{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Advanced structure solution: parallel process & testing multiple configurations\n", "You should first try the cimetidine structure solution notebook before this one.\n", "\n", "In this notebook, you can try solving a structure while:\n", "* testing different spacegroups and adapting the crystal contents (number of independent molecules)\n", "* using multiple parallel process to go faster\n", "\n", "This is an example of meta-structure solution, 'meta' meaning that instead if having a single description for the contents of you crystal (spacegroup, number of molecules, atoms or polyhedra), you can try any different combinations using python. It requires a little programming but can be very powerful when several choices for the configuration of your structure are possible.\n", "\n", "For this to work you need to install the following packages:\n", "* `multiprocess`\n", "* `ipywidgets` and `py3dmol` (optional)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of processors or cores available: 8\n" ] } ], "source": [ "%matplotlib widget\n", "\n", "import os\n", "import sys\n", "import io\n", "import timeit\n", "\n", "# Note: we need 'multiprocess' instead of standard multiprocessing because of the\n", "# following issue (specific to ipython or notebooks):\n", "# https://bugs.python.org/issue25053\n", "# https://stackoverflow.com/questions/41385708/multiprocessing-example-giving-attributeerror\n", "#\n", "# In a python script (not in ipython or a notebook) multiprocessing could be used instead\n", "try:\n", " from multiprocess import Pool, current_process\n", "except ImportError:\n", " print(\"Please install `multiprocess` using 'pip', 'conda' or 'mamba' to run this notebook\")\n", " print()\n", " sys.exit()\n", "\n", "import pyobjcryst\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from pyobjcryst.crystal import *\n", "from pyobjcryst.powderpattern import *\n", "from pyobjcryst.indexing import *\n", "from pyobjcryst.molecule import *\n", "from pyobjcryst.globaloptim import MonteCarlo\n", "from pyobjcryst.io import xml_cryst_file_save_global\n", "try:\n", " import ipywidgets as widgets\n", "except ImportError:\n", " widgets = None\n", "\n", "try:\n", " # Get the real number of processor cores available - requires psutil\n", " # os.sched_getaffinity is only available on some *nix platforms\n", " import psutil\n", " nproc = len(os.sched_getaffinity(0)) * psutil.cpu_count(logical=False) // psutil.cpu_count(logical=True)\n", "except:\n", " nproc = os.cpu_count()\n", "\n", "print(\"Number of processors or cores available: \", nproc)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create powder pattern object, index & fit profile\n", "Same as the cimetidine structure solution notebook, so read that for details" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Imported powder pattern: 7699 points, 2theta= 8.010 -> 84.990, step= 0.010\n", "Indexed unit cell:\n", "( 6.83 18.82 10.39 90.0 106.4 90.0 V=1281 MONOCLINIC P, 130.0296630859375)\n", "No background, adding one automatically\n", "Selected PowderPatternDiffraction: with Crystal: \n", "Profile fitting finished.\n", "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n", "to disable profile fitting and optimise the structure.\n", "Fit result: Rw= 5.51% Chi2= 34095.69 GoF= 4.43 LLK= 6397.991\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1d7965398b684d6bb25b76bf2c94a90c", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA2BZJREFUeJzs3XlclWX6x/EP+6KCKCGSpv4yFUXT3LVCXFATLa3UVNTJbCFjynUsLa1JrVxqLJ2mabQUs3SsTMs9NRdyb3ChrFxLXJLNjfX5/YHnicMOAofl+369eMV5zn2e5z6HI52L676vy84wDAMRERERERGpdOxtPQERERERERGxDQWEIiIiIiIilZQCQhERERERkUpKAaGIiIiIiEglpYBQRKSYDR061NZTEBERESkQR1tPQESkvJo4cWK2Y4ZhsGvXLhvMRkRERKTwFBCKiBRRREQEy5Yty3b822+/tcFsRERERApPAaGISBE9/vjj+Pv74+PjY3V8+PDhNpqRiIiISOHYqTG9iIiIiIhI5aSiMiIiIiIiIpWUAkIREREREZFKSgGhiEgxOnjwoK2nICIiIlJgKiojIlJECxYssLptGAYLFy4kLCyMsLAwG81KREREpOCUIRQRKaL33nuPNWvW4O7uTpUqVahatSr29vZUrVrV1lMTERERKRAFhCIiRXT48GGGDRvGl19+ibOzM6GhodSpU0dtJ0RERKTcUNsJEZFblJ6eTkREBJ9++ikXLlxgz549tp6SiIiISIEoIBQRKSbp6enExMTg5+dn66mIiIiIFIgCQhERERERkUpKewhFREREREQqKQWEIiLFLCYmxtZTEBERESkQBYQiIsVMVUZFRESkvFBjehGRImrXrl22Y4ZhcPz4cRvMRkRERKTwFBCKiBRRYmIiUVFRODpa/yrt0aOHjWYkIiIiUjhaMioiUkQzZswgMTEx2/EpU6bYYDYiIiIihae2EyIixSQ6OpomTZrYehoiIiIiBaYMoYhIMQkLC7P1FEREREQKRQGhiEgxcXJysvUURERERApFS0ZFREREREQqKWUIRUREREREKikFhCIiIiIiIpWUAkIREREREZFKSgGhiIiIiIhIJaWAUEREREREpJJSQCgiUsyGDh1q6ymIiIiIFIijrScgIlJeTZw4MdsxwzDYtWuXDWYjIiIiUngKCEVEiigiIoJly5ZlO/7tt9/aYDYiIiIihaeAUESkiB5//HH8/f3x8fGxOj58+HAbzUhERESkcOwMwzBsPQkREREREREpfSoqIyIiIiIiUkkpIBQREREREamkFBCKiBSjgwcP2noKIiIiIgWmojIiIkW0YMECq9uGYbBw4ULCwsIICwuz0axERERECk4ZQhGRInrvvfdYs2YN7u7uVKlShapVq2Jvb0/VqlVtPTURERGRAlFAKCJSRIcPH2bYsGF8+eWXODs7ExoaSp06ddR2QkRERMoNtZ0QEblF6enpRERE8Omnn3LhwgX27Nlj6ymJiIiIFIgCQhGRYnL58mVu3LiBn5+fraciIiIiUiAKCMu59PR0fv/9d6pVq4adnZ2tpyNSqYWEhLBmzRpbT0NERKTcMwyDxMRE/Pz8sLfXLreSpICwnDt79ix169a19TRERERERIrdmTNnqFOnjq2nUaGp7UQ5V61aNSDjH4uHh4eNZyNSucXGxuLl5WXraYiIiJR7CQkJ1K1b1/ysKyVHAWE5Z1km6uHhgYeHB1u3biU0NJRp06YxatQounTpQlpaGtevX+fJJ5/kySefNB+bmJhI9+7dOXLkCJGRkQQEBAAQHBzM5cuX2bdvn/n4rVu38t1337FmzRpmz55d4Pnddddd3H777SQlJdGpUyfmzJmT47iYmBgWLlzI9OnT6dKlC2vWrCnW0v3//Oc/cXV1ZeTIkTneP3z4cLZs2cLZs2eL7ZpS+eiPMiIiIsVLW6JKnhbkVkCDBg1i1KhR5u1vvvmG7777jhkzZpCSkmIed3NzY82aNTzyyCNWj9+wYYPV7W+++QYHB4cizcXT05OtW7eye/duDh06xG+//ZbjOF9fX6ZPn16kaxSHjz/+GF9fX5tdX0RERETEFhQQVhJubm7Url2by5cvm8ccHR257bbbbum869at47777qNTp0588sknuY5LS0sjJSUFV1dXzp8/T7du3bj//vt55JFHSEtL4+TJk9kC08y6dOnCX//6V9q3b8/rr79OeHg4HTp04K233gLgf//7H507d6ZTp078/e9/B+D06dPce++9PPDAA2zfvt0814wZMwgMDOT+++8nKirqlp6/SE5iYmJsPQURERGRAlFAWElcunSJ8+fP33IAmFl6ejqvvvoqmzdvZseOHfzzn/8kLS3Nakx8fDxdunShadOm1KtXj5o1a+Ll5cX69evZvn07d9xxB1u2bCnQ9QYOHEhkZCQffPABjz/+ODt37mTp0qUAvPjii/z73/9m586dbN++nZMnT/Lmm2/y8ssv8/XXX5vLDaKiovjxxx/Ztm0bn332GS+//HKxvR4iFmpMLyIiIuWF9hBWAr1798be3p533nmnWMv2Xrp0iePHjxMcHGzevnjxotXSS8uSUcMwGDhwIN999x133XUXTz/9NLGxsZw7d467776bu+66K9/rtWjRAjs7O3x9fbn77ruxs7PDyckJgPPnz+Pv7w/APffcwy+//MLPP/9M69atAWjXrh0Ax44dY9euXXTp0gWgyEthReDP91VmhmFw/PhxG8xGREQyS09PJzk52dbTkFw4OTnpc1gZoYCwEvjmm2+KtUCLhbe3N/7+/mzcuBEnJydSUlLMAC0rOzs7PD09uXz5MhEREQQHBxMWFsbYsWMpaOeTzJuKs24wrlWrFseOHaNJkyYcOHCAp59+moYNG3Lw4EG6d+/Ovn376NatG02aNCEwMJB///vfAFZ7KkUKKzExkaioKBwdrX+V9ujRw0YzEhERgOTkZE6cOEF6erqtpyJ5qF69Or6+viocY2MVKiDcvn07b731Fvv37+fcuXN8/vnnPPTQQ+b9ub3Z3nzzTSZMmABk7FXbtm2b1f2DBg1i+fLl5u3Y2FjCw8NZvXo1AP369WP+/PlUr17dHHP69GmeffZZtmzZgpubG0OGDGH27Nk4OzubY6KiohgzZgx79uyhRo0aPPXUU0ydOrVU/1E88MADHDp0iB9//JGnnnoq1yqcFitWrODQoUNAxrK4l156ie7du2Nvb89tt93GZ599ZjXesmQ0LS2NWrVq0bt3b44ePUpoaCjr16/H3d2dFi1a3PLzeP3113niiScwDIM+ffpQv359Jk6caL7ulp9NixYtuOuuuwgMDMTe3p4ePXrw4osv3vL1pXKaMWMGiYmJ2VpNTJkyxUYzEhERwzA4d+4cDg4O1K1bV03NyyDDMLh27RoXLlwAoHbt2jaeUeVWoRrTf/PNN+zcuZN77rmHhx9+OFtAmLXQwzfffMOoUaP4+eef+b//+z8gIyBs1KgRr776qjnOzc0NT09P83bv3r05e/Ys//rXvwB48sknqV+/Pl999RWQUUClZcuW3HbbbcyZM4c//viDESNGMGDAAObPnw9k9FZp1KgRQUFBvPTSS/z000+MHDmSV155hXHjxhX4OSckJODp6Ul8fDweHh5ERkby1FNPER4eblVptDCCg4NxdXVl9erVDB48mHPnzrFly5YKndYfPnw40dHR7Nmzx9ZTkXIsOjqaJk2a2HoaIiKVWkpKCj///DN+fn5Wn9+k7Pnjjz+4cOECjRo1yvY5M+tnXCk5FSogzMzOzi5bQJjVQw89RGJiIps3bzaPdenShZYtW/L222/n+Jhjx47RtGlTIiMjad++PQCRkZF07NiR6OhoGjduzDfffENISAhnzpzBz88PgOXLlzNy5EguXLiAh4cHCxcuZPLkyZw/fx4XFxcAZs2axfz58zl79myBs4T6xyJSdnTt2rXARZJERKRk3LhxgxMnTlC/fn3c3NxsPR3Jw/Xr1zl58iQNGjTA1dXV6j59xi09lTaHfv78edauXZtjFi0iIgJvb2+aNWvG+PHjSUxMNO/bvXs3np6eZjAI0KFDBzw9Pdm1a5c5JiAgwAwGAXr27ElSUhL79+83xwQGBprBoGXM77//zsmTJ4v76YpIKchtD62IiJQ+7Usr+/QzKhsq1B7Cwvjoo4+oVq0aAwYMsDo+dOhQGjRogK+vL4cPH2by5Mn88MMPbNy4EchYdurj45PtfD4+PuaS1JiYGGrVqmV1v5eXF87OzlZj6tevbzXG8piYmBgaNGiQ47yTkpJISkoybyckJBTiWYtISVq/fr2tpyAiIiJSKJU2Q/if//yHoUOHZktPjx49mu7duxMQEMDgwYNZuXIlmzZt4sCBA+aYnP6aYRhGnlUwCzLGsno3r7+WzJw5E09PT/Orbt26+TxTESlV8+fD3r22noWIiFQwW7duxc7Ojri4OFtPRSqYShkQfvfdd/z444888cQT+Y695557cHJyMvuK+fr6cv78+WzjLl68aGb4fH19sxWwiY2NJSUlJc8xlkpLWbOLmU2ePJn4+Hjz68yZM/k+BxEpReHhkEN/QhEREZGyqFIGhB9++CGtW7fm7rvvznfskSNHSElJMcvhduzYkfj4eKtqlN9//z3x8fF06tTJHHP48GHOnTtnjtmwYQMuLi5mo/SOHTuyfft2q4apGzZswM/PL9tS0sxcXFzw8PCw+hIRERERESmKChUQXrlyhUOHDpl98k6cOMGhQ4c4ffq0OSYhIYEVK1bkmB385ZdfePXVV9m3bx8nT57k66+/5tFHH6VVq1Z07twZAH9/f3r16sXo0aOJjIwkMjKS0aNHExISQuPGjYGMtg1NmzYlNDSUgwcPsnnzZsaPH8/o0aPNAG7IkCG4uLgwcuRIDh8+zOeff86MGTMYO3asNtiKiIiIVEJJSUmEh4fj4+ODq6sr9957L3uzbEPYuXMnd999N66urrRv356oqCjzvlOnTtG3b1+8vLyoUqUKzZo14+uvvy7tpyHlTIUKCPft20erVq1o1aoVAGPHjqVVq1a8/PLL5pjly5djGAaPPfZYtsc7OzuzefNmevbsSePGjQkPDyc4OJhNmzZZ9UaJiIigefPmBAcHExwcTIsWLViyZIl5v4ODA2vXrsXV1ZXOnTszcOBAHnroIWbPnm2O8fT0ZOPGjZw9e5Y2bdoQFhbG2LFjGTt2bEm8NCIiIiJSxk2cOJH//ve/fPTRRxw4cICGDRvSs2dPLl++bI6ZMGECs2fPZu/evfj4+NCvXz9SUlIAePbZZ0lKSmL79u1ERUXxxhtvULVqVVs9HSknKmwfwspCPVpEyhhLhl+/WkVEbMLShzBzb7tr164RHR1d6nNp0qQJ7u7uBRp79epVvLy8WLx4MUOGDAEgJSWF+vXr8/zzz9O2bVuCgoJYvnw5gwYNAuDy5cvUqVOHxYsXM3DgQFq0aMHDDz/MK6+8UmLPqTjl9LOy0Gfc0lNp206IiIiISOUQHR1t1nEoTfv37+eee+4p0NhffvmFlJQUc5sSZPS3bdeuHceOHaNt27ZARh0Kixo1atC4cWOOHTsGQHh4OM888wwbNmyge/fuPPzww7Ro0aIYn5FURAoIRURERKRCa9KkCfv377fJdQsqt/ZjWduW5cRy/xNPPEHPnj1Zu3YtGzZsYObMmcyZM4fnnnuukDOXykQBoYiIiIhUaO7u7gXO1NlKw4YNcXZ2ZseOHVZLRvft28fzzz9vjouMjOSOO+4AMtqa/fTTT1aBZ926dXn66ad5+umnmTx5Mh988IECQsmTAkIRERERERurUqUKzzzzDBMmTKBGjRrccccdvPnmm1y7do1Ro0bxww8/APDqq69Ss2ZNatWqxUsvvYS3tzcPPfQQAM8//zy9e/emUaNGxMbGsmXLFvz9/W34rKQ8UEAoIiIiIlIGzJo1i/T0dEJDQ0lMTKRNmzasX78eLy8vqzF//etfOX78OHfffTerV6/G2dkZgLS0NJ599lnOnj2Lh4cHvXr1Yt68ebZ6OlJOqMpoOacKTCJljKqMiojYVF6VK6VsUZXRsqFC9SEUERERERGRglNAKCIiIiIiUkkpIBQREREREamkFBCKiIiIiIhUUgoIRUREREREKikFhCIiIiIiIpWUAkIREREREZFKSgGhiIiIiIhIJaWAUERERESknJs2bRotW7a09TSkHFJAKCIiIiIiUkkpIBQREREREamkFBCKiIiIiJQB6enpvPHGGzRs2BAXFxfuuOMOXn/9dQAmTZpEo0aNcHd35//+7/+YOnUqKSkpeZ7vP//5D82aNcPFxYXatWszZsyY0ngaUs442noCIiIiIiICkydP5oMPPmDevHnce++9nDt3jujoaACqVavG4sWL8fPzIyoqitGjR1OtWjUmTpyY47kWLlzI2LFjmTVrFr179yY+Pp6dO3eW5tORcsLOMAzD1pOQoktISMDT05P4+Hg8PDxsPR0RsbPL+K9+tYqI2MSNGzc4ceIEDRo0wNXV1dbTKbDExERuu+023n33XZ544ol8x7/11lt8+umn7Nu3D8goKvPFF19w6NAhAG6//Xb+8pe/8Pe//70kp31L8vpZ6TNu6VGGUEREREQqtmvX4GamrVQ1aQLu7gUaeuzYMZKSkujWrVuO969cuZK3336bn3/+mStXrpCampproHThwgV+//33XM8lkpkCQhERERGp2KKjoXXr0r/u/v1wzz0FGurm5pbrfZGRkQwePJjp06fTs2dPPD09Wb58OXPmzCn0uUSyUkAoIiIiIhVbkyYZwZktrltAd911F25ubmzevDnbktGdO3dSr149XnrpJfPYqVOncj1XtWrVqF+/Pps3byYoKKjw85ZKRQGhiIiIiFRs7u4FztTZiqurK5MmTWLixIk4OzvTuXNnLl68yJEjR2jYsCGnT59m+fLltG3blrVr1/L555/neb5p06bx9NNP4+PjQ+/evUlMTGTnzp0899xzpfSMpLxQQCgiIiIiUgZMnToVR0dHXn75ZX7//Xdq167N008/zahRo3jhhRcYM2YMSUlJ9OnTh6lTpzJt2rRczzVixAhu3LjBvHnzGD9+PN7e3jzyyCOl92Sk3FCV0XJOFZhEyhhVGRURsanyWmW0MlKV0bKhQjWm3759O3379sXPzw87Ozu++OILq/tHjhyJnZ2d1VeHDh2sxiQlJfHcc8/h7e1NlSpV6NevH2fPnrUaExsbS2hoKJ6ennh6ehIaGkpcXJzVmNOnT9O3b1+qVKmCt7c34eHhJCcnW42JiooiMDAQNzc3br/9dl599VUUn4uIiIiISGmpUAHh1atXufvuu3n33XdzHdOrVy/OnTtnfn399ddW9z///PN8/vnnLF++nB07dnDlyhVCQkJIS0szxwwZMoRDhw6xbt061q1bx6FDhwgNDTXvT0tLo0+fPly9epUdO3awfPly/vvf/zJu