimension that can be

intercalated with a variety of structures (Stucky et al., 2000;

Armatas & Kanatzidis, 2006).

The standard techniques of crystallography have proven

successful in characterizing a vast array of bulk materials

whose atomic structures can be described with crystal models,

which require only tens or hundreds of parameters. Since

X-ray diffraction data typically yield information on hundreds

or thousands of diffraction peaks a unique structure solution

ISSN 2053-2733

Received 17 May 2015

Accepted 31 July 2015

Edited by A. Altomare, Institute of Crystal-

lography - CNR, Bari, Italy

Keywords: complex modeling; nanostructure

analysis; Python software framework.

Supporting information: this article has

supporting information at journals.iucr.org/a

2015 International Union of Crystallography

electronic reprint

can almost always be found for crystalline materials. However,

for the type of complex materials described above the number

of degrees of freedom in a suitable structure model is often

considerably larger than in the case of a typical crystal. For

example, surface atoms in nanoparticles often relax their

atomic positions away from special crystallographic locations,

thereby increasing the number of parameters needed to

describe the overall nanoparticle structure (McGinley et al.,

2002; Zhang et al., 2003). Additionally, complex engineered

materials often produce extremely broad peaks in diffraction

experiments, due to the fact that they are non-periodic or

disordered. Thus, the structure problem is doubly complicated

as diffraction experiments produce less information than

corresponding experiments on bulk materials, despite the fact

that more parameters are needed to describe their structures.

From a standard crystallographic perspective, the structure

problem for many complex materials is inherently ill posed,

making a unique solution impossible (Billinge & Levin, 2007).

When the standard techniques of crystallography fail, it is

sometimes possible to develop new analytical tools to maxi-

mize the information extracted from a diffraction pattern. One

example is the pair distribution function (PDF) method, which

uses both Bragg and diffuse scattering to simultaneously

probe both local and long-range length scales. The PDF

approach has proven successful in solving some nanostructure

problems that are not solvable by direct inversion of single-

crystal data; for example, the structure of C60 was solved using

PDF analysis combined with ab initio algorithms (Juhás et al.,

2006; Cliffe et al., 2010). However the PDF approach fails to

obtain a unique solution of some disordered nanoparticles

such as ultra-small whitelight CdSe (Yang et al., 2013).

While such novel approaches can be helpful, a unique

solution cannot be found to a fundamentally ill posed problem

without defining new constraints or adding additional data.

However, for many structure problems a single experimental

technique cannot provide sufficient information to guarantee

that the problem is well posed. To obtain unique structure

solutions for complex materials, a new paradigm of analysis is

needed, an infrastructure that can combine different infor-

mation sources and models into a coherent framework to solve

problems using global optimization. Within this framework, a

material with unknown structure could be probed with various

experimental tools, such as X-ray diffraction (XRD), trans-

mission electron microscopy (TEM), small-angle X-ray or

neutron scattering (SAS), Raman spectroscopy etc., to yield an

array of data sets that would then be fed into a global opti-

mizer, as shown in Fig. 1. Additionally, theoretical inputs, such

as density functional theory (DFT) or molecular dynamics

calculations, as well as constraints on the variables coming

from known symmetries or other sources, could be integrated

into the optimization. While each single experimental or

theoretical input may not generate enough information to

produce a solution, together the pieces of information would

regularize the problem resulting in a unique solution.

In practice, structure solutions of

complex materials are sometimes found

by combining multiple techniques, but

the work of integrating data streams is

often arduous. Currently available soft-

ware packages for data refinement are

generally customized for one type of

data. Thus, if a researcher has multiple

sources of information, each data

stream must be processed individually

with a separate program and then

manually combined with custom soft-

ware to produce a co-refinement.

However, the user group for such

custom software is limited to individuals

with both sophisticated programming

skills and scientific knowledge across

multiple fields. Additionally, many

software suites for refinement of scien-

tific data operate as ‘black-boxes’ which

integrate the multiple steps required for

solving a scientific problem into a single

operation. While such integration may

be useful for a novice researcher

working in a single field, it further

complicates the problem of co-refine-

ment of multiple data sets.

