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The study presents an algorithm, ParSCAPE, for model-independent extraction

of peak positions and intensities from atomic pair distribution functions (PDFs).

It provides a statistically motivated method for determining parsimony of

extracted peak models using the information-theoretic Akaike information

criterion (AIC) applied to plausible models generated within an iterative

framework of clustering and chi-square fitting. All parameters the algorithm

uses are in principle known or estimable from experiment, though careful

judgment must be applied when estimating the PDF baseline of nanostructured

materials. ParSCAPE has been implemented in the Python program SrMise.

Algorithm performance is examined on synchrotron X-ray PDFs of 16 bulk

crystals and two nanoparticles using AIC-based multimodeling techniques, and

particularly the impact of experimental uncertainties on extracted models. It is

quite resistant to misidentification of spurious peaks coming from noise and

termination effects, even in the absence of a constraining structural model.

Structure solution from automatically extracted peaks using the Liga algorithm

is demonstrated for 14 crystals and for C60. Special attention is given to the

information content of the PDF, theory and practice of the AIC, as well as the

algorithm’s limitations.

1. Introduction

Determination of all atomic coordinates and identities in

materials at the nanoscale, also known as the nanostructure

problem, is a major challenge in materials science and engi-

neering (Billinge & Levin, 2007). Standard powder diffraction

techniques are very successful for periodic systems (David et

al., 2002), but the increased prominence of semi-ordered and

disordered materials, including nanoparticles, requires

advances in acquiring and analyzing structural information

(Billinge & Levin, 2007). One approach utilizes the atomic

pair distribution function (PDF), which is a one-dimensional

real-space function usually obtained from powder diffraction

patterns (Egami & Billinge, 2012; Warren, 1990). PDF studies

historically concentrated on amorphous, glassy and liquid

systems (Warren, 1934; Wright, 1998), and this approach

remains popular (Ma et al., 2009). More recently, sufficiently

small or partially ordered nanostructured materials inacces-

sible to crystallographic techniques have been successfully

studied (Petkov et al., 2002). Although refinement of an

assumed structural model is the usual approach in modern

PDF analysis, fitting individual features within the PDF

remains an informative complement (Božin et al., 2010). The

principal motivation for the present study is to enable the ab

initio creation of structural models starting from interatomic

distances extracted from peak positions and intensities in the
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measured PDF, as demonstrated by the recent Liga algorithm

structure solution for some nanostructured materials (Juhás et

al., 2006, 2010). In these studies the peak positions were

extracted manually, making this approach impractical as a

more widely used general method for nanostructure deter-

mination. This work describes a robust algorithm for unbiased

extraction of peaks from the PDF in the absence of a struc-

tural model, an important next step in structure determination

from PDF materials.

This is similar to Le Bail et al. (1987) or Pawley (1981)

fitting in powder diffraction. However, in the case of the

PDF it is much more difficult since the number and position of

the peaks are not known in general, as is the case with Pawley

or Le Bail fitting. We introduce the PDF ParSimonious

Clustering Algorithm for Peak Extraction (ParSCAPE),

which combines standard chi-square fitting and a simple

clustering technique to generate a collection of peak models

using the Akaike information criterion (Akaike, 1973) to

determine model parsimony. This algorithm has been imple-

mented in a software code, SrMise, which is also described.

Apart from the structurally dependent PDF baseline, all the

input parameters to SrMise are known or reliably estimable

from experiment, and basic tools to aid baseline estimation are

considered. We summarize SrMise’s assumptions, operation

and limitations as well as its performance on several experi-

mental crystalline and nanoparticle systems. Attention is given

to the effect of termination ripples, the PDF baseline, uncer-

tainties and information content in the PDF, and multi-

modeling techniques. In particular, accurate experimental

uncertainties are an important element of constraining model

complexity, but historically the uncertainties obtained for

PDFs from integrating detectors are unreliable or simply not

calculated (Egami & Billinge, 2012). We investigate techni-

ques to mitigate this issue, and we also test a PDF with

correctly propagated uncertainties. Finally, we demonstrate

structure solution using the Liga algorithm from ParSCAPE-

extracted peaks, reproducing previously published results

(Juhás et al., 2006, 2010) with significantly reduced user

intervention.

2. Definitions

For clarity we distinguish several types of peaks. Peaks which

are fit to the PDF without the benefit of a structural model are

descriptive peaks, and in their final form are extracted peaks.

Unqualified use of the term peak generally refers to these. In

contrast, intrinsic peaks are peaks which collectively constitute

the PDF in its ideal form prior to the effect of noise, instru-

ment effects, artifacts of data reduction etc. A peak function

refers to the (perhaps approximate) mathematical form of

some peak, e.g. a Gaussian. Although a model in the context

of the PDF usually refers to a structure model of the system’s

atomic structure, when speaking of the PDF we freely use

model to mean a parametric peak model which is a collection

of descriptive peaks plus the PDF baseline.

3. The pair distribution function

The basic features of the PDF are summarized below. A

detailed derivation of the PDF, valid for periodic and nano-

particle systems, is given in Farrow & Billinge (2009). A

comprehensive overview of the PDF method is found in

Egami & Billinge (2012). The PDF is a one-dimensional real-

space function which characterizes all atomic pairs in a sample.

The reduced PDF,

GðrÞ ¼ 2

�

ZQmax

Qmin

Q½SðQÞ � 1� sinðQrÞ dQ; ð1Þ

is the Fourier transform of the structure-dependent total

scattering structure function SðQÞ, where Q is the momentum

transfer. The reduced PDF is a measure of the probability that

an atom pair occurs with separation r, weighted by the scat-

tering factors of the atoms in that pair, and these are observed

as fluctuations, which decay as r increases, about GðrÞ ¼ 0.

Conveniently, experimental uncertainties in GðrÞ do not scale

with r and have approximately equal magnitude across the

whole function (Egami & Billinge, 2012). Termination ripples,

equivalent to the convolution of the ‘true’ GðrÞ with a sinc

function, are present in all experimental PDFs due to the finite

Q � Qmax measurement range. These become smaller with

increasing Qmax, though statistical noise on the data, also

convoluted with the same sinc function, increases with

increasing Qmax and the presence of peak-like spurious ripples

in measured PDFs is inevitable. These are generally not a

problem when fitting highly constrained structural models, but

may be misinterpreted as peaks in an unbiased peak extrac-

tion. In general, we would like to extract reliable intrinsic

peaks in the presence of these ripples in a measured PDF.

A related function is the radial distribution function (RDF)

RðrÞ, which is the interatomic distance probability distribution.

In the harmonic approximation of atomic interactions the

contribution to the RDF from each atom pair is a Gaussian

(the intrinsic peak) located at the mean separation of the

atoms, with an integrated area given by the absolute value of

the products of the scattering factors for the corresponding

atoms. Given a properly normalized PDF, the area of an

extracted peak in an accurate peak model thus is a scattering-

power-weighted measure of the occurrences of that distance

between those atom pairs. Refinements to peak shape are

known, such as from angle averaging in powder diffraction

(Dimitrov et al., 2001), finite Q resolution (Thorpe et al., 2002),

anisotropic crystals (Thorpe et al., 2002) and quantum vibra-

tional modes (Levashov et al., 2007). These corrections are

almost always small, and we do not consider them further.

Momentarily ignoring finite Qmax, GðrÞ and RðrÞ are related

by

GðrÞ ¼ RðrÞ
r

� 4��0�0ðrÞr; ð2Þ

where �0 is the average density and �0ðrÞ is the characteristic

function of the sample shape (Guinier et al., 1955; Farrow &

Billinge, 2009), also known as the nanoparticle form factor in
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the PDF literature. The 4��0�0ðrÞr term is a baseline, and we

may informally think of GðrÞ as the baseline plus peaks. For

bulk systems of constant density �0ðrÞ � 1, giving the familiar

linear baseline found in most definitions of the PDF in the

literature. The case is considerably more complex for discrete

nanoparticles, as �0ðrÞ is the orientational average of the

normalized autocorrelation of the particle’s shape such that

�0ð0Þ ¼ 1 and
R1

0 �0ðrÞ dr ¼ V, where V is the nanoparticle’s

volume. Typically the nanoparticle baseline is linear at small r

and smoothly goes to 0 at the size of the nanoparticle. Its exact

form depends on the details of the nanoparticle’s shape and

size. In fact, the PDF baseline is due to unmeasured scattering

from structure at length scales corresponding to Q<Qmin, and

�0ðrÞ can be determined in principle from small-angle scat-

tering experiments (Farrow & Billinge, 2009). Without these

data it can only be approximated due to uncertainty about the

nanoparticle’s actual structure, polydispersity of the prepared

sample, and the contribution of interparticle correlations to

GðrÞ for r less than the nanoparticle size.

4. Statistical considerations

4.1. Motivation

For the last few decades the PDF community has had

considerable success focusing on structural modeling, starting

from an initial guess structure and refining to fit the PDF.

However, key differences exist between structural modeling

and peak extraction. For example, since uncertainties in GðrÞ
have approximately equal magnitude �G, chi-square refine-

ment of a given initial structural model produces nearly

identical refined parameter values (though not estimated

uncertainties) regardless of the actual magnitude of the

uncertainties. In contrast, the impact of a particular value of

�G on peak extraction, which should consider whether a PDF

feature is a peak or a fluctuation, is more direct, with the same

�G introducing greater uncertainty on a small peak than a

large one. Furthermore, it is common practice to sample GðrÞ
on a very fine grid, introducing strongly correlated uncer-

tainties between nearby points (Farrow et al., 2011), which for

many optimization algorithms violates the assumption that

each sample point is statistically independent. This is often

harmless, but at worst can create the illusion of support for

unjustified conclusions.