3DhzTEJCAj169MDPz4+9e/cyf/58Zs+ezdy5c4vxFREREREREcldhdpD2Lt3b3r37p3nGBcXF3x9fXO8Lz4+ng8//JAlS5bQvXt3AJYuXUrdunXZtGkTPXv25NixY6xbt47IyEjat28PwAcffEDHjh358ccfady4MRs2bODo0aOcOXMGPz8/AObMmcPIkSN5/fXX8fDwICIighs3brB48WJcXFwICAjgp59+Yu7cuYwdOxY7y7IzERERERGRElKhMoQFsXXrVnx8fGjUqBGjR4/mwoUL5n379+8nJSWF4OBg85ifnx8BAQHs2rULgN27d+Pp6WkGgwAdOnTA09PTakxAQIAZDAL07NmTpKQk9t8sebx7924CAwNxcXGxGvP7779z8uTJEnnuIiIiIiIimVWqgLB3795ERESwZcsW5syZw969e+natStJSUkAxMTE4OzsjJeXl9XjatWqRUxMjDnGx8cn27l9fHysxtSqVcvqfi8vL5ydnfMcY7ltGZOTpKQkEhISrL5ERERERESKokItGc3PoEGDzO8DAgJo06YN9erVY+3atQwYMCDXxxmGYbWEM6flnMUxxlJQJq/lojNnzmT69Om53i8iIiIiIlJQlSpDmFXt2rWpV68ex48fB8DX15fk5GRiY2Otxl24cMHM3vn6+nL+/Pls57p48aLVmKxZvtjYWFJSUvIcY1m+mjVzmNnkyZOJj483v86cOVOYpywiIiIiImKq1AHhH3/8wZkzZ6hduzYArVu3xsnJiY0bN5pjzp07x+HDh+nUqRMAHTt2JD4+nj179phjvv/+e+Lj463GHD58mHPnzpljNmzYgIuLC61btzbHbN++3aoVxYYNG/Dz86N+/fq5ztnFxQUPDw+rLxEpW9JtPQERERGRAqpQAeGVK1c4dOgQhw4dAuDEiRMcOnSI06dPc+XKFcaPH8/u3bs5efIkW7dupW/fvnh7e9O/f38APD09GTVqFOPGjWPz5s0cPHiQYcOG0bx5c7PqqL+/P7169WL06NFERkYSGRnJ6NGjCQkJoXHjxgAEBwfTtGlTQkNDOXjwIJs3b2b8+PGMHj3aDOCGDBmCi4sLI0eO5PDhw3z++efMmDFDFUZFRERERKTUVKiAcN++fbRq1YpWrVoBMHbsWFq1asXLL7+Mg4MDUVFRPPjggzRq1IgRI0bQqFEjdu/eTbVq1cxzzJs3j4ceeoiBAwfSuXNn3N3d+eqrr3BwcDDHRERE0Lx5c4KDgwkODqZFixYsWbLEvN/BwYG1a9fi6upK586dGThwIA899BCzZ882x3h6erJx40bOnj1LmzZtCAsLY+zYsYwdO7YUXikRERERqUimTZtGy5YtS/Qaixcvpnr16iV6DSl9FaqoTJcuXczCLDlZv359vudwdXVl/vz5zJ8/P9cxNWrUYOnSpXme54477mDNmjV5jmnevDnbt2/Pd04iIiIiIiIloUJlCEVEyoLc/ywlIiIiUrYoIBQRKS55rFAQERHJT3p6Om+88QYNGzbExcWFO+64g9dffx2ASZMm0ahRI9zd3fm///s/pk6dSkpKSp7n+89//kOzZs1wcXGhdu3ajBkzJs/xsbGxDB8+HC8vL9zd3endu7dZjT+zL774gkaNGuHq6kqPHj2sqt7/8MMPBAUFUa1aNTw8PGjdujX79u0rwqshpUUBoYhIcVFAKCIit2Dy5Mm88cYbTJ06laNHj7Js2TKzHVm1atVYvHgxR48e5Z133uGDDz5g3rx5uZ5r4cKFPPvsszz55JNERUWxevVqGjZsmOf1R44cyb59+1i9ejW7d+/GMAweeOABq8Dz2rVrvP7663z00Ufs3LmThIQEBg8ebN4/dOhQ6tSpw969e9m/fz9/+9vfcHJyusVXRkqSnZHXpjsp8xISEvD09CQ+Pl4tKERszEhLw87RkTTAQb9aRURs4saNG5w4cYIGDRrg6upq6+kUWGJiIrfddhvvvvsuTzzxRL7j33rrLT799FMz+zZt2jS++OILs9r+7bffzl/+8hf+/ve/F+j6x48fp1GjRuzcudNspfbHH39Qt25dPvroIx599FEWL17MX/7yFyIjI2nfvj0A0dHR+Pv78/3339OuXTs8PDyYP38+I0aMyPeaef2s9Bm39ChDKCJSTIx0dSAUEZGiOXbsGElJSXTr1i3H+1euXMm9996Lr68vVatWZerUqZw+fTrHsRcuXOD333/P9VxPP/00VatWNb8s13d0dDQDPYCaNWvSuHFjjh07Zh5zdHSkTZs25u0mTZpQvXp1c8zYsWN54okn6N69O7NmzeKXX34p3Ashpa5CVRkVEbElBYQiImXXM2ue4bfE30rterdXu52FIQsLPN7NzS3X+yIjIxk8eDDTp0+nZ8+eeHp6snz5cubMmVPocwG8+uqrjB8/3upYbosGDcPI1iM7p57ZlmPTpk1jyJAhrF27lm+++YZXXnmF5cuXm32/pexRQCgiIiIiFV5hgjNbuOuuu3Bzc2Pz5s3Zlozu3LmTevXq8dJLL5nHTp06leu5qlWrRv369dm8eTNBQUHZ7vfx8cHHx8fqWNOmTUlNTeX777+3WjL6008/4e/vb45LTU1l3759tGvXDoAff/yRuLg4mjRpYo5p1KgRjRo14oUXXuCxxx5j0aJFCgjLMAWEIiLFxJIh1O5BEREpLFdXVyZNmsTEiRNxdnamc+fOXLx4kSNHjtCwYUNOnz7N8uXLadu2LWvXruXzzz/P83zTpk3j6aefxsfHh969e5OYmMjOnTt57rnnchx/11138eCDDzJ69Gjef/99qlWrxt/+9jduv/12HnzwQXOck5MTzz33HP/4xz9wcnJizJgxdOjQgXbt2nH9+nUmTJjAI488QoMGDTh79ix79+7l4YcfLtbXSoqX9hCKiBQTLRkVEZFbMXXqVMaNG8fLL7+Mv78/gwYN4sKFCzz44IO88MILjBkzhpYtW7Jr1y6mTp2a57lGjBjB22+/zYIFC2jWrBkhISE5tpDIbNGiRbRu3ZqQkBA6duyIYRh8/fXXVlVC3d3dmTRpEkOGDKFjx464ubmxfPlyABwcHPjjjz8YPnw4jRo1YuDAgfTu3Zvp06ff+osjJUZVRss5VWASKTuSExNx9vAgFXDUr1YREZsor1VGKyNVGS0blCEUESkm+vuaiIiIlDcKCEVEion2EIqIiEh5o4BQRKSYaA+hiIiIlDcKCEVEiomWjIqIiEh5o4BQRKS4KCAUERGRckYBoYhIMdGSURGRskOrNso+/YzKBgWEIiLFRAGhiIjtOTg4AJCcnGzjmUh+rl27BmDV51BKn6OtJyAiUlHoL50iIrbn6OiIu7s7Fy9exMnJCXt75T/KGsMwuHbtGhcuXKB69epmEC+2oYBQRKSYqO2EiIjt2dnZUbt2bU6cOMGpU6dsPR3JQ/Xq1fH19bX1NCo9BYQiIsVES0ZFRMoGZ2dn7rrrLi0bLcOcnJyUGSwjFBCKiBQTLRkVESk77O3tcXV1tfU0RMo8LaoWESkuCghFRESknFFAKCJSXBQQioiISDmjgFBEpJhoD6GIiIiUNwoIRUSKiWUPofKEIiIiUl4oIBQRKSbKEIqIiEh5U6ECwu3bt9O3b1/8/Pyws7Pjiy++MO9LSUlh0qRJNG/enCpVquDn58fw4cP5/fffrc7RpUsX7OzsrL4GDx5sNSY2NpbQ0FA8PT3x9PQkNDSUuLg4qzGnT5+mb9++VKlSBW9vb8LDw7OVPo6KiiIwMBA3Nzduv/12Xn31VVUpFCnHFBCKiIhIeVOhAsKrV69y99138+6772a779q1axw4cICpU6dy4MABVq1axU8//US/fv2yjR09ejTnzp0zv95//32r+4cMGcKhQ4dYt24d69at49ChQ4SGhpr3p6Wl0adPH65evcqOHTtYvnw5//3vfxk3bpw5JiEhgR49euDn58fevXuZP38+s2fPZu7cucX4iohIadIfdERERKS8qVB9CHv37k3v3r1zvM/T05ONGzdaHZs/fz7t2rXj9OnT3HHHHeZxd3d3fH19czzPsWPHWLduHZGRkbRv3x6ADz74gI4dO/Ljjz/SuHFjNmzYwNGjRzlz5gx+fn4AzJkzh5EjR/L666/j4eFBREQEN27cYPHixbi4uBAQEMBPP/3E3LlzGTt2LHZ2dsXxkohIKVKGUERERMqbCpUhLKz4+Hjs7OyoXr261fGIiAi8vb1p1qwZ48ePJzEx0bxv9+7deHp6msEgQIcOHfD09GTXrl3mmICAADMYBOjZsydJSUns37/fHBMYGIiLi4vVmN9//52TJ0+WwLMVkRKnojIiIiJSzlSoDGFh3Lhxg7/97W8MGTIEDw8P8/jQoUNp0KABvr6+HD58mMmTJ/PDDz+Y2cWYmBh8fHyync/Hx4eYmBhzTK1atazu9/LywtnZ2WpM/fr1rcZYHhMTE0ODBg1ynHdSUhJJSUnm7YSEhEI+cxEpMVoyKiIiIuVMpQwIU1JSGDx4MOnp6SxYsMDqvtGjR5vfBwQEcNddd9GmTRsOHDjAPffcA5Djck7DMKyOF2WMZf9RXstFZ86cyfTp0/N6eiJiI9pDKCIiIuVNpVsympKSwsCBAzlx4gQbN260yg7m5J577sHJyYnjx48D4Ovry/nz57ONu3jxopnh8/X1NTOBFrGxsaSkpOQ55sKFCwDZsouZTZ48mfj4ePPrzJkz+TxjESkt2kMoIiIi5U2lCggtweDx48fZtGkTNWvWzPcxR44cISUlhdq1awPQsWNH4uPj2bNnjznm+++/Jz4+nk6dOpljDh8+zLlz58wxGzZswMXFhdatW5tjtm/fbtWKYsOGDfj5+WVbSpqZi4sLHh4eVl8iUjYoIBQREZHypkIFhFeuXOHQoUMcOnQIgBMnTnDo0CFOnz5NamoqjzzyCPv27SMiIoK0tDRiYmKIiYkxg7JffvmFV199lX379nHy5Em+/vprHn30UVq1akXnzp0B8Pf3p1evXowePZrIyEgiIyMZPXo0ISEhNG7cGIDg4GCaNm1KaGgoBw8eZPPmzYwfP57Ro0ebAdyQIUNwcXFh5MiRHD58mM8//5wZM2aowqhIOaYloyIiIlLe2BkV6BPM1q1bCQoKynZ8xIgRTJs2LddCLd9++y1dunThzJkzDBs2jMOHD3PlyhXq1q1Lnz59eOWVV6hRo4Y5/vLly4SHh7N69WoA+vXrx7vvvmtVrfT06dOEhYWxZcsW3NzcGDJkCLNnz7aqKhoVFcWzzz7Lnj178PLy4umnn+bll18uVECYkJCAp6cn8fHxyhaK2Nhv+/Zxe9u2XAfcKs6vVhERkVKnz7ilp0IFhJWR/rGIlB2/7d3L7e3aKSAUERG5RfqMW3oq1JJRERGbUhAoIiIi5YwCQhGRYqIFFyIiIlLeKCAUESkmqjIqIiIi5Y0CQhGRYqKAUERERMobBYQiIsVES0ZFRESkvFFAKCJSXG4GhAoLRUREpLxQQCgiUky0ZFRERETKGwWEIiLFRAGhiIiIlDcKCEVERERERCopBYQiIsXEkiHUHkIREREpLxQQiogUF1UZFRERkXJGAaGISDFR2wkREREpbxQQiogUExWVERERkfJGAaGISDFRQCgiIiLljQJCEZHioiWjIiIiUs4oIBQRKSbaQygiIiLljQJCEZHicjMgVFgoIiIi5YUCQhGRYqI9hCIiIlLeKCAUERERERGppBQQiogUE2UIRUREpLxRQCgiUly0h1BERETKGQWEIiLFRBlCERERKW8UEIqIiIiIiFRSCghFRIqL+hCKiIhIOaOAUESkmGjJqIiIiJQ3CghFREREREQqKQWEIiLFxNCSURERESlnKlRAuH37dvr27Yufnx92dnZ88cUXVvcbhsG0adPw8/PDzc2NLl26cOTIEasxSUlJPPfcc3h7e1OlShX69evH2bNnrcbExsYSGhqKp6cnnp6ehIaGEhcXZzXm9OnT9O3blypVquDt7U14eDjJyclWY6KioggMDMTNzY3bb7+dV199VR8oRcozLRkVERGRcqZCBYRXr17l7rvv5t13383x/jfffJO5c+fy7rvvsnfvXnx9fenRoweJiYnmmOeff57PP/+c5cuXs2PHDq5cuUJISAhpaWnmmCFDhnDo0CHWrVvHunXrOHToEKGhoeb9aWlp9OnTh6tXr7Jjxw6WL1/Of//7X8aNG2eOSUhIoEePHvj5+bF3717mz5/P7NmzmTt3bgm8MiJSKtSHUERERMobo4ICjM8//9y8nZ6ebvj6+hqzZs0yj924ccPw9PQ0/vnPfxqGYRhxcXGGk5OTsXz5cnPMb7/9Ztjb2xvr1q0zDMMwjh49agBGZGSkOWb37t0GYERHRxuGYRhff/21YW9vb/z222/mmE8++cRwcXEx4uPjDcMwjAULFhienp7GjRs3zDEzZ840/Pz8jPT09AI/z/j4eAMwzyuV15AhQ2w9hUovaulSwwAjvuL+ahURESkV+oxbehxtGo2WohMnThATE0NwcLB5zMXFhcDAQHbt2sVTTz3F/v37SUlJsRrj5+dHQEAAu3btomfPnuzevRtPT0/at29vjunQoQOenp7s2rWLxo0bs3v3bgICAvDz8zPH9OzZk6SkJPbv309QUBC7d+8mMDAQFxcXqzGTJ0/m5MmTNGjQIMfnkZSURFJSknk7ISGhWF4fKT8mTpyY7ZhhGOzatcsGsxErWvItIiIi5UylCQhjYmIAqFWrltXxWrVqcerUKXOMs7MzXl5e2cZYHh8TE4OPj0+28/v4+FiNyXodLy8vnJ2drcbUr18/23Us9+UWEM6cOZPp06fn+3yl4oqIiGDZsmXZjn/77bc2mI1Y0ZJRERERKWcqTUBoYWdnZ3XbMIxsx7LKOian8cUxxrj5YTKv+UyePJmxY8eatxMSEqhbt26e85eK5fHHH8ff3z/bHyaGDx9uoxmJhaEMoYiIiJQzFaqoTF58fX2BPzOFFhcuXDAzc76+viQnJxMbG5vnmPPnz2c7/8WLF63GZL1ObGwsKSkpeY65cOECkD2LmZmLiwseHh5WX1K5vPbaazlmqcPDw20wG7GigFBERETKmUoTEDZo0ABfX182btxoHktOTmbbtm106tQJgNatW+Pk5GQ15ty5cxw+fNgc07FjR+Lj49mzZ4855vvvvyc+Pt5qzOHDhzl37pw5ZsOGDbi4uNC6dWtzzPbt261aUWzYsAE/P79sS0lFpJxQQCgiIiLlTIUKCK9cucKhQ4c4dOgQkFFI5tChQ5w+fRo7Ozuef/55ZsyYweeff87hw4cZOXIk7u7uDBkyBABPT09GjRrFuHHj2Lx5MwcPHmTYsGE0b96c7t27A+Dv70+vXr0YPXo0kZGRREZGMnr0aEJCQmjcuDEAwcHBNG3alNDQUA4ePMjmzZsZP348o0ePNjN6Q4YMwcXFhZEjR3L48GE+//xzZsyYwdixY/NdwipSUQwdOtTWUyhWWjIqIiIi5U2F2kO4b98+goKCzNuWvXYjRoxg8eLFTJw4kevXrxMWFkZsbCzt27dnw4YNVKtWzXzMvHnzcHR0ZODAgVy/fp1u3bqxePFiHBwczDERERGEh4eb1Uj79etn1fvQwcGBtWvXEhYWRufOnXFzc2PIkCHMnj3bHOPp6cnGjRt59tlnadOmDV5eXowdO9Zqf6BIRVFpKqMqIBQREZFyxs7Qn7TLtYSEBDw9PYmPj9d+wgouNTUVR0dHNm7cyJQpU3BwcCA8PJzBgwcD0KdPH9auXWvjWebs9ttvz7Ey6rhx49i3b58NZlQy/vfhh7R44gniAU/9ahURESkyfcYtPRUqQyhS0URFRTFp0iTi4uJwdHQkJSWFH3/8ka+++opWrVoxZcoUdu7cyTvvvMO1a9dsPd1cVZbKqEZ6uq2nICIiIlIoyhCWc/rrScV23333sWzZMqvWIu3atcPFxYXvvvsOgMWLF/Pf//6XmJgY9u7da6upCvDDBx9w95NPKkMoIiJyi/QZt/RUqKIyIhVNWloanp6eVsdatmzJ1atXzdsjR45k7NixJCYmlvb0JAtLhlChoIiIiJQXWjIqUobNmjWLkJAQnJ2d8fDwID4+ntTUVN555x2rcUFBQURHR9tolmJSVlBERETKGQWEImXY/fffz/bt27l+/TpxcXF4eXnh6upq62lJGXfw4EGmTp2Kk5MTEyZMMHukjho1ig8//NDGsxMREZGyREtGRcoBNzc3ateuXW6Dwc8++4xWrVoxbNgwPvroIxo3bkzbtm1ZvXq1radWrMpKUZnw8HDefvtt5s2bx7x585g7dy4Av/76q41nJiIiImWNMoQiFURMTAy+vr62nkaO5syZw86dO0lMTKRly5ZER0fj6upK9+7d6devn62nV2zsbv7X1gtH7ezsaNiwIQArVqxg2rRpjB49mtTUVBvPTERERMoaZQhFKoiy3MLBzc0Nd3d3atWqRbdu3fD09MTFxQVHx4r1NylL0Wa7fMaVNB8fH06ePGnenjZtGoGBgapCKyIiItkoIBQpwzZu3Ej79u3p1KkTy5cvBzLaTlSvXp127dqZX23btmXPnj02nm3uWrZsSVpaGgBLly4FIDk5mZo1a9pyWsWurCwZXblyJfXr17c6NmzYMG7cuGGbCYmIiEiZVbH+PC9SwbzyyiusX78eZ2dnswl9YmIid999N9u2bbMa26NHDxvNMn9vv/221e24uDiqV6/OypUrbTOhElJWloyKiIiIFJQyhCJlmIODA9WrV8fd3Z25c+fSunVrqlSpQkJCQraxU6ZMscEMi2bAgAG2nkKJKCsZwrLm4MGDhISE0L9/f3bt2mUeHzVqlA1nJSIiIqCAUKRMa9mypdVesJEjR/LWW29x/fp185il/2BgYGBpT6/IjArar68sP6+DBw/a7NqqeioiIlJ2acmoSBk2f/58q9txcXHZmtCHhYWxZcuW0p7aLVm1apWtp1AibF1MxmLBggVWtw3DYOHChYSFhREWFlbq81HVUxERkbJLGUKRciSnpZZOTk42mMmt8fLysvUUSkRZWTL63nvvsWbNGtzd3alSpQpVq1bF3t6eqlWr2mQ+qnoqIiJSdikgFClHclqSuH79ehvMRHJSVpaMHj58mGHDhvHll1/i7OxMaGgoderUsVlrElU9FRERKbsUEIoUk6FDh5b4NSraUsuYmBhbT6FYlZUqo3Z2dgwZMoT//ve/pKam0q9fPy5dumTjWYmIiEhZpD2EIoU0ceLEbMcMw7CqnlhSKtpSy+HDh7NhwwZbT6PYlJUloxb29vaEhobSp08fZeNEREQkRwoIRQopIiKCZcuWZTv+7bff2mA25UO7du2yHTMMg+PHj9tgNpXPI488Uu4KD4mIiEjpUEAoUkiPP/44/v7++Pj4WB0vzf1ZMTEx+Pr6ltr1blViYiJRUVE4Olr/yunRo4eNZlRCysgewqzKyt7GrIKDgytUhlhERKQ8UkAoUkivvfZajsfDw8NLbQ7lbanljBkzSExMzLbkdcqUKTaaUckoa0tGLWy993TgwIHZjhmGQVRUlA1mIyIiIpkpIBQpwwqz1HLo0KFERESUxrQKrX///la3o6OjadKkCYGBgTaaUQkpo5k4W+893bt3L1u2bMHe/s86ZoZhEBoaasNZiYiICCggFCnTclpqOXHiRC5evGhV3Ka0itoUl7CwsAqxpy01NTXbMljJbsKECVSrVg1vb2+r42PGjLHRjERERMRCn2REyrCcllpGREQwceJEWrZsaTW2PBW1cXJysvUUiiwqKopJkyYRFxeHo6MjKSkpeHt7M2PGjDK1ZDQpKYkjR45w+fJlatSoQUBAAM7OzjaZS1hYmNXtuLg4qlevzqBBg2wyHxEREfmTAkKRYlISBTKyLrWEjKI2jz32mE2L2tyq9evX23oKRRYWFsayZcuoW7eueez06dMMHTqUub162XBmf1qyZAkLFy6kbdu2eHh4EBcXx4EDB3jmmWcYNmyYrafHgAEDKkSGWEREpCJQQChSSLYukFGSRW0OHjzI1KlTcXJyYsKECXTq1AmAUaNG8eGHH97y+SuCtLQ0PD09rY55eHiQlpZWZqp5vv/+++zYscNqz15qaipdunQpEwFhWXmdRERERAGhSKFV5AIZ4eHhLFq0CEdHRyZMmEBkZCRjx47l119/tfXUyoxZs2YREhKCs7MzHh4exMfHk5qayhtvvIFxc9murcMdNzc3tm3bRlBQUMZ8DINt27bh6upq45llsHXVUxEREfmTff5DKpb69etjZ2eX7evZZ58FYOTIkdnu69Chg9U5kpKSeO655/D29qZKlSr069ePs2fPWo2JjY0lNDQUT09PPD09CQ0NJS4uzmrM6dOn6du3L1WqVMHb25vw8HCSk5NL9PnLrbMUyKhXr575Vb9+/QpRIMPOzo6GDRtSv359VqxYQUJCAqNHjyY1NdXWUysz7r//frZv385XX33Fe++9x9q1a9m2bRv33XcfdjfH2OV5hpK3ZMkSvvzySzp37kyHDh24//77WbNmDUuXLrXxzDLYuuqpiIiI/KnSZQj37t1LWlqaefvw4cP06NGDRx991DzWq1cvFi1aZN7OWojh+eef56uvvmL58uXUrFmTcePGERISwv79+3FwcABgyJAhnD17lnXr1gHw5JNPEhoayldffQVkLDvr06cPt912Gzt27OCPP/5gxIgRGIbB/PnzS+z5y63LWiDDoiIUyPDx8eHkyZPUr18fgGnTprF06VKWLFli24mVQW5ubri5uVkdKytLIX19fXn77bdtPY0cqTKriIhI2