In this paper we provide a complete

description of an implementation of

complex modeling, one which is robust,

research papers

Acta Cryst. (2015). A71, 562–568 Pavol Juhás et al. � Complex modeling 563

Figure 1
Complex modeling feeds all available data sets and theoretical constraints into a global optimizer to
produce a unique structure solution for a new material. Reproduced from Billinge (2010).

electronic reprint

modular, and easily adaptable to different types of problems

and different combinations of data sets and theoretical inputs.

The key is to break the process down into its constituent parts,

which can then be combined and linked as necessary to solve

the problem at hand.

2. Components of complex modeling

2.1. Structure model

The first step in solving the structure of any material is to

choose a model representation, a way to describe the

arrangement of atoms using a set of parameters and a math-

ematical formulation. In general, there is a wide range of

methods to describe material structure and the most suitable

choice will depend on the specifics of the system under

investigation. In fact, the success of the refinement process

itself can depend on how the structure is modeled; a good

choice for the structure representation will simplify the

process of model creation and help the refinement to converge

quickly, while a poor choice can greatly complicate the

modeling process or even cause the refinement to diverge.

Thus, a proper implementation of a complex modeling

framework must provide multiple options for representing

atomic structures.

The simplest, though not necessarily the most useful,

representation is a specification of atomic coordinates in a

Cartesian coordinate system. A periodic crystal model, which

extends the structure of one unit cell infinitely in all directions,

is more suitable to describe many bulk materials. A nano-

crystal structure model also extends one unit cell infinitely in

all directions, but it applies an additional ‘shape function’ to

the underlying structure to simulate the finite size of a nano-

crystal (Proffen & Billinge, 1999; Farrow et al., 2007; Farrow &

Billinge, 2009); such a model is suitable for atomically well

ordered nanoparticles. A molecular or cluster model specifies

the position of each atom individually and is finite in extent; it

is most suitable for describing molecules, disordered nano-

particles, and complex structures which cannot be described

using a periodic model. Molecular systems may also be

represented as a Z-matrix (Young, 2001). Additionally, as

mentioned earlier, many novel materials exhibit complicated

ordering on multiple length scales. To adequately describe

such materials one may need to combine the simple building

blocks described above to create hierarchical models of

composite materials such as molecular crystals, nanosheets or

mixtures of different phases.

Once the structure representation is specified, structure

building tools are needed to build a particular instance of that

structure. These should include basic operations such as

importing and exporting structures from files, symmetry

expansion and structure slicing, i.e. efficient selection and

modification of its atoms.

Once a structure model is created, a suite of tools is

required to modify and customize the model. Advanced

operations, such as moving atoms under space-group

constraints, should be possible. It should also be straightfor-

ward to impose restrictions on how atoms within the structure

can move, such as restraints or constraints on bond lengths or

bond angles.

The tools provided for operation on structure objects

should derive naturally from the properties of those objects.

For example, expanding the unit-cell volume of a simple

crystalline structure by changing the lattice parameters should

increase the distances between all atoms, but expanding the

unit cell of a molecular crystal should affect only the separa-

tion between the molecules, not the distances between atoms

in an individual molecule.

2.2. Function calculator

Ultimately, the connection between an atomic model and an

experimental data set is made by calculating or simulating the

data using the structure model. Thus, once a model is built,

various quantities, which will later be fed into a refinement

process, must be calculated by one or more calculator

modules. Such a module takes the structure model as input

and returns a physical quantity, which can be an experimen-

tally measurable property, such as a PDF or XRD pattern, or

some macroscopic property of the entire system, such as total

energy or entropy.

One of the basic goals of complex modeling is to mix

together different types of data and theoretical inputs to

obtain a more complete description of a material system. Thus,

an implementation of complex modeling must provide the

capability to calculate multiple physical quantities and simu-

late various types of data. As each structure problem is unique

and may have a different set of input data and theoretical

constraints, the calculators themselves should be modular.

Each structure problem can then be solved with a tailored

approach by creating a custom ‘complex’, which links together

the specific data sources and theoretical inputs available to the

researcher.