Of central interest in peak extraction and cluster analysis is

how many peaks/clusters ought to be found, and how they can

best be refined and interpreted (Bock, 1996; Tibshirani, 2001;

Shao & Wu, 2005). As one of the fundamental issues in

scientific modeling, it is a question with deep underpinnings in

the philosophy of science (e.g. Occam’s razor), and frequent

interaction with statistics and information theory. Practically

speaking, peak extraction packages often require the user to

identify suspected peaks by hand, specify their number

directly, or specify the latter indirectly with a parameter such

as a smoothing factor or definition of a ‘threshold’ residual.

Such techniques are often thoroughly ad hoc.

4.2. Information and uncertainties in the PDF

The literature considering powder diffraction and the PDF

from the viewpoint of information theory is small, although

there is a long history of uncertainty analysis. Recent examples

include David & Shankland (2008), Farrow et al. (2011),

Mullen & Levin (2011) and Toby & Billinge (2004). We

summarize the most basic properties.

Sampling the experimental GðrÞ more frequently than the

Nyquist rate Qmax=� (equivalently dr<�=Qmax) introduces no

new information (Farrow et al., 2011). This is due to the

famous Nyquist–Shannon sampling theorem for ‘band-

limited’ signals (Shannon, 1949). Indeed, the Whittaker–

Shannon interpolation formula defines a continuous function

identical for all GðrÞ sampled above the Nyquist rate. This

result does not apply in the ideal case where Qmax ! 1, as

the signal is no longer band limited.

Given sufficient counting statistics, uncertainties in GðrÞ
are approximately normally distributed, but are also corre-

lated due to the Fourier transform from reciprocal space,

which produces an oscillating contribution to the uncertainty

at each point. The contributions from terms separated by

greater than the Nyquist rate are nearly out of phase and

approximately cancel (Farrow et al., 2011; Toby & Billinge,

2004). Thus, Nyquist sampling gives the least correlation

without losing information. Although this is not true statistical

independence, it is the best approximation to independent,

normally distributed uncertainties that can be obtained for

GðrÞ.
The uncertainty discussed above arises solely from counting

statistics, but other uncertainties are present in GðrÞ. These

include systematic errors due to data reduction, instrument

effects etc. and are especially prominent in the low-r region

where no physical peaks are present (Egami & Billinge, 2012).

See also Appendix A, which discusses a problem propagating

the uncertainties of integrating detectors in popular PDF

reduction software. This issue is resolved in the upcoming

generation of tools (Yang et al., 2014).

Note that the Nyquist rate and the PDF uncertainty (ergo

information content) are intimately connected via Qmax, which

determines the former directly and contributes to the latter

due to decreasing signal to noise as Q increases. Consequently,

the optimal number of parameters in a ‘best fit’ to the PDF is

poorly defined, although the number of statistically indepen-

dent points in reciprocal space is clearly an upper bound. The

limit for structural modeling is especially unclear, since the

information in the PDF necessary for reliable refinement also

depends on whether the structural features of interest are

discernible and within the fitted range (Farrow et al., 2011),

while by definition these are the only features that may be

investigated in peak extraction. In Rietveld refinement, where

the relevant ‘independent’ quantities are actually the inte-

grated intensities of individual reflections, current best prac-

tices suggest at least three to five times as many independent

points as refinable parameters are needed for a stable and

accurate refinement, but this rule of thumb does not have a

rigorous justification (McCusker et al., 1999).
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4.3. The Akaike information criterion

Information theory has developed tools which can help

address these difficulties. One such tool is the Akaike infor-

mation criterion (AIC). The AIC and its offshoots appear

often in the ecological and biological sciences (Arnold, 2010),

signal processing (Stoica & Sel, 2004), artificial intelligence

(Zhao et al., 2008), and increasingly in astrophysics (Liddle,

2007; Wei, 2010). The AIC has also appeared in a peak

extraction algorithm developed within the metabolomics

community (Morohashi et al., 2007).

The AIC is developed from the Kullback–Leibler (K–L)

information

Iðf ; gÞ ¼
Z

f ðxÞ log
f ðxÞ
gðxÞ dx; ð3Þ

which is a measure of information loss when a distribution g

approximates distribution f (Kullback & Leibler, 1951).

Akaike’s result establishes a relationship between the maxi-

mized log-likelihood of a model (strictly speaking the distri-

bution it induces) and K–L information. Namely, the

maximized log-likelihood of model g given the data is a biased

estimate of the expected relative K–L information, and in the

asymptotic limit of many independent data points the bias is

the number of parameters in g (Akaike, 1973; Kotz & Johnson,

1992). The qualifiers expected and relative are both a conse-

quence of our ignorance of the ‘true’ model, f, possessing only

the data instead. It is an expected measure because the

parameters which maximize the log-likelihood are themselves

estimated from the data. It is a relative measure because, for

the models fg1; g2; . . .g of interest, the unknown contribution

of f to Iðf ; giÞ can be treated as a constant that cancels from

Iðf ; giÞ � Iðf ; gjÞ (Bozdogan, 1987). Since the bias due to

parameters is estimated, the AIC itself is asymptotically

unbiased, and comparison of quite different models (even

non-nested models) is possible. Crucially, the ‘true model’ is

not assumed to be among those available to the investigator

(Burnham & Anderson, 2002; McQuarrie, 1998). The

approximation of descriptive peaks for the large number of

intrinsic peaks is therefore well tolerated in principle.

The AIC has the general form

AIC ¼ �2 ln L þ 2k ð4Þ
where L is the maximized likelihood function and k is the

number of estimated parameters in the model. If the uncer-

tainties in the data are independent and normally distributed,

the AIC has the convenient form AIC ¼ �2 þ 2k up to an

ignorable model-independent constant, where �2 ¼ P
i "

2
i =�

2
i

is the usual chi-square error of the model with residuals "i and

uncertainties �i. Adding parameters to a model will tend to

reduce �2 but increase the contribution from the parameter

bias, therefore suppressing both overfitting and underfitting.

In addition, since �2 for a given model increases if the

uncertainties decrease, the tolerated complexity of a model

depends on the actual uncertainties in a natural way.

A lower AIC indicates a more plausible model, but the

value of the AIC has no absolute interpretation – only

differences in AIC among models compared to the same data

have meaning. Furthermore, if we define �i ¼ AICi � AICmin

for a given set of models, where AICmin is the minimum AIC

among the set, then the relative likelihood for the ith model

(given the data) is expð��i=2Þ. These may be normalized with

respect to all the considered models to give the ‘Akaike

weights’:

wi ¼
expð� �i

2 ÞP
j expð� �j

2 Þ
; ð5Þ

which is the likelihood that the ith model is the K–L best

model from among the models considered. By definition that

model exists within the set, and so
P

i wi ¼ 1. As with the AIC

itself, the Akaike weights do not measure ‘correctness’, but

how each model fares amongst its peers. This includes deter-

mining if a small subset of models are favored or if none

distinguish themselves, but the Akaike weights may also be

used to estimate properties over the entire set of models. For

example, if a parameter appears in many plausible models (e.g.

an atomic displacement parameter in structural modeling) the

uncertainty of that parameter may be estimated considering

all the models rather than just a single one. This feature

underlies the AIC’s strength in multimodel comparison and

inference, and provides tremendous flexibility.

An important related criterion known as AICc includes a

second-order correction for sample size. It is

AICc ¼ �2 ln L þ 2k þ 2k
ðk þ 1Þ

n � k � 1
ð6Þ

where n is the number of independent data points (Hurvich &

Tsai, 1989; Sugiura, 1978). It is clear from the final term that

AICc penalizes parameters more heavily than the AIC for

given n, and is asymptotically equivalent to the AIC as

n=k ! 1. For this reason many authors suggest using AICc

instead of the AIC whenever possible. However, ParSCAPE

does not use AICc because the correction term only appears if

the uncertainty in the data is estimated along with the model

(i.e. as an additional parameter), whereas PDF uncertainties

are directly estimated from experiment. A comprehensive

analysis of the AIC and related criteria is found in Burnham &

Anderson (2002).

Although the AIC is simple, powerful and well understood,

we mention in passing other model selection methods one

might consider. Adjusted R2, reduced chi-squared and repe-

ated F-tests have significant weaknesses for model selection

(McQuarrie, 1998; Andrae et al., 2010), particularly for non-

nested models that may arise from, for example, different PDF

baselines. Full Bayesian modeling, bootstrapping and cross-

validation are computationally intense and not suited to our

approach, although AIC has been shown to be asymptotically

equivalent to the latter (Stone, 1977). The post-AIC literature

abounds with new criteria and proposed refinements under

various assumptions. Examples include the Bayesian infor-

mation criterion (Schwarz, 1978), quasi-AIC (Lebreton et al.,

1992; Anderson et al., 1994), Takeuchi information criterion

(Takeuchi, 1976), deviance information criterion (Spie-
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gelhalter, 2002), focused information criterion (Claeskens &

Hjort, 2003) and information complexity (Bozdogan, 2000).

Development of an information criterion tailored to the

particulars of the PDF (e.g. accounting for correlations

present even at Nyquist sampling) may be an avenue of future

research.

5. Algorithm description

5.1. Overview

ParSCAPE, described here for the particular case of the

PDF (Fig. 1), uses a simple clustering method as a framework

for finding descriptive peaks over peak-like regions, where the

clusters are defined below. As the fit progresses, the clusters

are carefully combined as they meet using a recursive call to

find obscured peaks in model residuals. The eventual result is

a single cluster, the global cluster, from which a greedy pruning

subroutine attempts to remove the least justified peaks. The

peak function is initially a Gaussian over r, but termination

ripples are applied with a modified pruning step to remove

spurious peaks before completion. Finally, the PDF baseline,

which must be estimated or known before extraction, is fit

along with extracted peaks.