VLpMoS33XYbvr6+5teaNWu48847rfqhubi4WI2pUaOGeV98fDwffvghc+bMoXv37rRq1YqlS5cSFRXFpk2bADh27Bjr1q3j3//+Nx07dqRjx4588MEHrFmzhh9//BGADRs2cPToUZYuXUqrVq3o3r07c+bM4YMPPiAhIaF0XxQpVzZu3Ej79u3p1KkTy5cvN4/36dPnls+9cuVKMxi0GDZsGDdu3Ljlc1cKhsFB4DEyCgJlbgUyatQom03L1qKionjggQfo1KkTXbt2pWPHjvTt25fIyEhbT01ERKTSq3QBYWbJycksXbqUxx9/HDu7Pxd5bd26FR8fHxo1asTo0aO5cOGCed/+/ftJSUkhODjYPObn50dAQID54W/37t14enrSvn17c0yHDh3w9PS0GhMQEICfn585pmfPniQlJbF///5c55yUlERCQoLVl1Qur7zyCuvXr2fTpk3s2bOH5557jvT0dK5du2brqVVaBw8ezPjGMAgHZgDz5s1j3rx5zJ07F6BS78N8+OGH+fXXX7lx4wYPPPAAu3fv5r333qNXGanKKiIiUplV6nU7X3zxBXFxcYwcOdI81rt3bx599FHq1avHiRMnmDp1Kl27dmX//v24uLgQExODs7Nztj0wtWrVIiYmBoCYmJhsLQEgYzle5jG1atWyut/LywtnZ2dzTE5mzpzJ9OnTi/qUpQTFxMTg6+tb4tdxcHCgevXqAMydO5fFixfz4IMPcuXKlRK/tsCCBQusbhuGwcKFCwkLC+Mew8AO+D/A6+Y+zGnTplX6fZjnzp3j5MmT1KxZk3/84x888sgj/OMf/ygzS2xFREQqs0qdIfzwww/p3bu3VZZu0KBB9OnTh4CAAPr27cs333zDTz/9xNq1a/M8l2EYVlnGzN/fypisJk+eTHx8vPl15syZPOclpae0+gC2bNmSkydPmrdHjhzJ2LFjSUxMLJXrV3bvvfcea9aswd3dnSpVqlC1alXs7e2pWrUqAD7AqUzjp02bRmBgIHv37rXJfMuC+vXr079/f7p3787WrVv55ZdfaNq0KTVr1rT11ERERCq9ShsQnjp1ik2bNvHEE0/kOa527drUq1eP48ePAxnFGpKTk4mNjbUad+HCBTPj5+vry/nz57Od6+LFi1ZjsmYCY2NjSUlJyZY5zMzFxQUPDw+rLyld7dq1y/bVtm1b9uzZUyrXnz9/vtU+v7i4OIKCgoiOji6xa2ZeIl1QBw8eJCQkpMLtpTt8+DDDhg3jyy+/xNnZmdDQUOrUqZPxB4H0dFYCd2R5TGXfh/nYY4/x8ccfm5VZd+/ezc6dO2nUqJGtpyYiIlLpVdolo4sWLcLHxyffQhx//PEHZ86coXbt2gC0bt0aJycnNm7caDYoP3fuHIcPH+bNN98EoGPHjsTHx7Nnzx7atWsHwPfff098fLzZ6Ltjx468/vrrnDt3zjz3hg0bcHFxoXXr1iXynKV4JCYmEhUVla1SYo8ePWwynwEDBrBly5ZiOZflPZ2ZYRhERUUV+lwVtaehnZ0dQ4YMYfDgwURERNCvXz8uXbqUcefNJZC2bjtR1rz44ovm925ubkRHR9OsWTOzCrOIiIjYTqUMCNPT01m0aBEjRoyw+lB/5coVpk2bxsMPP0zt2rU5efIkL774It7e3vTv3x8AT09PRo0axbhx46hZsyY1atRg/PjxNG/enO7duwPg7+9Pr169GD16NO+//z6Q0XYiJCSExo0bAxkZl6ZNmxIaGspbb73F5cuXGT9+PKNHj1bWr5gNHTqUiIiIYjvfjBkzSExMzLaPdMqUKcV2jZzkVq6/OPdh7d27ly1btmBv/+fiAcMwCA0NLfS5LD0NgQq5l87e3p7Q0FCGDh2a575fyS4sLKzY/oghIiIit6ZSBoSbNm3i9OnTPP7441bHHRwciIqK4uOPPyYuLo7atWsTFBTEp59+SrVq1cxx8+bNw9HRkYEDB3L9+nW6devG4sWLzR6EABEREYSHh5tL7fr168e7775rda21a9cSFhZG586dcXNzY8iQIcyePbuEn33FNXHixGzHDMOwWq5YHCx/HLCIjo6mSZMmVq1LiktUVBSTJk0iLi4OR0dHUlJS8Pb2ZsaMGTRv3hyAVatWFdv1JkyYQLVq1fD29rY6PmbMmEKfqyA9DYs7WLcFe3t7cx+ykZ5u49mUfb///juJiYlW7w0RERGxHTtDZd7KtYSEBDw9PYmPj6/0mcXbb7+dZcuWZTs+btw49u3bV2LX7dq1a4llO+677z6WLVtG3bp1zWOnT59m6NChfPfddyVyzczi4uLMiqa3IrdgfeXKlZw4ceKWz19WRE6ezOlZs/g70GLoUHr06MGMGTPw8PBg6tSp9OvXz9ZTtIkBAwawatUq/vWvf7Fs2TI6derEDz/8QKdOnXjppZdsPT0RESmD9Bm39FTKDKFUTI8//jj+/v7ZWn6UdPVPJyenEjt3Wloanp6eVsc8PDxIS0srsWtmVlz7EyMiInIM1r/99ttbPndZERMTg2EYzAG+ARznzKFly5ZER0fj6upK9+7dK21AaOmX+sknn1gtSb7vvvsUEIqIiNiYAkKpMF577bUcj4eHh5foddevX19i5541axYhISE4Ozvj4eFBfHw8qampvPHGG9nGlkQfxOJaQGCrYL00DR8+nOmtWuEGuANetWrRrVs3M6DPaf9nZdGwYUPWrFlD27Zt+eqrr+jatSsHDx60WoovIiIitqElo+Wc0umVw/Xr14mLi8PLywtXV9ccxwQHB7Nhw4ZivW5sbGy24jmVnaVycGaGYXD8+HG+efJJPn3rLaYCNTP9ak1OTmbIkCGsXLmyVOZ48OBBpk6dipOTExMmTDCrG48aNYoPP/ywVOaQWXJyMvPnz2fdunWcOXMGLy8vOnfuzMSJE7P9kUBERAT0Gbc0KSAs5/SPpfLJKyCJi4sr/QkVUkkErqXJ398/17Yj01u2pNPs2cQB1W/+ai2ufZiFcd9991m1/OjYsSNjx44lKCioQi3TFRGRikufcUtP5V3DJFJOlbU+iLkpzp6GZUmebUe++irb+OLsE1lQFb3lh4iIiBQfBYRSYWzcuJEpU6bg4OBAeHg4gwcPBqBPnz6sXbvWxrMrPiXdBzEpKYkjR45w+fJlatSoQUBAAM7OzoU+T3H2NCxLsrYdsQgMDGTX6tXZjttiEUZBWn6IiIiIANjnP0SkfHjllVdYv349mzZtYs+ePTz33HOkp6dz7do1W0+tyDZu3Ej79u3p1KkTy5cvBzICkmHDhpljoqOjAYqlD+KSJUsICgrio48+Ytu2bSxatIigoCCWLl1a6HNZehrWq1eP77//noceeogpU6bQvHlzGjduTNu2bVmdQwBVruUQ/BVnn8iCWrlyZbYef8OGDePGjRulPheLpKQkDhw4wKZNmzhw4ADJyck2m4uIiIj8SRlCqTAcHBzMvVpz585l8eLFPPjgg1y5cqVUrl8STdYtQa6zszNTpkxh586dvPPOO1ZBblhYWLEtSXz//ffZsWOHVVYvNTWVLl26WAWhBREWFmZ+P2fOHHbu3EliYmKFbsWQUzZQRXky/tCwcOFC2rZti4eHB3FxcRw4cIBnnnmm0O8rERERKV4KCKXCaNmypdUyuZEjR1KvXj2eeeaZYr1Obk3Wd+3aVazXgYIFucXZB9HNzY1t27YRFBQEZDyvbdu25VrZtDDndXd3x93dXa0YKqHi/EODiIiIFC99GpMKY/78+Va34+LiCAoKMpdUFpfSbLJekCC3OPsgLlmyhFmzZjFlyhTS0tJwcnKiTZs2RVoymlnLli1JS0vDwcHBPFdycjI1a9YsjmmXHenpANjlcFdJ9IksjIMHD9KqVSubXLuk/tAgIiIit05tJ8o5leTNXdeuXUukuuPUqVN57rnnsvVP+8c//kF4eHixXy9fP/0EvXrBoUNQDt4Dtg6MilNqaqpVlnPnX/9K53/8g3jAM8uv1tJst7FgwQKr24ZhsHDhQsLCwqyW8paWmJgYZs2axd69e63+0DBp0qQK814QEZHipc+4pUcZQqmwSupvHa+99lqOx20SDAK/vfoqt584Qey33+L14IM2mUNhDB8+vFz3IYyKimLSpEnExcXh6OhISkoK3t7ezJgxAwyDdkAa4JCpX6SlT2Rpee+996hXrx4DBw7Ezi4jX2lvb0/VqlVLbQ6Z/fjjjxw+fJj27dvTq1cvJk2axMGDBzlx4oQCQhERERtTQCgVli2qO9rCjz//zO3A6RMnKEvlS9plCogsSjswKglhYWEsW7aMunXrmsdOnz7N0KFDmdWyJYnADqDmnj1WjyvNPpGHDx/mk08+YcWKFQwcOJBBgwbx6aefMnz48BK97sGDB5k6dSpOTk5MmDCBTp06ARmVcVu1asWhQ4f4+OOPOXToEO7u7jRr1oxz586V6JxEREQkbwoIpcKqyNUdrZZd3izUYZSxpuOJiYlERUVlKxyTOTAqj8tH09LSzKI4Fh4eHqSlpYFhMAO4AmTdHVlcfSILws7OjiFDhjB48GAiIiLo168fly5dKvHrhoeHs2jRIhwdHZkwYQKRkZGMHTuWhIQE3n//fRwdHWnXrh2fffYZY8eOtWkbDBEREcmgPoQi5ZBVpscSEKal5fmYgwcPEhISQv/+/a0qoo4aNapE5jhjxgwSExOzHc8cGJV0xqokzJo1i5CQELp3786AAQPo1q0bDz74IG+88QaGYdAfqJ5pfHH2iSwse3t7QkNDWb16NV988UWJX8/Ozo6GDRtSv359VqxYQUJCAqNHj8bOzo4GDRpQv359Lly4QEJCAqNGjSqxZd0iIiJScMoQSoWSlJTEkSNHuHz5MjVq1CAgIABnZ+dSuXZJFA0pyLJLw1LKP5+AMLfsza+//lqsc7bo37+/+X27du24ceOGVVXJ8rp89P7772f79u1cv36duLg4vLy8zOe145NPso0vzj6RRWVvb4+fn1+JX8fHx8eqKu60adNYunQp//nPfzhz5ky247davVZERERunQJCqTBKq/n1wIEDsx0zDIOoqKhiu4ZFQZZd4uCQMYd8loxasjcAK1asYNq0aYwePZrUUlhqmpiYSK1atdi6davV8dLcV1fc3NzccHNzsz6YQ8arOPtElrZt27bx2muv0aJFC7MYjKenJzNnzqRjx47Zxq9cuTLbsWHDhuX47y+34yIiIlK6FBBKhVFaza/37t3Lli1brK5jGAahoaHFdg0Ly7LLrPshrfajWZaM3uyBl5vcsjdLliwp1jnnZMaMGdn6RELp7quzleLsE1kYxZEtnzRpEitWrCAuLo7g4GD27t2Lu7s7AwYMyBbci4iISPmkPYRSYViaX1uUVPPrCRMmUK1aNerVq2d+1a9fnzFjxhTrdSBj2WVOxXEy