2.3. Variables, constraints and restraints

A key aspect of complex modeling is the ability to seam-

lessly combine different structure models (in general with

different representations) and different types of data into a

single framework. This requires an effective strategy to

manage different variables across multiple structure models

and multiple data sets. Ideally, one set of parameters would be

used to describe the atomic structure of each model, which

would then be propagated through the function calculators to

produce simulated data to be compared to the experimental

data or theoretical results. Within the complex modeling

framework, any parameter used in describing the structure of

a material should be able to be passed as a refinable variable

to the global optimizer. Once parameters are declared as

variables it should be possible to turn them ‘on’ (allowed to

vary) or ‘off’ (fixed) for a given refinement. Additionally,

it should be straightforward to define constraints on variables

in the form of mathematical relationships with other variables

or model parameters. In general, for a particular set of vari-

ables A;B;C; . . ., the complex modeling infrastructure should

564 Pavol Juhás et al. � Complex modeling Acta Cryst. (2015). A71, 562–568

research papers

electronic reprint

allow one to require A ¼ f ðB;C; . . .Þ where f is an arbitrary

function.

Sometimes, additional information is available from a

previous experiment or from a theoretical result; for example,

that the value of one of the variables lies within a given range.

To add this piece of information to the refinement it should be

possible to apply restraints to certain variables. This is

commonly done by adding a penalty to the refinement process

commensurate with the deviation of the variable or variables

from the known value or range.

2.4. Cost function

Once the models, calculators, variables and constraints have

been defined, one must define a metric that quantifies the

‘goodness-of-fit’ of the structure model to the experimental

data; such a metric is called a cost function. The choice of cost

function will depend on the type and quality of data. Often the

most appropriate function is the L2-norm distance between

the experimental and calculated profiles (Horn & Johnson,

1990). However, in general, the complex modeling framework

should be flexible enough to allow for alternative metrics, such

as an L1-norm (Horn & Johnson, 1990). Additionally, if the

refinement contains multiple models or multiple data sets, it

should be possible to define several independent cost func-

tions, which can then be weighted and combined to obtain a

total cost function. Properly weighting the individual compo-

nents in a multi-component refinement can be complicated

and the ideal weighting may not be known a priori; thus a

complex modeling framework must support dynamic

weighting schemes.

2.5. Fit recipe

When properly defined and appropriately linked, the

modules discussed above – a structure model, function

calculator, set of constraints and a cost function – compose a

recipe for fitting the model to the data. The fit recipe is simply

a mathematical (or computational) object that takes a set of

variables as input and returns a measure of goodness-of-fit as

output. The process of fitting or refinement is then an opti-

mization problem; one seeks the optimal set of input para-

meters to the fit recipe, which will produce the best goodness-

of-fit.

2.6. Regression interface

The final step in constructing a complex modeling frame-

work is choosing an algorithm to search the defined parameter

space for a set of values which optimize the fit recipe. When

called, the recipe will update the values of the variables as

directed by the regression algorithm and return the goodness-

of-fit. Normally, this process is repeated iteratively until some

tolerance for the solution has been reached or a given number

of iterations have been performed.

As discussed above, solving the structure of a complex

material is often a highly non-trivial optimization problem; it

is rarely possible to find a best fit to the data by a simple brute-

force search of the variable space. Thus, choosing the correct

algorithm to ‘cook’ the fit recipe is of particular importance; a

simple least-squares algorithm may be appropriate for a fit

with relatively few free variables and a good starting model,

whereas a more complicated procedure, such as a Monte Carlo

method, or an evolutionary algorithm, may be required for a

recipe with a large number of variables. Viewed this way, the

regression interface is simply another modular unit in the

complex modeling framework that can be changed or adapted

as necessary such that different regression algorithms may be

inserted, or even nested together into a hybrid regression

scheme.

3. Software implementation

The independent modules presented above define a complete

picture of a complex modeling framework. In fact, any

program or procedure for solving atomic structures must

implement each. However, in practice, most software

packages for data analysis bundle these modules together in a

way that is not transparent and does not allow for user

customization or extension; this is the ‘black-box’ approach

discussed in x1. The promise of complex modeling can only be

achieved when each part of the framework can be treated as

an independent unit that can be modified by the user as the fit

is set up; the ideal implementation of complex modeling would

allow one to link these modules together in a customized way

based on the problem at hand.