In ParSCAPE the AIC takes the specific form

AIC ¼
X

i

½Gi � ðPi þ BiÞ�2
�G2

i

þ 2 � 3 � #P ð7Þ

where Gi (�Gi) is the ith data point (uncertainty) within the

cluster, Pi the value of the sum of model peaks at the corre-

sponding point, Bi the value of the baseline at this point and

#P the number of peaks in the model. The factor of 3 in the

last term is due to the number of fit parameters in the peak

function. The baseline is considered fixed during clustering,

and its contribution to the number of refinable parameters is

ignored until the baseline is fit in the final step. Therefore, the

AIC of the final model has an additional contribution equal to

twice the number of fit parameters in the baseline.

The algorithm has three key features. First, all inputs other

than the PDF baseline are in principle known or estimable

solely from experiment, and a reasonable PDF baseline is

frequently estimable with minimal structural assumptions.

Second, the smooth growth from many low-parameter models

to a single many-parameter model mitigates a major weakness

of local optimization methods, namely the need for increas-

ingly good initial conditions as the number of parameters

increases (Transtrum et al., 2010). Finally, and most signifi-

cantly, model parsimony is addressed in a consistent and

statistically motivated fashion using the AIC, and is primarily

dependent on the extent and uncertainty of the data.

5.2. Baseline estimation and oversampling

The first step is baseline estimation and, as this estimate

biases the extracted peaks, the best available structural

information should be applied. Fitting an empirical or

appropriate analytical function is often sufficient. This subtle

issue is discussed at length in x8.1.

The data are then moderately oversampled (approximately

five times the Nyquist rate) for the beginning and intermediate

stages of peak extraction. Although this adds no information,

it makes some peaks more apparent while clustering, and we

prefer to err gently on the side of overfitting in the early

stages.

5.3. Clustering

5.3.1. Growing clusters. A ParSCAPE cluster is a set of

contiguous data along the r axis of GðrÞ which partitions the

PDF into regions with peak-like features, and is associated

with a peak model fit only to the data within that cluster. To

begin, all sample points are ordered by GðrÞ � BðrÞ, where

BðrÞ is the estimated baseline, from greatest to least. The data

are clustered in that order, starting from an initial cluster

containing the first point in the list, and each additional point

creates a new cluster or is added to an existing one. Which of

these actions is performed is determined by the distance

parameter dc equal to the Nyquist interval �=Qmax. Let

½rp;GðrpÞ� denote the largest point not yet added to a cluster,

and ½rn;GðrnÞ� be the already clustered point which minimizes

d ¼ jrp � rnj (i.e. the nearest point in the nearest cluster). If

d> dc a new cluster containing the point is created, otherwise

the point is added to the nearest cluster. From the perspective

of cluster analysis this procedure is very similar to agglom-

396 L. Granlund et al. � Algorithm for systematic peak extraction Acta Cryst. (2015). A71, 392–409
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Figure 1
Summary of ParSCAPE in the context of the PDF. Clusters grow (cover
greater regions of the data) while adding single peaks, and combine
immediately if no unclustered data remain between them, eventually
leading to the global cluster. Recursion over the residuals of the existing
fit (near where clusters meet) occurs if there is at least one peak in a
newly combined cluster. Pruning greedily removes peaks with the least
statistical support from the global cluster. Removal of termination ripples
is a modification of the pruning process, which simultaneously returns the
data to Nyquist sampling. Adding or removing peaks is governed at all
stages with Akaike’s information criterion.
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erative hierarchical methods using single linkage (Gan et al.,

2007), with the unusual feature that the data are considered in

an order not defined by cluster distance. It also has some

similarity to the very recent general clustering method of

Rodriguez & Laio (2014).

After a cluster is created, but before it has been combined

with another cluster (x5.3.2), its model contains at most one

peak. This first peak is created only if a peak estimated from

and then fit to the data in the cluster has a lower AIC than the

cluster with no peaks at all. As more points are added to the

cluster the model is occasionally refit to detect hints of

obscured peaks with the following heuristic. Consider a

hypothetical model that perfectly fits the data (�2 ¼ 0) with a

single additional parameter. If the AIC of this hypothetical

model would be less than that of the existing model (i.e. the

hypothetical model is ‘better’), then it is possible there exists a

model with additional parameters that would fit the data in the

cluster better than the current model. Fig. 2 shows how the

AIC weighs the evidence for simple models on peaks with

simulated noise. A likely source of these parameters are peaks

in a nearby cluster, or a hidden peak within this one. In either

case it is advantageous not to fit the existing model to data

indicative of peak overlap until alternate models can be

explored. Therefore, the model reverts to its previous value,

and fitting of this cluster ceases until it combines with another.

5.3.2. Combining clusters. When two clusters have no

unclustered points between them, they are combined. Any

‘interlaced’ peaks (e.g. a peak in the left cluster located to the

right of the leftmost peak from the right cluster) are removed.

Though rare, this may indicate an unreliable fit, or that a

feature shared by both clusters, such as a small or obscured

peak not identified as a separate cluster, has been found

independently in each.

Recursion is the next step in combining clusters, and sear-

ches for peaks in a boundary region near where the clusters

meet, which extends from the positions of the second-nearest-

neighbor peaks on either side of the boundary, or to the edge

of a cluster that does not contain at least two peaks. If neither

cluster contains peaks recursion is not performed. There are

two separate preparatory cases before recursion, which are

applied under different conditions. The first simply fits the

existing model within the boundary region and then calculates

the residuals. The second is more involved, and adjusts model

parameters without chi-square fitting in a way which attempts

to reduce large overlapping contributions from peaks initially

from different clusters while preserving hints of obscured

peaks in the residual. Namely, if the contribution of these

peaks at the boundary r ¼ rb is greater than GðrbÞ the para-

meters of each peak are the solution (if it exists) to a system of

equations such that their sum at rb is exactly GðrbÞ, retaining

their relative proportions at rb, while the locations and

magnitudes of each peak maximum are unchanged (see the

supporting information for details). Only then is the residual

calculated.

If at least one peak exists in either cluster, recursion is

performed using the first preparatory case. If both peaks

contain at least one cluster, a separate instance of recursion

using the second preparatory step is also performed. In either

case, recursion includes the clustering steps only. Peaks found

during recursion are added only if they improve the AIC in the

newly combined cluster, and if recursion was performed twice

the model which most improved the AIC is retained.

5.3.3. Pruning clusters. When all clusters are combined into

a single global cluster containing all the data a pruning step is

performed. The motivation for pruning is that some peaks that

initially improved the AIC become unfavorable by that same

measure as extraction progresses, principally due to well fit

peaks originally identified in other clusters. Convergence

issues that can lead to unphysical results, such as peaks no

longer responsive to changes in parameters or constrained by

the data, occasionally appear as well. Pruning is a greedy

heuristic that attempts to remove the least justified peaks from

the global cluster until the most favorable AIC is obtained.

This process, which restricts model complexity, is critical to

ParSCAPE.

Pruning creates multiple copies of a model, with one peak

removed from each copy. These are each fit and the single

model with the best AIC is retained. This is repeated until no

improvement is observed. Clearly this is computationally
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Figure 2
Comparison of two simple models with the AIC. (a) The ‘experimental’
data in blue incorporate simulated Gaussian noise (� ¼ 4) added to the
sum (magenta) of the three intrinsic Gaussian peaks (green). (b) The sum
(cyan) of a model with two Gaussian peaks (green) fit to the data. (c) A
model with a single Gaussian peak (red) fit to the data. This model has
larger chi-square error, but requires three fewer parameters. (d) The sum
of both models compared to the data. Considering just these two models,
the Akaike weights w are right at the boundary of favoring the more
complex model, however weakly. The AIC decisively rejects (relative to
these two models) a model with a third peak for these data. Although the
latter is ‘correct’, AIC judges the slightly improved chi-square error as
insufficient to justify additional parameters. In PDFs with significant
overlap the same is often true. In addition, recovering the two intrinsic
peaks which nearly overlap presents convergence challenges. Pawley-
style fitting addresses this by artificially constraining those peak
intensities to be equal, but this requires prior knowledge of peak
positions.
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intensive if every peak is a potential candidate for removal,

especially since many of these trial models will be unable to

converge if an important peak is removed. ParSCAPE

combats this in several ways. First, if removing a peak does not

lead to improvement compared to the original model that

peak will not be tested in future iterations. Second, only peaks

near the removed one are fit, and all other peaks in the cluster

are temporarily held fixed, though their contributions to the

AIC are still calculated and the best trial model is fit with all

parameters after each iteration. Third, models that do not

converge rapidly are treated as offering no improvement.

5.4. Termination ripples, resampling and baseline

If this is not a recursive call to ParSCAPE then, after

pruning the global cluster, termination ripples are applied to

each peak, the data are Nyquist sampled and the model is

again pruned. If a model has more parameters than samples at

the Nyquist rate then an intermediate sampling rate is used,

and pruning/downsampling is repeated until either Nyquist

sampling is achieved, or pruning at the least oversampling

possible for a given model shows no improvement in the AIC.

This process opportunistically removes peaks that are likely

termination artifacts and ensures the model adheres to our

best statistical justifications.

By this time the model is highly conditioned on the assumed

baseline, as its parameters have been effectively fixed since

baseline subtraction. Nevertheless, a final model including the

extracted peaks as well as the baseline (treating its earlier

parameters as initial values) is fit to GðrÞ.

6. Multimodel selection

The procedure of x5 selects a single model based on local

comparisons, but in the context of a complex nonlinear

problem this does not necessarily yield the globally optimal

solution. Even locally the AIC may not strongly favor a

particular model (Fig. 2), so retaining only the most favored

model can be misleading. In view of these issues, AIC-based

multimodel selection over a population of plausible but

physically distinct models evaluated over all the experimental

data is advisable. The strategy ParSCAPE employs to

generate a suitable population is multiple trials of peak

extraction over a range of assumed PDF uncertainties. The

uncertainty assumed during a single ParSCAPE trial effec-

tively becomes a parameter, denoted �g to distinguish it from

the true experimental uncertainty �G. Peak extraction as �g

decreases will tend to produce relatively more complex

models because the fractional contribution to the AIC due to

the number of parameters decreases as �2 increases, and

contrariwise for increasing �g.