70cr6JLRlStXmsGgxbBhw0q8sEdqair9+/e3WjZpy311JeHgwYPAn0F5To3pS9OSJUsICgrio48+Ytu2bSxatIigoKBCL9F0dXWlbt26NG/eHH9/f+rUqUONGjVwuJmVFhERkfJPGUKpMJYsWcKsWbOYMmWKVfPr4t6nlLWxd1xcHNWrV2fQoEHFep0c/fYbtGgBBw/CHXdkHCvgktHSlFevvubNm5eJfXVFlVfT9xY2mlNWxZUt9/X1JS0tDQcHB/PnlZqaSno+2ejLly+bmckaNWqwceNGpkyZgoODA+Hh4QwePBiAPn36sHbt2iI8QxERESkuCgilwvD19eXtt98u9esOGDCg9IKb3bvh8mX45BOYNAnAbDxeluTVq++7774r1/vq8mr6XlaqZlqy5UFBQUDRs+XLly/PdszR0ZGNGzfmOH7z5s28/PLLeHt7m/t4Y2NjiY2NZefOnTg7OzNlyhR27tzJO++8w+7duwv/5ERERKRYKSAUuUWlGgRUq5bx3+vXzUMzf/iBbpBv1sYia/amJOTZqw/b7asrDnk1ff9uxw5bTw8o+Wx51iJHFi+//DLr1q2jmuV9CiQkJFCzZk2efPJJ89jJkyepU6dOjm1JREREpHQpIBS5RatWrSqV60ycOJHU48dxBNLXr8f+2jUMw+BIXBwA6fkEprllb6ZPn063bt2AjL1wU6dOxcnJiQkTJtCpUycgo1fhhx9+WOC5Wnr1OTs74+HhQXx8PKmpqbzxxhvmmC+++IJ77rmHOyxLX8uJPJu+FzAoL2klkS1PTU3NNRC0sLe35+LFi1YB4cWLF0lPT+e5556z+lnv2rWrxHpgioiISMEpIBS5RTkVfSkJERERPNehAx2B4w4O3NWnDwCr//UvuH4936WjuWVvevfubQaExdWrMK9efRb9+/enQYMGJdYHsaRZmr736dPnz8I8ZWTJaDb/+Q9MmwanTxfqYVn3giYnJ3PbbbeZe0Gz+te//sW4ceOIiYnBMAzs7OyoXbs2L730Ev7+/nh7ewMZ+24fe+wxqz2OIiIiYhv6v7FIOfH444/zf7fdRiDQysuLwMBAAgMDCb799owB+QSEluxNZhcvXrT6UG7pVVi/fn1WrFhBQkJCkXsVHjx4kEcffZSwsDAOHDhgHrdkhUIAp/PnC33esuaRRx4plabvt8KYNAnOnCn048LCwnjhhReoXr06qampODs789tvv3HPPffk2HfT39+fzz//nN27dxMZGcnu3btZtWoVr776qhkMQsa+W6B0CjGJiIhInhQQihSTmJiYEj3/a6+9hreHBwCpmVpMPFyvXoEeb8nedOzYkQ4dOtCxY0cmTJjAv/71L3OMpVehxbRp0wgMDGTv3r2Fnm94eDhvv/028+bNY968ecydOxfAzAh+BazLtBeyvLLaQ3rz+7JW5ichIaFIjzt27JiZyatTpw6+vr7mss+s1XYLo6wU3xEREZFKFhBOmzYNOzs7qy9fX1/zfsMwmDZtGn5+fri5udGlSxeOHDlidY6kpCSee+45vL29qVKlCv369ePs2bNWY2JjYwkNDcXT0xNPT09CQ0OJu7nPy+L06dP07duXKlWq4O3tTXh4OMnJySX23KXkDR8+vMSv4XizOmdaThm7fDKEuWVv/P39zTHF2auwINlG7woQGGTeQ1pWA52UlJQiPc7JyYkbN25w8eJFEhISOHv2LOfOnaNx48ZmgaCiKK19tyIiIpK/ShUQAjRr1oxz586ZX5mXPb355pvMnTuXd999l7179+Lr60uPHj2sKuE9//zzfP755yxfvpwdO3Zw5coVQkJCrD4cDRkyhEOHDrFu3TrWrVvHoUOHCA0NNe9PS0ujT58+XL16lR07drB8+XL++9//Mm7cuNJ5EeSWtGvXLttX27Zt2bNnT4lf2+lmUY9b+TBeGj777DP+97//8dBDD/HRRx/RuHFj1q5dS7Vq1ayyjWUzfCqc0tpDeiuK+jpPnTqVZcuW4eTkxNWrV7ntttuoWrUq6enpVgWC8pO1mqjlNVOVURERkTLAqEReeeUV4+67787xvvT0dMPX19eYNWuWeezGjRuGp6en8c9//tMwDMOIi4sznJycjOXLl5tjfvvtN8Pe3t5Yt26dYRiGcfToUQMwIiMjzTG7d+82ACM6OtowDMP4+uuvDXt7e+O3334zx3zyySeGi4uLER8fX6jnFB8fbwCFfpwUXZMmTYyUlJRsx7t3717i1971yiuGAcb2bt3MY9/27GkYYET+7W8lfv2CateunXH16lUjJibG8PX1NeLi4owbN24Y995775+DwIivYL+Ctg0fbhhgJJSx53XBzs4wbnFO165dM44dO2Zcv3491zEfffSRERAQYLRq1cqYOXOmedzf3z/H40FBQbc0JxERqbj0Gbf0VLoM4fHjx/Hz86NBgwYMHjzY3M904sQJYmJiCA4ONse6uLgQGBjIrl27ANi/fz8pKSlWY/z8/AgICDDH7N69G09PT9q3b2+O6dChA56enlZjAgICrApR9OzZk6SkJPbv35/n/JOSkkhISLD6ktI1Y8aMHDMbU6ZMKdHrfvbZZ4x4/32GAd/cXLbXtm1bdl64kDGgAMsVk5KSOHDgAJs2beLAgQMltkzZzc0Nd3d3atWqRbdu3fD09MTFxSVb24KKkCG0iImJKbtVRouBm5sbYWFheTa3X7hwIQcOHMDf3x93d3ceeeQRrl27xm+//cbu3bv597//zZkzZ+jWrRtxcXFldomtiIhIZVKp2k60b9+ejz/+mEaNGnH+/Hn+/ve/06lTJ44cOWIWBKlVq5bVY2rVqsWpU6eAjA98zs7O2ZaI1apVy3x8TEwMPj4+2a7t4+NjNSbrdby8vHB2ds63MMnMmTOZPn16IZ61FLf+/ftb3Y6OjqZJkyYEBgaW6HXnzJnD+yNG0PSNN2j688/8euECrq6utPX15SXAyKcH3pIlS1i4cCFt27Y1+xAeOHCAZ555hmHDhuX52ODgYDZs2FDgubZs2ZK0tDQcHBzMZujJycnUrFmzwOcob4YPH84UX18OApMBt/79b6mXY4kwjBz3mm7bto3XXnuNFi1a0KtXLyZNmoSnpyczZ86kY8eOXL58mcuXL2fbizhx4kSr26dPn+bFF19k165dRERE4O/vT+/evblx4wbBwcG0bduWGjVqUK1aNerVq4fHzSJJIiIiYjuVKiDs3bu3+X3z5s3p2LEjd955Jx999BEdOnQAyNbLzbjZSysvWcfkNL4oY3IyefJkxo4da95OSEigbt26eT5GSlZYWBhbtmwp8eu4ubnh5uRELaB1jRp4enoC4HDzPZNftuX9999nx44dVm0mUlNT6dKlixkQDhw4MNvjDMPIscVAXnJqiu7s7MzKlSutD+bzfi+L2rVrl+2YYRgcP34c+vYlHHgP8Jg375Z6ORbGwYMHmTp1Kk5OTjkGoeY7I5eAcNKkSaxYsYK4uDiCg4PZu3cv7u7uBAUFUbVqVby9vfHw8MDd3Z3OnTvz6quv0q1bNyIiIli2bJl5ntjYWFq3bs23334LQI8ePfDz86NNmzYsXbqU//u//zPH/vDDD3Tp0qWkXhIREREpoEoVEGZVpUoVmjdvzvHjx3nooYeAjOxd7dq1zTEXLlwws3m+vr4kJycTGxtrlSW8cOGC+QHM19eX8zn0Vrt48aLVeb7//nur+2NjY0lJScmWOczKxcUFFxeXwj/ZSmzo0KFERESU2Pmdblb+LGmWrBvA1GbNgIysm4fl+vkUmnFzc2Pbtm0EBQUBGUHMtm3brJYA7t27ly1btlgFjYZhWBVFulXBwcGsX78eO8rnktHExESioqKyLX/t0aMHGAZ2wJ1AlZvVVadNm1bkXo4FFR4ezqJFi3B0dMwzCE1PScE+h98frq6u1K1bl7p16+Lv70+dOnUAOHXqFBMnTuTFF1/kf//7H0899RRpaWk8+OCDrFmzhscffxx/f39zVYQlS37h5jLm6OhomjVrxr333supU6fMgPDYsWNcunSJ1q1bl9hrIiIiIgVTqQPCpKQkjh07xn333UeDBg3w9fVl48aNtGrVCsj4sL1t2zazml7r1q1xcnJi48aNZibl3LlzHD58mDfffBOAjh07Eh8fz549e8xMwvfff098fLwZNHbs2JHXX3+dc+fOmcHnhg0bcHFx0QekW5B1+RpkBDOWvZslZf369SV6fou3336b7196CcgIpOLi4qhevTqv3n03bNyYb4ZwyZIlzJo1iylTppCWloaTk5OZubGYMGEC1apVs2oiDjBmzJhCzzevbGN6ejoOlM+A0LKHNOvS8SlTpsC//oUPcBqwNPOYNm0aS5cuZcmSJSU2J0uLDyDPIDQ9NTXHgNDX19dc4mvJdlse+9VXX/Hiiy8yYcIEFi9ejKOjI0OGDOGll15i586dOc4nPDwc+DN7nvW9Fx0dzV/+8her956IiIjYiE1K2djIuHHjjK1btxq//vqrERkZaYSEhBjVqlUzTp48aRiGYcyaNcvw9PQ0Vq1aZURFRRmPPfaYUbt2bSMhIcE8x9NPP23UqVPH2LRpk3HgwAGja9euxt13322kpqaaY3r16mW0aNHC2L17t7F7926jefPmRkhIiHl/amqqERAQYHTr1s04cOCAsWnTJqNOnTrGmDFjCv2cVIHpT35+fsbWrVuzfbVu3brkL/7114axfn2JXybyb38zDDC2detmVmjcGhxsGGDsCA8v8esXRv369Y1ff/3VOHnypPm1Z88e49577zWSk5IMA4zLdna2nmax2jpkiGGAca2Uf7U+/PDDxokTJ6yOLVmyxHBxcTEMwzDO36wyeuPy5UKd93//+59RvXp146677jLc3NyM5s2bGw8++KBx9OhR64qxuQgODi7UcREREQt9xi09lSpDePbsWR577DEuXbrEbbfdRocOHYiMjKRevXpARobp+vXrhIWFERsbS/v27dmwYQPVqlUzzzFv3jwcHR0ZOHAg169fp1u3bixevBgHBwdzTEREBOHh4WY10n79+vHuu++a9zs4OLB27VrCwsLo3Lkzbm5uDBkyhNmzZ5fSK1ExZV2+ZlEaDeN54IGM/5Zw1UQ7y/nt7P7MCFqKyeRTVCZHzs7w8stQAhVSc8o2jh49mjFjxpCWkoIT5TNDmM2CBRmv4aVL5s+ntHdGZtubCQwbNszcG2p5ndML2aD+0KFDODk54ejoSKNGjWjbti1Hjx5lx44d1KhRI9v4rMVpLly4QJcuXcziNBallVUXERGR/NkZhup+l2cJCQl4enoSHx+vin22ZCnUUcL/nPZMnEi7t97iu+7dCfjsM7y8vNjWoweBmzaxMyyMzu+9V7gT2tmBoyMUMlDIr4hJToVXUlJSOHHiBHFxcVyLj8e9enUu29