In this section we describe DiffPy-CMI (where CMI stands

for Complex Modeling Infrastructure), our open-source

Python-based object-oriented software solution for complex

modeling. DiffPy-CMI follows the prescription laid out in the

previous section for implementing a complex modeling

framework: it is modular, flexible and extensible. It is

composed of multiple Python modules, which can be linked

together as necessary to solve structure problems. Computa-

tionally expensive functions are written in C++ with interface

bindings to Python, allowing them to run at the speed of

compiled code and allowing for a straightforward integration

of useful components from other open-source projects such as

ObjCryst++ (Favre-Nicolin & Černý, 2002). Other open-

source crystallography projects such as CCTBX (Grosse-

Kunstleve et al., 2002), GSAS-II (Dreele, 2013) and CrysFML

(Rodrı́guez-Carvajal & González-Platas, 2003) also provide

inspiration and methods for implementing functionality but,

for various reasons, are not included as dependencies as part

of DiffPy-CMI.

3.1. Extending the framework

Because of its inherent modular nature, DiffPy-CMI may be

extended by writing new modules, such as new structure

representations, function calculators and so on. Below we

describe the existing capabilities at the time of writing, but the

actual set of capabilities is rapidly changing with time. As we

describe later, the software is open source and may also be

maintained and extended by the community, with community-

contributed modules and patches.

research papers

Acta Cryst. (2015). A71, 562–568 Pavol Juhás et al. � Complex modeling 565
electronic reprint

3.2. Structure representation

Structure modeling and manipulation are implemented

within the DiffPy-CMI framework by the diffpy.Structure

package, which provides objects for storage and handling of

atomic coordinates, displacement parameters and other crystal

structure data. diffpy.Structure supports the import and export

of structure data using several common file formats such as

Crystallographic Information File (CIF), Protein Data Bank

(PDB) and xyz. It provides functions for conversion between

fractional and absolute Cartesian coordinates, symmetry

expansion from asymmetric units, and generation of symmetry

constraints for atom positions and displacement parameters.

Additionally, diffpy.Structure includes definitions of all space

groups in over 500 symmetry settings, which were generated

using the sgtbx module of CCTBX (Grosse-Kunstleve et al.,

2002).

Additional functionality for structure creation and manip-

ulation is derived from ObjCryst++, an object-oriented crys-

tallographic library developed by Vincent Favre-Nicolin

(Favre-Nicolin & Černý, 2002). Certain portions of

ObjCryst++ have been repackaged and are distributed (with

permission) along with DiffPy-CMI. To facilitate integration

of the ObjCryst++ library with the rest of DiffPy-CMI the

DiffPy development team has written the pyobjcryst library,

which provides Python bindings to much of the ObjCryst++

functionality.

As described in the previous section, DiffPy-CMI allows the

user to build and manipulate structures using the most

appropriate models for the system under investigation,

including periodic crystals, nanocrystals and molecules. Users

can then build more complex structures by hierarchically

combining these basic units. A simple demonstration of these

features is available as an IPython notebook in the supporting

information and also as a live notebook viewer (http://nbvie-

wer.ipython.org/github/pavoljuhas/nb2015-ACA-CMI).

3.3. Function calculators

The DiffPy-CMI software package contains diffpy.srreal,

which provides calculators for several pair-based quantities

including PDF, bond-valence sums, atom overlaps for hard-

sphere models, and bond distances and directions. The

package provides implicit adapters from the diffpy.Structure

class and from Crystal and Molecule objects from pyobjcryst.

Additionally, adapters can be easily defined for any other

structure representation in Python allowing their direct use

with the calculators. Calculators support two evaluation

models – Basic, which performs a full pair summation every

time, and Optimized, which updates only pair contributions

that have changed since the last evaluation. Calculations can

be split among parallel jobs using the Python multi-processing

package or any other library that provides a parallel map

function. PDF calculations can be done in two modes – either

as a real-space summation of peak profiles (using the

PDFCalculator class) or as a reciprocal-space Debye

summation with a Fourier transform of the total scattering

structure function (using the DebyePDFCalculator class). The

former is normally used for crystalline models with periodic

boundary conditions or large box models with many atoms,

whereas the latter is preferred for small, finite objects such as

molecules or small nanoclusters.

The diffpy.srreal package is a Python binding to the C++

library libdiffpy. Calculators are created as objects of a given

calculator type and so multiple instances of the same calcu-

lator type can exist with different configurations. Calculators

are composed of other objects that perform lower-level tasks,

such as calculating peak profiles or looking up atomic scat-

tering factors. These objects can be re-assigned at runtime

allowing the calculation procedure to be easily customized.