The next step in multimodeling is calculating the Akaike

weights for each model when compared to the data, which aids

the investigator in identifying models meriting further study

and even prioritizing which models to examine first. However,

this cannot be done immediately because the Akaike weights

are improperly normalized if there are redundant models in

the population. To account for this, ParSCAPE groups models

into ‘similarity classes’. Each model in a class has the same

number of peaks and essentially identical values for peaks and

baselines. For this purpose peaks (or baselines) p and p0 are

considered ‘identical’ if they have the same peak function and

simultaneously satisfy

jPi½pðriÞ2 � p0ðriÞ2�jP
i pðriÞ2

� t ð8Þ

as written and under exchange of labels p $ p0, where t is the

fractional tolerance. This heuristic is sensitive to differences

when either compared peak is large, and insensitive when both

are small. A model is added to an existing class if all its peaks

and its baseline are ‘identical’ to the model which first defined

the class. If no such class exists, the model defines a new one.

By definition all models in a class should have similar AIC,

but some variance is inevitable. ParSCAPE defines the

properties of a class to be identical with those of the consti-

tuent model with least AIC. Misclassifying relatively poor

models will usually have very limited impact on conclusions, as

such models make only minor contributions to the Akaike

weights unless they far outnumber good models. However,

failing to group many essentially identical good models can

significantly change results. Furthermore, limiting compar-

isons to the first member assigned to a class may be non-

optimal. Since these classifications are not unambiguous the

interpretation of the Akaike weights in the context of

ParSCAPE should be primarily qualitative.

The AIC-based multimodel selection framework does not

define the method by which the population of models is

generated, and ParSCAPE is only one possibility for peak

extraction from PDFs. Investigator knowledge about what

models are physically plausible can be naturally incorporated

within this framework by excluding or adding models to the

population over which the Akaike weights are calculated.

7. Testing

7.1. Implementation and availability

ParSCAPE has been implemented using the Python

programming language, versions 2.6–2.7, in the program

SrMise, which is available from the DiffPy website http://

www.diffpy.org under a Berkeley Software Distribution-style

licence. Efficient numerical computation is provided by the

NumPy and SciPy packages, which include the MINPACK

implementation of the Levenburg–Marquardt algorithm.

Basic functionality is provided at the command line and

advanced functionality with Python scripting. Additional

features include templates for easy extensibility to other peak

and baseline functions, the ability to specify known peaks with

some or all parameters fixed, standard uncertainty reporting,

and basic AIC multimodeling functionality. Rudimentary

support for automatic determination of Qmax and crystal

baseline estimation are also included.

The source code, installation instructions, a user’s guide

and example scripts can be found at http://www.diffpy.org.
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For more information, please contact Simon Billinge

(sb2896@columbia.edu) or Luke Granlund (luke.r.granlund@

gmail.com).

7.2. Methods

Using SrMise, we examined the performance of ParSCAPE

on experimental X-ray PDFs of 16 bulk crystals, C60 and a

PbTe nanoparticle sample. Peaks were extracted up to 10 Å

for crystal structures, 7.5 Å for C60 and 20 Å for the PbTe

nanoparticle. All PDFs were obtained using the PDFgetX2

software (Qiu et al., 2004). As discussed in Appendix A,

experimental uncertainties are often not correctly propagated

to the PDF from integrating detectors by popular data

reduction software, and that is the case for these PDFs.

Methods to cope with this shortcoming are described below.

However, we also performed a new data reduction for the

SrTiO3 sample using SrXplanar, which can estimate and

propagate uncertainties from two-dimensional detectors

(Yang et al., 2014), to test a PDF with accurate uncertainty

estimates.

All trials were performed on a desktop computer with a

3 GHz Intel Core2Duo processor. Execution time for a single

ParSCAPE trial depends on PDF complexity, the number of

points over which sampling is performed, and especially on the

PDF uncertainty. In our tests these ranged from a few seconds

to several minutes, with 15–30 s most typical.

The peak function used is the Gaussian over r,

jaj
rð �

4 log 2 w2Þ1=2
exp

�4 log 2

w2
ðr � r0Þ2

� �
; ð9Þ

where

w2 ¼ 1
2 ðsin w0 þ 1Þw2

max; ð10Þ
and (in terms of the underlying Gaussian) a is the area, w is

full width at half-maximum (FWHM) and r0 is the peak

position. Since Levenburg–Marquardt is an unconstrained

optimization method, we implicitly enforce mild restrictions

with this parameterization. The absolute value of a ensures

only positive peaks are found in the physical region (see x8.3).

The parameter w0 limits peak FWHM to the interval ½0;wmax�,
and reduces the likelihood of extracting unphysically wide

peaks in regions of high overlap. In our trials wmax ¼ 0.8 Å for

the zinc sample, and 0.7 Å for all others. (Typical FWHM of a

single peak due to thermal broadening is 0.2–0.4 Å.)

Termination ripples are applied by evaluating the fast

Fourier transform of equation (9), zeroing the Fourier

components corresponding to Q>Qmax, and taking the

inverse transform. The target grid for peak function evalua-

tion can vary over a ParSCAPE trial, both in extent and

sampling rate, so the impact of edge effects, discretization

error and effectively varying Q resolution can lead to

numerically inconsistent termination ripples despite identical

peak parameters. To limit these to negligible levels (� �G) the

transform is performed on a grid sampled at five times the

desired sampling rate and extended by about four additional

ripples (8�=Qmax) at both ends.

We estimate the linear baseline for crystal systems in a semi-

automated fashion by fitting the large, well separated peaks at

very low r starting from an approximate slope determined by

inspection. Unphysically large �g is used to avoid fitting

anything but the baseline and most important peaks. The C60

baseline is estimated by subtraction of the interparticle

correlations fit by an analytical RDF of hollow spheres in an

f.c.c. (face-centered cubic) lattice (Heiney et al., 1991). The

PbTe nanoparticle baseline is an ad hoc fit using the char-

acteristic function of a sphere (Guinier et al., 1955), with no

corrections for interparticle correlations. See the supporting

information for details on these baselines.

Multimodel selection on a population of models generated

by 500 ParSCAPE trials was performed by the method

described in x6 for each sample. We empirically observed

tolerance parameter t ¼ 0:1 to be sufficient for this analysis.

(Using t ¼ 0:05 and t ¼ 0:2, for example, results in slightly

different classifications, but does not change the models

selected as best nor otherwise affect our conclusions.) Further

details of testing differ for PDFs with unknown and known

�G, described in xx7.3 and 7.4 below.

7.3. Unknown dG

The commonality of X-ray PDFs obtained from integrating

detectors using software tools that do not report an accurate

�G compels consideration of mitigation strategies. One might

be tempted to use AICc to estimate uncertainties while

comparing models, but as ParSCAPE generates these models

assuming known uncertainty this clearly begs the question.

Instead, to obtain a population of models with a wide variety

of complexity, 500 ParSCAPE trials were performed with �g

equal to 0.5–5% the maximum value of GðrÞ in the extracted

region, which are typical values of �G for a high-quality PDF

based on the results of structure modeling. Multimodel

selection analysis was then performed 500 times, treating each

of these plausible uncertainties as the true �G in turn.

Although �G can be estimated by other means (e.g. boot-

strapping, residual analysis of the 17 tested PDFs with known

structures) we perform the analysis without this information to

show that it remains effective, to guide investigators in similar

situations, to test the degree ParSCAPE results are consistent

with their assumptions, and to show approximately how

multimodeling results depend on PDF quality.

We define two sets to summarize results of these 500

multimodel analyses. Let Cbest be the set of similarity classes

with maximum Akaike weight for at least one assumed value

of �G, and Mbest be the set of best models from those classes.

Although the actual likelihood of these models cannot be

compared without knowing �G, we interpret these as the most

plausible models in the absence of this knowledge. The

contrast between the Mbest models and those of standard AIC

multimodeling, where the best models are those with signifi-

cant Akaike weight determined only at the true experimental

�G, should not be overlooked.

For samples with a well characterized structure (all but the

PbTe nanoparticle) the quality of extracted peaks can be
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determined directly. We also consider whether each Mbest

model is selected assuming �G’s where that model is statisti-

cally implausible according to the reduced chi-square statistic

�2
red ¼ �2=K for K degrees of freedom. Reduced chi-square

has expectation value 1 and variance 2=K, and as K increases it

approaches the normal distribution and the regime where the

familiar rule of thumb that �2
red � 1 is reasonable. Rather than

ponder the subtle issues of reduced chi-square in model

analysis (e.g. the distribution assumes the ‘true’ model, fitting

alters the chi-square distribution’s assumption that the resi-

duals are normally distributed, the effective degrees of

freedom for nonlinear models are non-obvious) we take a

qualitative approach. Namely, the test statistic �2 calculated

from a plausible model with k parameters fit to the Nyquist-

sampled PDF with n data points should, over repeated

experiments, be distributed approximately as the chi-square

distribution with K ¼ n � k degrees of freedom. If the

observed test statistic occurs at the fringes of the distribution

the assumption of plausibility is likely false, and otherwise the

statistic is consistent with (but not necessarily indicative of) a

plausible model. The goal is to identify implausible models

that nevertheless have significant Akaike weight due to the

relative nature of AIC, so plausible models should be rejected

by random chance infrequently. Define a region consistent

with plausibility

��1ð0:00135Þ
n � k

� �2
red � ��1ð1 � 0:00135Þ

n � k
; ð11Þ

where ��1 is the inverse cumulative distribution function of

the chi-square distribution. This region includes 99.73% of the

distribution and rejects a plausible model by chance once

every �370 tests (cf. 500 ParSCAPE trials), and in the

asymptotic limit defines a region of approximately 	3 stan-

dard deviations about the mean. We consider a model selected

by AIC implausible if the test statistic falls outside this range,

and examine whether or not the Mbest models are implausible

for the �G where they are selected as best. Helpfully, if �G is

unknown but at least some models are plausible, this test can

narrow the region of uncertainties reasonably considered

physical.