lRoyiBbBkxdOhQIjZuhIsXwTDY/thj3L98OUmASxn61Xre3p5ahsGVs2epevvtBX7cvffey/bt2632lF66dImHHnqIHTt2ZBvfoUOHHIvTDBgwgK1bt/45cPFiWLsWVqwwD+X3nhIRkcpFn3FLT6XKEIqUd5n/fpN1D1t+bSdyPWd6ulVGKykpiSNHjnD58mVq1KhBQEAAzs7OVo/Jr4hJToVXunbtamYLLZmqshMy5S2v/anpbm7YA6Snmz+fslY71TKfwmYIcypE1KNHD7N9yMaNG5kyZQoODg6Eh4ebxWmefvppq+I0mVdQAPCXv2S7VkEL44iIiEjxqnSN6SVnJVkBUYrRzUqimQMpy4f9ogaEdpket2TJEoKCgvjoo4/Ytm0bixYtIigoKFvxD0sRk/o3K2kmJCRYFTGxFF7JzDCMjMIrQFo5CwgjIiLo06eP1VdISAg1a9bkzKVLGYOuXgXgM6AdGUs2P/roIxo3bkzbtm1ZvXq1zeZf1CWjycnJfPnll3Tu3JkOHTpw//33c+nSJf75z38C8Morr7B+/Xo2bdrEnj17+P3330lJSeHatWtWxWnSC/DezO89JSIiIiVDGcJKLCoqikmTJhEXF4ejoyMpKSl4e3szY8YMmjdvbuvpSQ6SkpI4AOz74w+qHjhAQECAuUy1OFZ/F6RXIYCPjw8nT56kfv36QPZKmv3798927lWrVplZzfRy9iE/r/2pVy19QVNSID2dOcA24MacObRs2ZLo6GhcXV3p3r07/fr1K9V5BwcHs2HDBvN2Wi6ve24VYX/44QcuX76Mk5MTAwcO5G9/+xuxsbE8/PDDbNmyBQcHB6pXrw7A3LlzadGiBQMGDODKlSvmeRwdHdm4cWO+c83vPaUlpSIiIiVDAWElFhYWxrJly6wa258+fZqhQ4fy3Xff2XBmRZN1+drgwYMB6NOnD2vXrrXx7G7dkiVLeHPVKrqS0XLixKJFHDhwgKC4OO6HfPsQFkRBehVC/kVMcpJ5iatxMzAp6NLKku4lmZ/XXnstx+Ph4eEcGzcu48bNLJgbUAXw8PGhW7dueHp6AmTrW1ic8mrxAZmyyLm8R3LrP9miRQsOHDiAk5MT//jHP3jkkUf4+OOPzT8+tGzZ0iqIGzlyJPXq1eOZZ56xOn9Bnnt+7yktKRURESkZCggrsbS0NPPDqoWHh4fZ/Ly8sSxfc3Z2ZsqUKezcuZN33nmHa9eu2XpqxeL999/nnw89ROd//pPtd97J/fPnk5qayj3e3vwdiqWgTUF6FRaH3JaM2qqX5K2wu1lQKCUpCQyDlkA64ADm65acnGzuuysJuQV0oaGhVuNyW1acW//J2rVr4+TkBGQEZE2bNqV3795cvnwZgPnz51uNj4uLIygoiOjo6Ft+TlkVtNeiiIiIFI4Cwkps1qxZhISE4OzsjIeHB/Hx8aSmpvLGG2/k+1hbZ2xyknX52uLFi3nwwQetlq+VZ25ubhz87Tc637xtyd453wwCirqHMDNfX1/efvvtAo8vyvsgJiYGu5sf4g076xxhREQEy5Yty/aYb7/9tlDXKE2WgPDGtWtgGLxNRkBoGIZ5n7Ozc44ZsOKSW0A3ZsyYjDnevJ3TUt1t27axatUqfv75Z3r16sWkSZPw9PRk5syZjBgxwioD2L17d2rXrs24ceOIiYnB19fX6lwDBgww9w4Wt/yWlIqIiEjRKCCsxO6//362b9/O9evXiYuLw8vLK9vSwPKUsSno8rXyasmSJYT36MEnQNzevdS4/37atGnDi02awO7dJdby4tPbbiPCzo4mI0daHTcMg++++46ff/6ZGjVq5NiXLifDhw9nwqhRvAOkp6czZdcucz/YbbfdZrtekkVkCfpSk5PNY/ZAWim2nQgLC8vx+KBBg4Dcl4wOHTqUX375hRUrVrB792769evHPffcw/Xr1+nbty+rV6/mtdde48MPPzT36jVr1ox169Zl258I8Mcff9C+ffsSWbZdlGXKIiIikj8FhIKbmxtubm453leeMjZZl68BJbZ8zRZ8fX15vn17Oh0+zPZ27bj/5ofxbV26ALnvD7tVgy5dYiwwrk8f89j+/ftZtGgRCQkJTJ8+nbi4OGJjY5k+fTrdunUDMHsRZs6UGYbB8ePHmXLxIhFAnJ0db8ybZ+4H8/LyyhYMQsZyxdKSU/GSzz77jGeeeYbevXvTo0cPZsyYgYeHB1OnTqXJzccZqakl3oeyqKYbBm7AlXfeoaqfH/DnH3bq1atH3bp1GTJkCC1btjSLS50/f5558+bx1VdfERUVRXR0tLkn0fJzhIyiQ5Y9gi4uLkVetv3JJ5/w5ptv0qxZs2yvcWkX4xEREalMFBBKnvKqrlgZlLWlsTkGfZYgpLDBSCHGPw5W74MXX3yRXbt2sWjRIjNYS0hIoHfv3nTr1o2oqCiOHj1K8+bNcXJysqpgO3bsWBIuXaIhcMHO7pb2g5VE5cmcipd8+umnNGvWjDk5VA61XCU9S0CYteprTkssi0NB3qMrgeXAxQ4duC1TBeFvv/0WX19f0tLSsLOz48477+TMmTN89dVXNGzYEGdnZ9LS0mjevDkuLi5msamoqCiCgoLo1KkTjo6OHD16lI4dO5KamlqoZduZKx0fPnyYJk2acOHCBcaPH8/PP/9ss+qsIiIilYkCQslTXtUVK5JyszT25j5Bu8yBx81jhd1DaKSlFbjK52sAmf4oYG9vz8WLF63eBxcvXjSLmoSFhTFv3jweeeQRs7qopYLt3//+d96YNo2TZFTkhKLvByuJypM5FS85ffo0DRs2pFatWrlWDs0WEGb5eQwfPjzbEsvCKMp71BKEDgVigXcWL6bt/fdz9uxZtm3bRnJyMk2aNGHy5MnExMTw66+/0qFDB86ePcvPP/9Mq1atgIxsb0REhDmHZcuW0alTJ5o0aYJhGJw5c4b33nuPDh065Lhse8SIEXTv3p0WLVpk7FMEPIG40FC++uor6tatS5cuXdi6dSunT5+mTZs2pVKdVURERBQQVmoVsU1DUlISR44c4fLly9SoUYOAgACcnZ3zfVx5WRpr5BAQWoLEwvYhTE9NxaGI8/jXv/5lFhaxLAmtXbs2//rXv4CMCraDBg3Cw8PDfExMTAxpaWkEBgZSb9o06nfpQkymcxZlP1hJVJ7MqXhJZGSk+V7IWjk0a8GWdjdvG507Z1sqeyuK8h61BKGTgT7AOxMn4u7vT8uWLVm+fDmurq5MnTqV/fv34+DgQGxsLKdPn2bgwIFmoJdysyLsU089xe23386yZcv4+uuvefrpp6lSpYo5Bw8PD+rXr0/9+vVJTEykWrVqZtVRPz8/Fi1aRFxcHMHBwewF3IEGJ06YgV/Lli1JS0vDw8PD/Jlmrs5aEX9fiYiIlAUKCCuxitamYcmSJSxcuJC2bdvi4eFBXFwcBw4c4Jlnnsk30CgvS2PNrFPm4O/m93aFzBCmJScXOSD09/fn888/z/X+nCrY7t+/n6+++gr4M3jKmqEs7If+kqg8mVPxknXr1lndjouLo3r16qxcuZLjLi5ARsbVMAwSgSggfft2nDPtze3Ro0eR5wR5v0ct+zUzyxyE2gGuQO2aNbmjeXPq1q1LYGAgPj4+vP322/z+++9ERUWxYMECq6xv1jlb5rBgwQKmTJnCH3/8wdmzZ0lKSqJVq1Z8/PHHADz44INs2bLFrDrq6upK3bp1qVu3Lv7+/tSJyfhTwJ133mn1PgkODraqdJy5OmtF+30lIiJSZhhSrsXHxxuAER8fX+jH3nvvvVa3Fy1aZISEhBht2rQprumVqs6dOxtpaWlWx1JSUozOnTuX/MUzwrISv8z2QYMMA4zvunQxj33boYNhgLH54YcLda5rly4VbN638NyuXbtm/P7778b169eN4OBg8/jP69YZBhgx9vZW4zt27GjExsYaV69eNV544QVjzJgxRlpamtEl0/MtC4KCgszvf3J2Ngwwzm7ebGzt189YBcZlMJKuXbN6zNatW0tsPk2aNDFSUlKyHe/evbthGIZxGYxBYPy8dq3V/SkpKUaXLl2MVatWGb/88otx/Phx448//ijwnNu1a2ecOnXKuH79uvHOO+8YDz/8sHH16lXz52X576BBg4zU1NQ/HwhGChhdAgMNw7B+n+Smov2+EhGRvN3KZ1wpHPv8AkapuCxtGixGjhzJ2LFjSUxMzPexwcHBJTizonFzc2Pbtm3mbeNmn76srTSKqkw0wLZkATNnA3PKGhZAWqY2CUWV3/vAzc2N2rVr4+rqyvr1683j6bn0IbT0knR3d2fu3Lm0bt26TPaSNHJ4rdNTUzGA/oAXf2ZzLVVuAwMDS2w+M2bMyPHf7ZQpU8zvlwP2mV7vgwcP4ujoyOTJk5k9ezYvvPAC06dPZ8SIEdxzzz1s3rzZaslvThwdHbnjjjtwdXUlPDycp556it69e3Pp0iUAVq1alXHt5ctxcLDORzsCG7/+GrB+n+TmVn5fiYiISO60ZLQSK0ibhoEDB2YbYxiGWX6+LFmyZAmzZs1iypQppKWl4eTkRJs2bcw9X0WRuQqio6OjVbXM5pmqNZaaHArI2BWxqExhAsKBAFneCzm9D/KspJmcDPPmwfPPs2P/foaRsddw/PLl5tLQM2fOlItekpZAB6x7/OVU7CcsLKzEmrVb9O/fP8fjliD0QzL27F1avRrvEycwDIOFCxcSFhZGREQE69atM5fZHjt2jI0bN9KnTx88PDyoUaMGDzzwADt27CAlJcVsWt+xY0f69Olj9fPq0aMHfn5+jBs3DsAsKJQbR7v8yxpZ3lNZf19Z9idWlLYyIiIitqKAUPK0d+9etmzZYlaPhIxAIDQ01Iazypmvry9vv/32LZ3j8uXLZkGaGjVqEBYWxrJly6hbt645xlIt01KCvzTlVVSmsBnC9EJkPPcCW954I9/3QZ6VNDdvhr/9DZyd+UdEBN8Cf9jb896ePeZ+sAYNGpjBhUVuH/pLqiXIZ599xsyZM/Psh5dToJOekpLj3k4nJ6din2PG6f/s75ifD4EGQBcnJ7MQjL29PVWrVjUrxr733nvUq1ePn376idtvvx07OztOnTpF48aNGTFiBO+99x6//PIL7u7uDBgwgK1btzJ58mSrOURHR5uN6wukAL0zs76nLK1Gvv/+e7788stiaTUiIiJSmSkglDxNmDCBatWq4e3tbXV8zJgxNppRIY0YAY8+CiEheQ7bvHkzL7/8Mt7e3mZBmtjYWGJjY80qiBYeHh6klVAT+HzllA20BCElmCGcAFbvA0sRk8uXL1s1oLcUMckpqKpmGLwM9PnjD+zt7KgOXLOzy7dfXV7tFkqi8uScOXPYuXMniYmJ2XoO5tQPzxIC5tZ2IvNS2VsxZ84cxo0bx//+9z+eeuopIKMK55