New classes can be defined using object inheritance, either in

Python or in C++, and used with the existing calculators; for

example, a user can easily define a custom peak profile func-

tion to be used in PDF calculations. A new calculator class can

also be defined for any quantity that is obtained by iteration

over atom pairs, by defining only the function that processes

atom-pair contributions, such as an interatomic pair potential.

The capabilities of diffpy.srreal are highlighted in the

supporting IPython notebook (http://nbviewer.ipython.org/

github/pavoljuhas/nb2015-ACA-CMI).

3.4. SrFit

The remaining modules required for a complete complex

modeling framework – variable control with constraints and

restraints, the calculation of cost functions, the implementa-

tion of a fit recipe and of a regression interface – are found in

the SrFit (diffpy.srfit) package. SrFit provides the framework

for building a custom ‘complex’ by the user. It is designed to

interface with diffpy.Structure for model representation and

diffpy.srreal for calculation of PDFs and other pair-based

quantities. However, in principle, any data stream can be used

to define a profile to be fit and any custom function with well

defined parameters and variables can be specified as the fitting

function. SrFit makes it easy for users to define custom

analytic functions to model their data. So, the framework

defined by SrFit is not limited to atomic structure problems,

but can be used to solve a wide variety of optimization

problems (see IPython notebook, http://nbviewer.ipython.org/

github/pavoljuhas/nb2015-ACA-CMI).

Once an SrFit recipe is defined it works just like a normal

function and can be plugged into a number of regression

algorithms. Currently, SrFit provides an interface that is

compatible with scipy.optimize and scipy.fmin with extensions

under development to work with other regression tools, such

as genetic algorithms, simulated annealing and Bayesian

methods. In this way, convergence may be checked by using

multiple regression methods on the same model.

3.4.1. Co-refinement. As mentioned above, it is possible to

integrate external calculators into DiffPy-CMI to perform co-

refinements with other techniques. For example, DiffPy-CMI

could be combined with a DFT calculator that accepts a

structure model from DiffPy-CMI, calculates the energy of the

structure and returns it to DiffPy-CMI to be included in the

cost function calculation.

566 Pavol Juhás et al. � Complex modeling Acta Cryst. (2015). A71, 562–568

research papers

electronic reprint

As discussed above, one drawback of currently available

software packages for refinement is that most are limited to a

specific field. DiffPy-CMI provides a platform to address this

issue. DiffPy-CMI users are only required to write small

amounts of code to adapt their existing software to work with

DiffPy-CMI in order to run a co-refinement. The significantly

reduced workload required to incorporate new functionality

into DiffPy-CMI will make complex modeling more easily

accessible to the scientific community.

4. DiffPy open-source software community

The final goal of DiffPy-CMI is to provide a flexible platform

for heterogeneous solutions to inverse problems with parti-

cular emphasis on inverse structure problems. A key aspect of

this goal is community involvement to direct the development

of the software in a way that is responsive to the needs of the

scientific users.

The development version of DiffPy-CMI has been widely

tested and has already been used in a number of published

scientific studies (Prill et al., 2015; Beecher et al., 2014; Ghidiu

et al., 2014; Shi et al., 2014; Farrow et al., 2013, 2014; Choi et al.,

2014; Doan-Nguyen et al., 2014; Zhu et al., 2012, 2014; Jacques

et al., 2013; ; Tyrsted et al., 2012; Jensen et al., 2012). A stable

version of the DiffPy-CMI software suite was formally

released in April 2014 and currently has an active and growing

community of users and collaborators. Since release the soft-

ware has been downloaded by over 300 users. Instructions for

installing the software, as well as help getting started and links

to the user community can be found at http://www.diffpy.org.

DiffPy-CMI is an open-source community programming

project and all source code is available on GitHub at https://

github.com/diffpy. We also provide hands-on tutorials and

interactive examples for users to learn the software. API

documentation is available for developers who are interested

in contributing and adding additional functionality. The

DiffPy-CMI repositories may be forked and pull requests sent

to the development team to incorporate new code, or patches,

into the kernel.