We also attempt structure solution for all Mbest models

of C60 and the 16 crystal samples with ten trials of the

Liga algorithm, which performs geometric build-up from

pair distances (Juhás et al., 2006, 2008). Peak extraction for

these purposes is considered successful if the correct

structure is found for at least one Liga trial. Structure

solution is considered correct if, with respect to a reference

structure obtained from the Crystallography Open Database

(Gražulis et al., 2009), it has the same nearest-neighbor coor-

dination and no position offset by more than 0.3 Å. Liga trials

for the crystal structures replicate the method of Juhás et al.

(2010), which attempts structure solution within the simple

[111] cell assuming known lattice parameters and stoichio-

metry, followed by a downhill method which assigns chemical

species to each atom in the structure geometry determined by

Liga. That study used the same crystal data, but peak

extraction was performed by a very early precursor to

ParSCAPE that lacked robust multimodeling capabilities and

careful consideration of PDF uncertainty and sampling.

Furthermore, termination ripples were not modeled, so even

clearly spurious peaks required manual removal before

running Liga.
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Table 1
Summary of peak extraction and AIC-based multimodeling results from 500 ParSCAPE trials for each of 18 X-ray PDFs with unknown �G.

Rw is the residuum of Nyquist-sampled PDF structure refinement. Cl is the number of classes. The Mbest column reports the number of these models, the number
consistent with plausibility by the �2

red criterion [equation (11)], and the number resulting in correct Liga solution (including chemical species assignment). The
Peaks column gives the number of peaks extracted in the various Mbest models, and in brackets the number calculated from the reference structure with precision
0.01 Å. Details of the forward and backward cases of consistency checks are given in the main text.

Mbest models Mean �g � �G (%)

Sampleref. structure Atoms Qmax Rw Cl No. �2 Liga Peaks Forward Backward

Ag1 4 35 0.095 13 3 2 3 11-16 [11] �1.00 (87) 0.02 (94)
BaTiO2

3 5 26 0.123 63 5 2 5 13-23 [89] �0.76 (57) �0.71 (62)
C graphite1 4 22 0.266 358 6 2 1 19-26 [52] �1.8 (10) �1.7 (11)
C60

3 60 21.3 63 3 2 2 12-14 [21] �0.86 (210) 0.53 (62)
CaTiO4

3 20 26 0.100 218 9 5 0 19-28 [312] �0.78 (44) �0.78 (53)
CdSe1 4 29 0.149 111 7 5 1 9-21 [26] �0.45 (68) �0.40 (37)
CeO1

2 12 27 0.119 35 4 4 2 11-18 [19] �0.21 (120) �0.24 (97)
NaCl5 8 19 0.161 178 6 5 6 11-17 [11] �1.50 (79) �0.90 (65)
Ni1 4 27 0.110 30 4 4 4 15-20 [15] �0.22 (92) �1.1 (11)
PbS6 8 28 0.086 15 5 4 5 10-14 [10] �1.40 (84) �1.40 (78)
PbTe1 8 26 0.073 71 4 4 4 8-13 [8] �1.4 (11) �1.1 (8)
PbTe NP7 
 100 28 426 10 7 27-53 [–] �0.88 (46) �0.50 (46)
Si1 8 27 0.202 52 6 4 6 12-20 [13] �0.87 (57) �0.75 (57)
SrTiO8

3 5 26 0.167 70 5 4 2 16-22 [23] �1.10 (57) �1.00 (64)
TiO2 rutile9 6 26 0.164 104 7 5 0 15-25 [100] �1.1 (8) �0.40 (74)
Zn1 2 32 0.105 34 6 4 6 12-21[30] �0.66 (59) �0.77 (50)
ZnS sphalerite10 8 24 0.103 40 7 5 7 12-19 [13] �0.41 (89) �0.60 (52)
ZnS wurtzite11 4 26.5 0.196 20 5 4 5 12-18 [35] �0.80 (58) �0.49 (38)

1 Wyckoff (1963). 2 Megaw (1962). 3 Truncated icosahedron with nearest-neighbor distance 1.44 Å. 4 Sasaki et al. (1987). 5 Jurgens et al. (2000). 6 Ramsdell (1925). 7 NP =
nanoparticle. Precise structure unknown. For comparison, bulk PbTe has 32 distinct peaks within 20 Å. 8 Mitchell et al. (2000). 9 Meagher & Lager (1979). 10 Skinner
(1961). 11 Wyckoff (1963). PDF refined as a mixture of wurtzite and sphalerite phases.
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Finally, consistency of ParSCAPE and multimodeling

results with respect to �g, the uncertainty assumed when

running ParSCAPE, and �G, the uncertainty assumed during

multimodel analysis, are tested for two cases. In the forward

case fix �g and for the resultant model calculate �G at which it

attains its maximum Akaike weight. In the backward case fix

�G and find the �g which produced the model with greatest

Akaike weight. The forward case therefore measures how

consistent the results of individual ParSCAPE trials are with

their assumptions, while the backward case measures how

consistent the best models are with the ParSCAPE trials that

produce them.

Table 1 summarizes results from all 18 PDFs with unknown

�G. For the purposes of discussion we categorize the PDFs

into those with qualitatively low, moderate and high overlap.

‘Correctness’ of models in this section is with respect to results

of structure solution to a modest tolerance, and not the

intrinsic peaks.

The six samples with least peak overlap have f.c.c. (Ag, Ni),

rock-salt (NaCl, PbS, PbTe) and diamond (Si) crystal struc-

ture. No hidden peaks are present in Ag, Ni, PbS and PbTe,

while the others have only one or two. In all these cases at

least one of the Mbest models is correct, with the exception of

Si due to a hidden peak near 9.4 Å displaced towards the

mean of the combined feature by �0:2 Å. The correct position

of this peak is found for trials assuming small (< 1%) uncer-

tainties, but these models have extraneous peaks and insig-

nificant Akaike weight. The Mbest model at greatest �G omits

this peak entirely but is otherwise correct. The incorrect

position is found in the remaining five Mbest models, but in

these cases the position is correct until the resampling step of

ParSCAPE, indicating the Nyquist-sampled PDF and our peak

function insufficiently constrain this aspect of the model. The

width of the incorrect peak is somewhat greater than normal

for this PDF, and reducing the peak function’s maximum

allowed width nearer to that of the other extracted peaks

recovers the correct structure. Liga solution was considerably

tolerant of spurious peaks for these six PDFs, obtaining the

correct structure from every Mbest model.

Nearly every Mbest model was consistent with plausibility

according to our �2
red criterion. Three models selected at low

�G, one for PbS and two for Si, are well outside the limits, with

multiple spurious peaks yet �2
red indicative of severe under-

fitting. Here �2
red is complementary to AIC, allowing us to

reject these models despite ignorance of the experimental �G.

Curiously, the correct model for Ag was selected where �2
red

indicates overfitting, although the peaks are so distinct no

simpler model could reasonably exist. However, the Akaike

weight for this model is > 0:2 for the vast majority of �G’s

where �2
red indicates plausibility, so the correct model would

almost certainly not be rejected by the AIC-based multi-

modeling approach.
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Figure 3
Experimental Nyquist-sampled SrTiO3 X-ray PDF with Qmax ¼ 26 Å�1

showing extracted peaks of the Mbest model from �G = 0.1961–0.2497 Å�2

(maximum Akaike weight �0:1) generated assuming �g ¼ 0.1478 Å�2.
The top inset shows extracted peak positions from every ParSCAPE trial
as a function of �g. The inset of vertical lines compares extracted to ideal
peak positions. The bottom line is the difference between the observed
PDF and this model (offset for clarity). ParSCAPE ably handles the
difficult feature between 8 and 9 Å, though several peaks can only be
discerned in combination with a neighbor. Liga obtains the correct
structure from these extracted peaks. The methods of x7.3 underestimate
the range of physically plausible �G for this sample, which is shown in x7.4
to be about 0.588 Å�2.

Figure 4
Experimental Nyquist-sampled C60 X-ray PDF, Qmax ¼ 21.3 Å�1,
showing extracted peaks of the Mbest model from �G = 0.26950–
0.42188 Å�2 (maximum Akaike weight �0:2, see class 57 in Fig. 5)
generated assuming �g ¼ 0.34621 Å�2. The top inset shows extracted
peak positions from every ParSCAPE trial as a function of �g. The inset
of vertical lines compares extracted to ideal peak positions. The bottom
line is the difference between the observed PDF and this model (offset for
clarity). Although no hidden peaks are resolved, many pairs of peaks are
so close together that fitting them separately is likely not justified,
statistically or from resolution considerations. The prominent termination
ripples are not extracted as peaks, but their mediocre fit compared to the
rest of the data suggests systematic error, likely from baseline
misspecification. Liga obtains the correct structure from these extracted
peaks.
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Structures with moderate peak overlap, up to a few dozen

obscured peaks, include C (graphite), C60, CdSe, CeO2,

SrTiO3, Zn, ZnS (sphalerite) and ZnS (wurtzite). In all these

structures some structural peaks remain unresolved, and as �g

increases there is a trade-off between removing spurious

peaks and resolving or retaining real ones. Many extracted

peaks will have the combined contribution of multiple

intrinsic peaks, and the degree to which these can be resolved

depends on PDF quality but also the structural details of the

sample. In fact, the correct peak model may require more

parameters than Nyquist-sampled data points, so cannot be

found by ParSCAPE even in principle.

Fig. 3 summarizes peak extraction from SrTiO3, an undis-

torted (cubic unit cell) perovskite, and is an example where

multiple hidden peaks can be resolved from high-quality PDF

with moderate overlap. The topmost inset shows the clear (and

very typical) progression of features which are removed as �g

increases, with neighboring peaks shifting to compensate for

the loss. In this case spurious peaks can be removed while

resolving hidden peaks, particularly in the very difficult

feature from 8 to 9 Å. The latter has a single local maximum

with six intrinsic peaks, of which two are resolved directly, and

the others as two pairs of underlying peaks. This sample is

tested with accurate uncertainties in x7.4.

Fig. 4 summarizes peak extraction from C60, in which hidden

peaks cannot be resolved because the intrinsic peaks are so

close and the prominent termination ripples are easily mis-

identified as peaks (roughly half of all trials). Nevertheless, of

the nine classes of models with appreciable Akaike weight

only two include these spurious peaks, comprising less than

10% of all trials, although these dominate the Akaike weights

for low �G (Fig. 5). Five of these classes have 13 peaks,

distinguished by various shifts in the peaks between 4.5 and

6.5 Å (several visible in the top inset of Fig. 4).

In other cases, tolerating a few spurious peaks to resolve

possible hidden peaks may be an acceptable compromise,

especially if the spurious peaks can be identified from physical

considerations. This is the case for ZnS (wurtzite), for

example, where one model has three small spurious peaks, but

resolves three hidden peaks otherwise missed. The latter are

suspect, of course, if the model has appreciable Akaike weight

only for very small �G or if �2
red suggests the model is

misspecified. Examination of �2
red shows that models selected

at small �G were implausible for C (graphite), CdSe, SrTiO3

and ZnS (sphalerite). The most interesting of these is the

borderline high-overlap graphite, which exhibits poorly

separated peaks above 5 Å. All its Mbest models are likely
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Figure 5
The Akaike weights for the best nine classes extracted from C60,
representing 329 of 500 ParSCAPE trials. The other 54 classes have total
weight < 1% for all �G. The bell shape of weight versus �G reflects the
AIC-enforced trade-off between chi-square error and the number of
parameters given a fixed population of models. In this case the classes
with 14 peaks reach maximum Akaike weight at low �G, those with 13
peaks at mid �G and those with 12 peaks at large �G. The basic results of
multimodeling with ParSCAPE can be quickly determined by this graph,
including the number of statistically plausible models and relative model
strength. This particular plot is typical of PDFs with little evident overlap,
as very few classes contribute nearly the total Akaike weight.

Figure 6
Experimental Nyquist-sampled TiO2 X-ray PDF with Qmax ¼ 26 Å�1

showing extracted peaks of Mbest model from �G = 0.051–0.149 Å�2

(maximum Akaike weight �0:38) generated assuming �g ¼ 0.0474 Å�2.
Insets of vertical lines compare extracted to ideal peak positions. The
bottom line is the difference between the observed PDF and sum of
extracted peaks (offset for clarity). The top inset shows extracted peak
positions of every ParSCAPE trial as a function of �g. Although this PDF
is of high quality, and the extracted peaks appear to fit well, it has
deceptively difficult aspects. The substantial peak overlap is not obvious
by inspection, which may hinder the correct interpretation of extracted
peaks. Fitting a single feature in the PDF with two nearly coincident
peaks is a common ParSCAPE trait that may be accurate (as in this case
where two ideal peaks 0.04 Å apart contribute to the observed nearest-
neighbor peak), but can also be characteristic of inaccurate baseline
estimation, indistinct termination ripples, or another effect causing
apparent broadening. ParSCAPE does not find sufficient peaks for Liga
solution, which is straightforward from ideal TiO2 interatomic distances.
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underfit, and the two with nearly implausible �2
red exhibit clear

unphysical attributes. The marginal quality of the sample even

when fitting the correct structure (PDF fit residuum

Rw ¼ 0:266) suggests ParSCAPE cannot draw strong conclu-

sions from this PDF. Despite these signs of misspecification,

the model selected assuming �G � 3% (Akaike weight �0:13)

retained enough detail to yield graphite structure in seven of

ten Liga trials. Both Zn and ZnS (wurtzite) favored implau-

sibly overfit models assuming large �G, but as earlier these

were either the simplest models found or had significant

Akaike weight for �G where �2
red is not implausible. Liga

build-up was successful for all structures with moderate peak

overlap.

The rutile TiO2 (Fig. 6), PbTe nanoparticle (Fig. 7), and

distorted perovskites BaTiO3 and CaTiO3 are examples of

structures with substantial peak overlap. The degree of

overlap may not be obvious, as for TiO2, where a single

extracted peak may fit many structural peaks, perhaps span-

ning tenths of Å’s.

An inconsistency between ParSCAPE’s assumptions and

results after multimodeling is observed from the negative

values of �g � �G, typically about �0:9% in the forward case

and �0:6% in the backward case, with standard deviations of

comparable magnitude (Table 1). The sign of this trend indi-

cates that individual ParSCAPE trials tend to miss statistically

salutary features when �g ¼ �G, and that the Mbest models are

usually drawn from these more complex models. This is not

surprising because determining whether a feature exists or not

is very difficult given preliminary peaks on very localized data,

precisely the conditions early in a ParSCAPE trial, while

multimodeling draws on a large population of fully specified

alternate models. A typical example is shown in Fig. 8, where

the decrease in complexity of the Mbest models as uncertainty

�G increases lags the decrease for individual trials as �g

increases. Clearly an individual ParSCAPE trial, even at

�g ¼ �G, does not necessarily generate a model that compares

favorably with the best models from a more diverse set.

Therefore, we feel this study’s approach of generating a

diverse population of models (treating �g with some latitude)

is a much stronger procedure. Combined with the other

benefits of AIC-based multimodeling we believe this repre-

sents the best practice for ParSCAPE when �G is unknown.

7.4. Known dG

Fortunately, it has recently become possible to test the

above procedure at experimentally determined �G by using

SrXplanar to obtain the one-dimensional diffraction pattern.

More importantly, the peak models best supported by the data

can be directly assessed without considering the entire range

of physically plausible �G. Finally, it permits investigating

ParSCAPE’s performance as different values of Qmax alter the

resolution versus uncertainty trade-off.

research papers

Acta Cryst. (2015). A71, 392–409 L. Granlund et al. � Algorithm for systematic peak extraction 403

Figure 7
Experimental Nyquist-sampled PbTe nanoparticle X-ray PDF, Qmax ¼
28 Å�1, showing extracted peaks of Mbest model (�g ¼ 0.01598 Å�2). Its
maximum Akaike weight is about 0.13, near �G ¼ 0.028 Å�2. Inset of
vertical lines shows extracted peak positions compared to ideal positions
of the bulk. The bottom line is the difference between observed PDF and
sum of extracted peaks (offset for clarity). The top inset shows the peak
positions of every model as a function of the �g which generated it.
Although the bulk PbTe distances are identified in this challenging
system, other large features suggest the presence of an additional phase.
Very few of the 500 trials result in identical models, with over 400 classes
identified. About 20 classes have non-negligible Akaike weight for some
�G.

Figure 8
Comparison for PbTe nanoparticle of the number of peaks extracted by
ParSCAPE assuming uncertainty �g to that of the best (greatest Akaike
weight) model found by multimodel selection given �G. Both decrease as
uncertainty increases, but clearly the best model for given �G tends to
come from a ParSCAPE trial of lesser �g. The dotted line indicates the
maximum number of peaks which can be fit given Nyquist-sampled data,
one parameter per point. For small �g simultaneous pruning and
downsampling stalls when removing peaks leads to no improvement in
AIC before Nyquist sampling is achieved. In that case the model is fit
using the least possible oversampling, �5% in this example, and the
model should be considered more questionable than its AIC might
indicate.
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We generated a SrTiO3 PDF with experimental �G (Qmax ¼
26 Å�1) starting from the raw images used to obtain the PDF

in the previous section, replicating the original data reduction

procedure as closely as possible. These data are a 65 s expo-

sure measured on a Marresearch Mar345 image-plate detector

using 87 keV synchrotron X-rays at the 6ID-D beamline of the

Advanced Photon Source, Argonne National Laboratory,

USA. See Juhás et al. (2010) for further experimental details.

PDFs were also obtained at six additional values of Qmax

between 16 and 28 Å�1. For each of these, 500 ParSCAPE

trials were run using �g ranging from 0.070 to 0.921 Å�2,

approximately half the mean �G at Qmax ¼ 16 Å�1 to 1.25

times mean �G at Qmax ¼ 28 Å�1, respectively. For given Qmax

the �G in the range of extraction are reasonably constant,

within 2% of the mean. Fig. 9 shows for all seven PDFs, over

the region of significant overlap, peak positions from the

models with greatest Akaike weight (evaluated using the

procedure in x7.2) at the experimentally determined �G.

For Qmax ¼ 26 Å�1, mean �G ¼ 0.588 Å�2, about 20%

above the maximum �g tested in x7.3. Consequently, it is

unsurprising that the model with greatest Akaike weight

(’ 0:33) is less complex than the one in Fig. 3, which had

greatest weight for �G near 0.25 Å�2. From an AIC-based

perspective, one should be reluctant to assign much value to

the specific bump in, for example, the large feature near

8.75 Å. Is this a ‘bad’ fit for missing physical features? We

don’t have a truly independent way to answer that question,

but the models favored if �G had actually been lower do

capture additional physical features, suggesting that the AIC-

based approach would capture them given more data collec-

tion. In addition, among information criteria of similar form to

the AIC, we are aware of none with a smaller penalty term. If

an information criterion approach is viable, as we believe, no

alternate information criterion will consistently suggest these

data can support even more complex models. In short, there is

no replacement for more data.