Another useful resource for the DiffPy user community is

the CMI-Exchange, which is also hosted on GitHub at https://

github.com/diffpy/cmi_exchange. The CMI-Exchange is a

place for users to share DiffPy-CMI Python scripts – anything

from simple functions and custom peak shapes to full fit

recipes used in analyzing data. Useful scripts and functions can

then be wrapped into IPython plug-ins and managed using

IPython’s extension management functions (IPython is the

recommended Python shell for DiffPy-CMI).

5. Summary

Complex modeling is a general procedure for regularizing ill

conditioned inverse problems that are inherent for many

nano-sized and complex structures. It combines multiple

information sources available from experiment and/or theory

to provide more information to constrain solutions to the

inverse problem. DiffPy-CMI is an open-source, community-

developed software framework for conducting complex

modeling. DiffPy-CMI provides a rich set of software objects

for representing structure models, calculating physical quan-

tities and assembling multi-component optimizations. DiffPy-

CMI has been designed for maximum customization and for

integration with other materials science codes to facilitate

structure refinements that are tailored to the specifics of the

studied materials. The DiffPy-CMI software is distributed at

http://www.diffpy.org and the latest source codes are at https://

github.com/diffpy.

Acknowledgements

Early development of the software was carried out under the

DANSE software development project funded by the US

National Science Foundation through award DMR-0520547.

Since 2012, the project has been funded as Laboratory

Directed Research and Development (LDRD) Program 12-

007 (Complex Modeling) at Brookhaven National Laboratory,

which is funded by the US Department of Energy Office of

Basic Energy Sciences grant DE-SC00112704.

References

Armatas, G. S. & Kanatzidis, M. G. (2006). Science, 313, 817–820.
Beecher, A. N., Yang, X., Palmer, J. H., LaGrassa, A. L., Juhas, P.,

Billinge, S. J. L. & Owen, J. S. (2014). J. Am. Chem. Soc. 136, 10645–
10653.

Billinge, S. J. L. (2010). Physics, 3, 25.
Billinge, S. J. L. & Levin, I. (2007). Science, 316, 561–565.
Biswas, K., He, J., Blum, I. D., Wu, C., Hogan, T. P., Seidman, D. N.,

Dravid, V. P. & Kanatzidis, M. G. (2012). Nature (London), 489,
414–418.

Choi, J. J., Yang, X., Norman, Z. M., Billinge, S. J. L. & Owen, J. S.
(2014). Nano Lett. 14, 127–133.

Cliffe, M. J., Dove, M. T., Drabold, D. A. & Goodwin, A. L. (2010).
Phys. Rev. Lett. 104, 125501.

Dagotto, E., Burgy, J. & Moreo, A. (2003). Solid State Commun. 126,
9–22.

Doan-Nguyen, V. V. T., Kimber, S. A. J., Pontoni, D., Reifsnyder
Hickey, D., Diroll, B. T., Yang, X., Miglierini, M., Murray, C. B. &
Billinge, S. J. L. (2014). ACS Nano, 8, 6163–6170.

Dreele, R. V. (2013). GSAS-II. Crystallography data analysis
software. https://subversion.xor.aps.anl.gov/trac/pyGSAS.

Farrow, C. L., Bediako, D. K., Surendranath, Y., Nocera, D. G. &
Billinge, S. J. L. (2013). J. Am. Chem. Soc. 135, 6403–6406.

Farrow, C. L. & Billinge, S. J. L. (2009). Acta Cryst. A65, 232–
239.

Farrow, C. L., Juhás, P., Liu, J., Bryndin, D., Božin, E. S., Bloch, J.,
Proffen, T. & Billinge, S. J. L. (2007). J. Phys. Condens. Matter, 19,
335219.

Farrow, C., Shi, C., Juhás, P., Peng, X. & Billinge, S. J. L. (2014). J.
Appl. Cryst. 47, 561–565.

Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743.
Ghidiu, M., Naguib, M., Shi, C., Mashtalir, O., Pan, L., Zhang, B.,

Yang, J., Gogotsi, Y., Billinge, S. J. L. & Barsoum, M. W. (2014).
Chem. Commun. 50, 9517–9520.

Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams,
P. D. (2002). J. Appl. Cryst. 35, 126–136.

Horn, R. A. & Johnson, C. R. (1990). Matrix Analysis. Cambridge
University Press.

Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T.,
Polychroniadis, E. K. & Kanatzidis, M. G. (2004). Science, 303, 818–
821.

research papers

Acta Cryst. (2015). A71, 562–568 Pavol Juhás et al. � Complex modeling 567
electronic reprint

Jacques, S. D. M., Di Michiel, M., Kimber, S. A. J., Yang, X., Cernik,
R. J., Beale, A. M. & Billinge, S. J. L. (2013). Nat. Commun. 4, 2536.

Jensen, K. M. Ø., Christensen, M., Juhas, P., Tyrsted, C., Bøjesen,
E. D., Lock, N., Billinge, S. J. L. & Iversen, B. B. (2012). J. Am.
Chem. Soc. 134, 6785–6792.

Juhás, P., Cherba, D. M., Duxbury, P. M., Punch, W. F. & Billinge, S. J. L.
(2006). Nature (London), 440, 655–658.

Lin, H., Božin, E. S., Billinge, S. J. L., Quarez, E. & Kanatzidis, M. G.
(2005). Phys. Rev. B, 72, 174113.

McGinley, C., Riedler, M., Möller, T., Borchert, H., Haubold, S.,
Haase, M. & Weller, H. (2002). Phys. Rev. B, 65, 245308.

Mozharivskyj, Y., Pecharsky, A. O., Bud’ko, S. & Miller, G. J. (2004).
Chem. Mater. 16, 1580–1589.

Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M. & von
Rechenberg, B. (2005). J. Magn. Magn. Mater. 293, 483–496.

Prill, D., Juhás, P., Schmidt, M. U. & Billinge, S. J. L. (2015). J. Appl.
Cryst. 48, 171–178.

Proffen, T. & Billinge, S. J. L. (1999). J. Appl. Cryst. 32, 572–575.
Rodrı́guez-Carvajal, J. & González-Platas, J. (2003). IUCr Comput.

Commun. Newsl. 1, 50–58.
Rolison, D. R., Long, J. W., Lytle, J. C., Fischer, A. E., Rhodes, C. P.,

McEvoy, T. M., Bourg, M. E. & Lubers, A. M. (2009). Chem. Soc.
Rev. 38, 226–252.

Shi, C., Beidaghi, M., Naguib, M., Mashtalir, O., Gogotsi, Y. &
Billinge, S. J. L. (2014). Phys. Rev. Lett. 112, 125501.

Steigerwald, M. L. & Brus, L. E. (1989). Annu. Rev. Mater. Sci. 19,
471–495.

Stucky, G., Sakamoto, Y., Kaneda, M., Terasaki, O., Zhao, D. Y., Kim,
J. M., Shin, H. J. & Ryoo, R. (2000). Nature (London), 408, 449–453.

Sun, Y.-P., Li, X., Cao, J., Zhang, W. & Wang, H. P. (2006). Adv.
Colloid Interface Sci. 120, 47–56.

Tyrsted, C., Ørnsbjerg Jensen, K. M., Bøjesen, E. D., Lock, N.,
Christensen, M., Billinge, S. J. L. & Brummerstedt Iversen, B.
(2012). Angew. Chem. Int. Ed. 51, 9030–9033.

Yang, X., Masadeh, A. S., McBride, J. R., Božin, E. S., Rosenthal, S. J.
& Billinge, S. J. L. (2013). Phys. Chem. Chem. Phys. 15, 8480–8486.

Young, D. (2001). Computational Chemistry: a Practical Guide for
Applying Techniques to Real World Problems. New York: Wiley-
Interscience.

Zhang, H. Z., Gilbert, B., Huang, F. & Banfield, J. F. (2003). Nature
(London), 424, 1025–1029.

Zhu, M., Farrow, C. L., Post, J. E., Livi, K. J. T., Billinge, S. J. L.,
Ginder-Vogel, M. & Sparks, D. L. (2012). Geochim. Cosmochim.
Acta, 81, 39–55.

Zhu, M., Northrup, P., Shi, C., Billinge, S. J. L., Sparks, D. L. &
Waychunas, G. A. (2014). Environ. Sci. Technol. Lett. 1, 97–101.

568 Pavol Juhás et al. � Complex modeling Acta Cryst. (2015). A71, 562–568

research papers

electronic reprint