As such, a reasonable question is how much additional data

taking would be required to recover a model similar to the one

in Fig. 3. The uncertainty of a Qmax ¼ 26 Å�1 PDF created

from the image which captured a 30 s subset of the data is

0.788 Å�2. Increasing the exposure from 30 to 65 s thus

reduced the uncertainty by a factor of roughly 0.75, close to

the factor of 0.68 one might suspect if uncertainties were

precisely Gaussian. (This scaling was independent of Qmax.) If

additional data taking follows the same scaling properties, a

factor of ten increase in collection time would be sufficient to

reduce �G to 0.25 Å�2, certainly within the time budget at a

user facility for a sample with similarly strong scattering.

The impact of Qmax is also visible. At Qmax ¼ 16, 18 Å�1 the

uncertainties are small, but the only models sufficiently

complex given these uncertainties require more parameters

than Nyquist-sampled points. This is evidence that greater

resolution is required for best results, despite the enviably low

uncertainties. For large Qmax, physical features like the peak

near 6.15 Å are lost because the peak does not, to the AIC,

appear to add sufficient value. Without this peak, invariably

the ones near 6.5 and 6.75 Å broaden, while the latter shifts

(see the inset in Fig. 3). The best showing is Qmax ¼ 20 Å�1,

which correctly identifies the most physical features. For this

specific measurement it has sufficient resolution to support its

model, yet small enough uncertainty to retain features which

larger Qmax models lose. While investigation with more

samples is required, these preliminary results suggest

ParSCAPE reacts to Qmax in the anticipated fashion.

8. Key issues

The principal goal of ParSCAPE is unbiased peak extraction

enabling structure determination without a prior structure

model, yet the best model or models in the experimental PDF

are rarely manifest. Searching for them is a challenging

endeavor due to peak overlap, but also due to features

inherent to the PDF measurement, principally the baseline

and termination ripples. Consequently, evaluating alternate

models is critical for prioritizing the initial conditions passed

to a structure determination method. In addition, PDF science

is in transition to a new degree of quantitative maturity, and

the design of ParSCAPE anticipates features such as experi-
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Figure 9
Detail of SrTiO3 X-ray PDFs for various values of Qmax (offset vertically)
with minimally correlated uncertainties propagated from the same raw
diffraction data as the PDF in Fig. 3. The error bars appear at Nyquist-
sampled positions. Vertical lines show the peak positions of the model,
selected from 500 ParSCAPE trials, with greatest Akaike weight w (top-
right inset) at the experimentally determined mean �G for the PDF of
corresponding color. The bottom inset shows ideal peak positions. The
top-center inset shows mean �G as a function of Qmax, which is well
approximated by an empirical power law (plus a small constant) with
exponent ’ 3:1. The models selected for Qmax ¼ 16, 18 Å�1 have more
free parameters than Nyquist-sampled data points, so those data do not
truly support models of that complexity. For larger values of Qmax there
are sufficient Nyquist-sampled data points for the models shown, but the
uncertainties are too large to justify the models favored assuming smaller
�G which, in fact, better match the ideal peak positions. For the models
shown the trade-off between resolution and uncertainty appears best
managed at Qmax ¼ 20 Å�1, which accurately identifies the most peaks.

electronic reprint



mentally determined �G which are not yet ubiquitous. These

topics are explored below.

8.1. The PDF baseline

Peaks extracted with ParSCAPE are conditioned on the

estimate of the PDF baseline. Estimating the linear baseline of

bulk crystal PDFs is generally straightforward, but nano-

particles pose significant difficulties. Since the baseline arises

from unmeasured scattering below Qmin (Farrow & Billinge,

2009) a natural solution is direct determination with small-

angle scattering experiments. At present, however, these data

are not widely acquired in the nanoparticle PDF community.

In their absence the best structural knowledge available

should be used. The nanoparticle baseline can be computed

analytically for simple shapes (Rayleigh, 1914; Glatter &

Kratky, 1982; Müller et al., 1996; Gilbert, 2008; Lei et al., 2009)

and via integral equations for more complex cases (Kodama et

al., 2006). Recent ad hoc techniques have also proven

successful (Korsunskiy et al., 2007). Direct calculation of �0ðrÞ
from a structure model is a self-consistent approach in struc-

tural modeling, but usually not applicable to peak extraction.

Several simple baseline functions are included with SrMise,

as well as arbitrary polynomials and interpolation from

specified points, but the tools for estimating the baseline

before peak extraction are very rudimentary. For crystals, a

successful strategy appears to be fitting the first several peaks

with unphysically large �g. Such trials take a few seconds to

perform and capture the gross behavior of the (typically) most

distinct peaks. These baselines can then be examined using

more realistic �g to see if unlikely features appear. For

example, if exactly one atomic pair is known to contribute to

the nearest-neighbor peak, but multiple peaks are consistently

found for that feature, this may be a sign the baseline should

be adjusted slightly. On the other hand, if the investigator has

reason to believe the nearest-neighbor peak is also strongly

anharmonic, an extra peak may reflect that rather than a poor

baseline.

At present the investigator should expect to craft a nano-

particle baseline manually. One approach will start from

simple analytical models and estimates of nanoparticle prop-

erties (particularly size) and see if, for example, major peaks

from a corresponding bulk structure are identified. Integrating

both analytical and small-angle scattering nanoparticle base-

lines with robust estimation procedures is a major goal for a

future version of SrMise.

8.2. Termination ripples

ParSCAPE aids the exercise of sound judgment in deciding

whether a peak is real or a ripple. Techniques for handling

termination ripples are a venerable topic in the PDF

community (Lovell et al., 1979; Warren & Mozzi, 1975;

Warren, 1990), although current-generation beamlines with

good, high-Q counting statistics reduce the need for methods

to deal with low counting statistics. One common technique

applies a smooth window function in reciprocal space near

Qmax. This damps the oscillation, but induces peak broadening,

as from increased Debye–Waller factor. Another calculates

the PDF for many values of Q0
max � Qmax and observes how

features change. Modern structural refinement usually models

termination ripples directly, and ParSCAPE adopts this

approach.

ParSCAPE’s clustering is inherently local, and suited for

unimodal peaks, but poorer when satellite peaks are evident.

Attempts to include termination ripples in descriptive peaks

from the beginning of ParSCAPE were ineffective, since these

introduce oscillations that may themselves be fit during

recursive search. Furthermore, even if a physical peak is

identified clearly, when the cluster grows to contain the ripples

these features may be wrongly identified as the central peak of

a separate feature also generating termination ripples,

compounding the problem. In regions with sufficient peak

overlap (usually at large r) the ripples will cancel to some

degree, but introducing oscillations in the hopes they cancel

later is misguided. Finally, using termination ripples from the

start negatively affected both speed and model convergence.

Applying termination ripples to existing peaks followed by

pruning was more effective in our tests, as this asks each peak

whether it is a termination ripple, and gives its neighbors a

chance to fit any vacated features in the data as evidence. Fig.

10 demonstrates this process for C60. Simultaneously down-
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Figure 10
An example of termination ripple removal during the pruning/resampling
step on C60 PDF, with comparison of distances and offset residual as in
previous figures. (a) Immediately before the pruning/resampling step. The
peak function does not yet model termination effects, and the ripples
observed at approximately 1.8 and 2.1 Å are fit by distinct peaks. (b)
After the first round of pruning. Termination effects have been
introduced and the sampling rate is decreased. The data are still
oversampled because the model in part (a) has more parameters than the
Nyquist-sampled data permit. One extraneous peak has been removed,
while the other shifts and broadens. (c) After the second round of
pruning. The second extraneous peak has been removed, but the
sampling rate is unchanged. The residual is increased compared to part
(b), but not enough to offset the improvement in AIC due to three fewer
parameters. (d) The final fit. Additional pruning removed no further
peaks, and the PDF is now sampled at the Nyquist rate.
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sampling the PDF during pruning yielded the greatest

improvement. The principal reason is that some features are

discarded as the number of points treated as independent

decreases, causing the AIC to favor fewer parameters.

Furthermore, model parameters do not need to ‘escape’ their

previously converged values in order to fit slightly different

features, as downsampling the PDF perturbs the optimal

values so that the old values behave as a good initial guess.

Evidence for the latter is order of magnitude reduction in

termination ripple convergence problems (with or without

pruning) compared to applying Nyquist sampling afterward.

(Note that Nyquist sampling from the start of ParSCAPE

retains these convergence problems once termination ripples

are applied, further justifying the choice to oversample initi-

ally.)

Pruning is not always successful, but other aspects of

ParSCAPE can provide insight as well. One way is examining

how certain features are fit as �g changes. For example, if a

feature is fit with its own peak at low �g, but well fit as the

termination ripple of a nearby peak at larger �g, questioning

the low-�g result is entirely justifiable. Similarly, the models

found when varying Qmax may provide a more rigorous analog

to the traditional method of visually inspecting changes to the

peak profile. Multimodeling is flexible with regard to the

investigator’s judgment. If a model appears unphysical simply

exclude it and recalculate the Akaike weights.

8.3. Negative peaks

The neutron PDF of systems containing elements with

neutron structure factors of opposite sign will contain negative

peaks. Although positive structure factors are more common,

examples of negative structure factors include hydrogen and

titanium. Even moderate peak overlap will cancel significant

positive contributions to the PDF. Consequently, a model with

an overlapping positive and negative peak becomes indis-

tinguishable at that position from one with neither.

The usefulness of ParSCAPE in this context depends on the

investigator’s goals. Isolated peaks, both negative and positive,

are trivial to extract. Furthermore, peak fitting starting from

an existing model is straightforward. However, the principal

goal of ParSCAPE, namely peak extraction over an extended

range of the PDF starting from no model whatsoever, becomes

daunting. Apart from the exceptions just noted, ParSCAPE

assumes all peaks are positive, and there are no plans to

address this issue algorithmically.

8.4. PDF sampling and uncertainty

The sampling rate and uncertainties in GðrÞ are critical

determinants of ParSCAPE’s result because the AIC tolerates

more parameters as the former increases, but fewer as the

latter increases (Fig. 8). Qmax, as discussed in x4.2, determines

their balance. Approximate conditions on Qmax and the

observation time necessary to optimize the uncertainties of

GðrÞ, assuming each observation of SðQÞ has equal weight,

were calculated by Thijsse (1984). ParSCAPE or another AIC-

based technique may permit an independent check on this

balance for an individual PDF with peak extraction over a

range of maximum Q values. For a sufficiently complex PDF

the best statistics presumably occur when the number of peaks

that can be justified from the data is maximized. If the region

were wide it might guide the investigator in generating a PDF

with Qmax that emphasizes fine detail or lower uncertainties as

desired. The results of x7.4 are promising in this regard, but we

defer conclusions to a future study. In particular, even if

ParSCAPE reliably identifies an ‘optimal’ Qmax, it is not clear

adopting that value should consistently and measurably

benefit structure modeling.

An alternate application for future investigation is dynamic

determination of sample exposure time during PDF acquisi-

tion via rapid multimodeling until a feature of interest can be

justified among, or over, alternate models. Potential examples

include extraction of a supposed hidden peak, a nearest-

neighbor peak with shape indicative of nonharmonic interac-

tions, or a given number of extracted peaks. This could be of

particular value in time-intensive experiments, such as neutron

scattering or temperature studies, where insufficient statistics

are not easily rectified.

8.5. Applicability of the AIC

Careful practitioners of the AIC emphasize that models

under consideration should be plausible a priori rather than

arise from post hoc considerations, that multiple such models

should be retained rather than choosing a single ‘best’ model,

and that inference from post hoc models is meaningless

(Burnham & Anderson, 2002). With its stepwise approach

culminating in a single model, ParSCAPE might seem to

violate these best practices, even ‘data dredge’. These are

legitimate concerns, arising primarily from confirmatory

modeling in the biological sciences, but we feel they are largely

mitigated due to the usual purpose and context of PDF peak

extraction. First, the peak function (and frequently baseline) is

based on well understood theory. Second, the total number of

peaks is restricted to a small interval by the physically moti-

vated clustering method and the experimentally estimated

uncertainties in the data. Third, peak extraction without a

structural model often has an exploratory rather than confir-

matory character, with all due interpretive caution. Fourth,

fitting individual features is frequently driven by strong a

priori considerations, often in conjunction with a structural

model. Finally, ParSCAPE lends itself to multimodel investi-

gations of many plausible models, which we strongly encou-

rage. If the AIC were applied to structural modeling, greater

consideration of these cautions would be required.

An additional concern is that ‘model’ as defined in the

theory considers only its functional form, not the parameters’

refined values. From this perspective there is only one model

with a given number of peaks (assuming the same peak

function), not many with different refined values. This is a

more subtle manifestation of model redundancy than that

discussed in x6. The calculated AIC and its interpretation

remain valid, as the approximations made in its derivation

hold even for refined models with likelihoods ‘close’ to that of
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the maximum likelihood estimate (Burnham & Anderson,

2002). The Akaike weights, however, assume all models have

equal prior likelihood of being the K–L best model, which is

not true if models are redundant. Burnham & Anderson

(2002), in a confirmatory paradigm, suggest using non-equal a

priori weights to deal with this kind of redundancy if it is not

removed outright. Whether such an approach is appropriate

or necessary for ParSCAPE is under investigation.

9. Conclusion

While peak extraction and peak fitting of the PDF can provide

useful information about individual peaks, the purpose of

ParSCAPE is peak extraction over an extended range to aid

methods of ab initio structure determination based on peak

positions. ParSCAPE substantially reduces the user inter-

vention required for this task and makes a statistically

defensible estimate of sets of peaks that explain the measured

PDF over a wide range of r in the absence of any structural

model. This is expected to find use beyond structure solution

from PDF.

To obtain an unbiased estimate of the best peak models the

algorithm utilizes a multimodeling procedure based on the

information-theoretic Akaike information criterion to balance

goodness of fit and model complexity in a statistically justified

fashion. In the spirit of the AIC, which is at heart a method for

comparing competing models, the algorithm constructs classes

of distinct models and scores them, allowing the user to select

the best model, or any number of different preferred models,

for further study, where by model we mean a set of Gaussian

peak positions, widths and intensities.

ParSCAPE has been implemented in a software program,

SrMise, available at http://www.diffpy.org. A scripting inter-

face provides full access to SrMise, while single trials of peak

extraction may be rapidly performed from the command line.

The release includes examples demonstrating peak extraction

and multimodeling with both crystals and nanoparticles.

Nearly every parameter can, in principle, be determined or

estimated from experiment, the notable exceptions being the

PDF baseline in most cases (i.e. absent small-angle scattering

data).

The PDF baseline must be specified before peak extraction,

and results are conditioned upon it. Reasonable crystal

baselines can be quickly estimated by trial and error, but

nanoparticle baselines remain challenging. At this time SrMise

supports parameterized nanoparticle baselines for a few

simple shapes and arbitrary numerical baselines. Robust

procedures for automated baseline modeling and estimation

are a major goal for future versions.

The experimental uncertainty �G is, unfortunately, not

commonly propagated to the PDF by popular data reduction

software. Although new tools are changing this, ‘legacy’ PDFs

will likely remain in use for some time. When �G is known,

multimodeling analysis is straightforward. When it is not, all

conclusions are premised upon an assumed �G, and the

investigator’s work increases. However, even in this situation,

ParSCAPE can help the experimenter to rank competing

models by estimating them systematically for different

assumed uncertainty levels. Peak parameters found by

ParSCAPE over a small range of assumed data uncertainties

are largely observed to be stable to within the maximum

likelihood estimate of their uncertainties. Finally, ab initio

structure determination of 15 structures from peaks extracted

without the use of �G demonstrates ParSCAPE can be a

pragmatic tool even when statistical rigor is not possible.

We have also demonstrated ParSCAPE on a SrTiO3 PDF

with known �G. By our AIC-based method, the data best

support a simpler model than those for which Liga construc-

tion was successful. A straightforward argument suggests such

models would likely be favored (in this case) given an order of

magnitude increase in exposure time. ParSCAPE also

provides a new way to examine the resolution versus uncer-

tainty trade-off imposed by Qmax, one that may lead to future

applications.

We believe that ParSCAPE can become a powerful tool for

unbiased, model-free quantitative analysis of PDFs in the

absence of a structural model and it has already been

demonstrated in this regard (Terban et al., 2015). It is easy to

use and its success in providing sets of peaks that result in

successful structure solutions using Liga demonstrates that it is

robust.

APPENDIX A
Integrating detector uncertainties

Statistical uncertainties in PDF data come from various

origins which depend on the measurement system. For many

detectors such as photon counting detectors this is Poissonian,

with initial uncertainty square-root the number of counts.

Software commonly used during data reduction often assumes

the latter, but this is invalid for integrating detectors such as

CCDs, in which case the uncertainties determined this way are

incorrect. Moreover, obtaining a one-dimensional powder

diffraction pattern from area detectors requires integrating

around Debye–Scherrer rings, the details of which affect the

statistical correlations between neighboring bins in the one-

dimensional pattern (Yang et al., 2014). Data reduction and

modeling software currently available do not typically utilize

the full variance–covariance (VC) matrix, so area integration

should be carried out so as to minimize statistical correlations

between points. Nevertheless, the most common integrating

software use a ‘pixel-splitting’ algorithm which introduces

rather than suppresses correlations. For details see Yang et al.

(2014).

Consequently, statistical uncertainties have been only rarely

determined and propagated in powder diffraction from area

detectors. For structural modeling, incorrect uncertainty

magnitudes invalidate uncertainty estimates on model para-

meters, but have minimal impact on the refined values them-

selves. PDF reduction tools currently in development

propagate the full VC matrix to GðrÞ, which in conjunction

with SrXplanar will obviate these issues.
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All data reduction in this paper was originally performed

using PDFgetX2 (Qiu et al., 2004), which correctly propagates

uncertainties (though not the VC matrix) given an input one-

dimensional diffraction pattern with accurate uncertainties.

When SrXplanar made the latter possible, we continued to use

PDFgetX2, despite the availability of PDFgetX3 (Juhás et al.,

2013), to best match the PDFs already tested by ParSCAPE.
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(1999). J. Appl. Cryst. 32, 36–50.
McQuarrie, A. D. R. (1998). Regression and Time Series Model

Selection. Singapore: World Scientific Publishing Company.
Meagher, E. P. & Lager, G. A. (1979). Can. Mineral. 17, 77–85.
Megaw, H. D. (1962). Acta Cryst. 15, 972–973.
Mitchell, R. H., Chakhmouradian, A. R. & Woodward, P. M. (2000).

Phys. Chem. Miner. 27, 583–589.
Morohashi, M., Shimizu, K., Ohashi, Y., Abe, J., Mori, H., Tomita, M.

& Soga, T. (2007). J. Chromatogr. A, 1159, 142–148.
Mullen, K. & Levin, I. (2011). J. Appl. Cryst. 44, 788–797.
Müller, J. J., Hansen, S. & Pürschel, H.-V. (1996). J. Appl. Cryst. 29,

547–554.
Pawley, G. S. (1981). J. Appl. Cryst. 14, 357–361.
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