w5c+jSpUuej90NfA0s/v57Hm3e3CwoM3z4cNq2bcu4ceOoVq0aW7duJSUlhZYtW7J48WLuv/9+Ro0axZQpU3BxceHTTz9l3LhxXL9+nY4dO2abQ6dOnbh8+XK26+eWOd6wcSNTZ83CwcGBCxcuUKNGDQB++uknGjVqlGN1VkurkWHDhjFv3rxiaTUiIiJSmSkgrOTya9MQFhZmNd5SXXHQoEGlPdWi+fhjjE8+wS6f4Ofll19m3bp1VKtWzTyWkJBAp06dslXLzFwFsdTlUWW0sEtGC5MhDAPI9EeB+Ph4jhw5kq1HnKUqZU5B1aG33mLK669T+8ABmtxxByd//BHLOy2vpaF5tVsoicqTbm5uuLu74+7unmvPQYuYmD8bZxhZ/khg/jy+/hq2bYNbfM+sXbuWcePGMWHCBBYvXkzjxo25cOEC/fv3Z+fOnXk+1g6oBVyKi2PhwoX89a9/JTU1FW9vb5o1a0atWrWoW7cup06d4uGHH+b//u//mDRpEgChoaHUq1eP48ePs3btWv76179y8OBBunXrRrVq1UhKSuKRRx4hKCiIq1ev5nj9Pn364Ojo+GfgfvP4oL/8hRMnT+Ls7EzdunXp2bMn8+fPp1u3bmY7jayVTi2tRr755hu8vLyKpdWIiIhIZaaAsBIrSpsGSxn58iAxMZFqQFp6er5vdMuyucwB4cWLF/Hy8mL79u1cv36duLg4vLy8iq1ITZGUkaIyzs7OJCYmZls6aSliklNQVdXdHUfg6tWrTB41ivobN/LbzcfltR/s8ccfp2bNmgQEBFgdHz58OCtWrKB69eoA+WYaC8rSD8/BwSFbz8Gshg8fzns3vzfS0nL+GfTpk/HfWwwIr169ytGjR0lMTKRx48ZARtuNzMt4c2MHvAz8e/Jk7hk5kgYNGvDJJ59QtWpVRowYwccff2wuAX733XcBeP7554mJicHBwcH82bRv356ffvoJe3t7FixYYF77kUce4a233mLdunXZWmAYhsEPP/zApUuX/gzcgXeA9PR08+f373//m99//z3bzy9zYRzLcy7uViMiIiKVmQLCSuz9999nx44dVh8oU1NT6dKlS64BYU7VFcsqS8YgvQBzzq/RupubG26ZesrZSk57CP9+6hSBUOglo+k3G44Xhbe3t1UwGB0dTZMmTcwiJjkFVSmpqdQkY4mlJZtmeRZ5/aHhtddeIzg4ONvexPDwcI4fP17sRWiy7kO1NFMHrIKdrMsZ01NTrf59FDZjm5+mTZvy1ltv0aRJE2JjY/Hy8iIxMdFcZpkXO8AeuBwXB2QsBW/YsCHx8fG4u7tTr149wHopuL29PX5+fjnOoVWrVqSlpdGgQQMSExPx8/Ojfv36eHh4sGvXrmzZVC8vL+vAfd48HgRcnJ3Nn5+lME7Tpk2tfn5Zq7Pm1Cdy2LBh+fYaFRERkZwpIKzELG0agoKCgIK1achcXbGsS7/5gbwgAWF+jdbLgokTJ3Lm2DHWAmdPn2b1xIkYhsFhy/LIEiwqk1XW90HWSpo5BVVODg6sBL4FjCyN6S2BVH4N1rMqSKXcWzVgwAASExOJiorKcYms3fbtAKRn3Vd68zldI6PCJ4YBBSwCk5NFixZZ3bYs3/7yyy/NQitOTk5MmDAhx0Ir/wKeW7qUqZ9+imEYLFmyxPyjh2XpeM2aNTlw4EC2peO5zQEy9pZ+9NFHALz77rs5Zo6DgoKsA3egHvC0h4dVEaGiVA5NTEy0yuyLiIhI4agPYSW2ZMkSvvzySzp37kyHDh24//77WbNmTZ5tGvIrI1+WpObS6668ioiIoEPNmvQBOnp40KdPH0JCQvC82d+tqG0nipLHyvo+yK+S5oABA6yymln7EFoCzMTERHbt2sWePXvMr71799K2bdsizLJ4GIZRoD5/Ri5FZUzFnDEcMGCA+X14eDhvv/028+bNY968ecydOxfALLRiB/gD8597jt27dxMZGcnu3btZsGAB+/btIygoiI8++oht27axaNEigoKCzN8Dln2SMTExue7Ts8ylf//+2TLHkPHzzVY9Ftj/1Ve5PqesPv74Y5o3b84999zDrFmzzOMPPvhgro8RERGR/CkgrMQsbRp27txJZGQk3333HfPmzcu9j1w5k5ZlWWJxyq8he0l4/PHHqefuTiDQqkoVAgMDCQwMpJeleXgRM4TF8frkV0nTMAyzxUDmJaMWliCiIIEXZLQeKC2rVq3KFuhYZF7OmHUPYdaA8FaW6OYk8/JUS6GV+vXrs2LFChISEqwKrZiZ2CxzGj58OO+//z6vv/46R44c4erVq/Tt25erV6/y7LPPsnv3bvr3788DDzxAkyZN6Nq1Kx07duS2226z6kGZ21LyrEWpssr6muS1JH3hwoUcOHCAAwcO4O7uziOPPMK1a9fMlQAiIiJSNFoyKvnKrxJpWZV288PmrQQ8/fr1y7aENqeG7KXhtddeY1vXrpZJmMcfqV4dLlwo1T2EFnk2os9k1apV/Hoza2Xw55LRrD+bnBqsL1iwAIAjR45kPCZTU/XcAo6CzqsgCpoVN7Jmz7IEN2nJydgXY0GizMt28yu0EkjGX/+uv/oqbgsX3pxexlLctm3b8uyzz+Ls7My6det4++23cXZ2JiUlxVx66unpybVr1/D19cUwDH755RfCwsLMXpwLb54zq/wyx1kLG+W1JN3e3h4nJyez/YaLiwu+vr6kpqbSunXrArXfEBERkeyUIZQ8LVmyJM/lZGWZ5cPmrQSEGzdu5I033uCtt96y+mrYsOGfg0qz0E4OVUbNpZhFzBDeSn5l+PDhBRrn5eVlFTAZaWkkAf8zDDZt2sSBAwdIzqXq6XvvvceaNWtwd3enSpUqZjP1qlWr3vK8ilO2DGEOAWFxyhyorly5MtuSzGHDhnHjxg0ArgC7gE/+9jf27NnDmDFjuHHjBunp6TRt2pSEhAR++uknzp49i52dHU899RS//fYbrq6uVKtWjR07dtCuXTvz/X/nnXda9eIMDw/PcY6ZM8dJSUkcOHAg4+cNJGP9R4mDBw8SGhpK//792bVrl3l81KhRQEbripMnT5r9JVetWsWyZcu4//77+eabb3jppZeK8CqKiIiIMoSSp6JUIi0r0pOSgILtIcytmAlYN2S3yFyNsbj3huUph+DProhtJ9ILkUFtB5BDO4Hcir3keL1MAeHavXt5DmiSns7t27bl2fLk8OHDfPLJJ6xYsYKBAwcyaNAgPv30U4YPH17oIjQFVZSsuJGWZrVP0qwIe/N2cQeEhTENSOTPOVmWX+7atYunnnoKOzs7/v3vf7NgwQLGjRtHly5dqFatGnXr1mXkyJGEhYVx/fp1WrVqRWpqKikpKdSvX5927doV6PXO1uIGOAAM+/prnuncGfiz4byjoyMTJkzI1nD+xRdfBP5sv3HhwgVCQkIICQkBKFD7DREREcmuUgWEM2fOZNWqVURHR+Pm5kanTp144403zJ5ekFG23lIxz6J9+/ZERkaat5OSkhg/fjyffPIJ169fp1u3bixYsIA6deqYY2JjYwkPD2f16tVAxtLD+fPnm6XXAU6fPs2zzz7Lli1bcHNzY8iQIcyePbtMLccsSiXSsiLNEhAWYGxeVSSzBoMAgwYNMr83UlMptbI1OfUhLGpj+kIsGU0EonJoJ5C1aXhejNRUYsj4eayKjOQAcNbBgTteew3I/Q8NdnZ2DBkyhMGDBxMREUG/fv24dOlSxrzy+LkVVVH6c0IOfQhLIENY1OXbD5KxbPTarFm4L1rEsWPH6Ny5M4ZhEBMTw4oVK/j73/9OfHy8uWw3Ojqao0eP4ujoyIsvvsj169dp0aIFBw8ezJadtbzeuVX8zPaHpb//nVSg85df8szrrwN/7oME+M9//sOcOXNybDhvaX0RExNT6PYbIiIikgOjEunZs6exaNEi4/Dhw8ahQ4eMPn36GHfccYdx5coVc8yIESOMXr16GefOnTO//vjjD6vzPP3008btt99ubNy40Thw4IARFBRk3H333UZqaqo5plevXkZAQICxa9cuY9euXUZAQIAREhJi3p+ammoEBAQYQUFBxoEDB4yNGzcafn5+xpgxYwr1nOLj4w3AiI+PL+Krkrdz584Zf/3rX41OnToZ7du3N+69917j+eefN86dO1ci1ytOx3buNAwwYh0c8h27atUq4/Lly9mOb926Nd/HpiQkGEbGx/8izbOgPv30U6NhlSrGUDBeql3baNSokdGmTRvjDR8fwwBj/X33Fep8h5csMQwwbuQ3bzBWQZFfH4vdY8YYPcDYeP/9Rrs77zS2gHHK0dEwDMNIT083Nm3aZHTr1i3f86SlpRm//fabYRi39nPLTefOnY20tDSrYykpKUbnzp1zHP+zs7NhgHFw1ixja9eu5nsh7uRJwzAM49rN27E//VTkORmGYXz88cdGx44djfDwcGPKlCnGmDFjjE6dOhlLlizJ97HXwWgCxr45cwzDMIzXX3/dOHHihGEYhtG9e3fDMAzj8OHDRs+ePc3HBAUFZTuP5fX+6KOPjICAAKNVq1bGzJkzzdc7p8dYrrFlyxbzdjoYm8C4q25d8zwBAQHmnCznWbJkieHi4pLjOYODg/N93iIiUn6V9Gdc+VOlCgizunDhggEY27ZtM4+NGDHCePDBB3N9TFxcnOHk5GQsX77cPPbbb78Z9vb2xrp16wzDMIyjR48agBEZGWmO2b17twEY0dHRhmEYxtdff23Y29ubH2wNwzA++eQTw8XFpVBvfP1jyd2Rb781DDAu3ww6CuPYsWMFHnvj0qVSCQjbtWtnrGvb1ogBo6aDgxEXF2fcuHHDuNvFJSMgzCVgyc3//vMfwwDjegECwsI+t7Zt22b78r/tNsPzZkD49bhxxl/BaG1nV6A/NAwZMqRA1y3Mzy032YKXfIJVS0B44PXXjW1BQebrFfvrr4Zh/BkQXjp8+JbmVdhA1TAMo0ePHoZhGMaNm0H99tdfzzZm69atOb5ueQVcHTp0MJKTk41jx44Z77zzjvHwww8bV69eNbp06ZLj+Gx/WALjeTCa33mnkZycbBiGUaDziIhI5aHPuKWnUi0ZzSo+Ph4g21KjrVu34uPjQ/Xq1QkMDOT111/Hx8cHgP3795OSkmLVdsDPz4+AgAB27dpFz5492b17N56enrRv394c06FDBzw9Pdm1axeNGzdm9+7dBAQE4OfnZ47p2bMnSUlJ7N+/31yimVVSUhJJN5dCAiQkJNz6C1FBpd9CUZmsjdazylzFMq2Y2wnkxs3NDdfr16kFtHZ3x9PTEwAHy4BC7iHMrdJncchpKefu0aN5+d//xgBquLvzNnDK0ZF6mZZjT5w4Mfs8DcOqyEhe8vu5FcSSJUuYNWsWU6ZMIS0tDScnJ9q0aZNvISUjLS3H/aSW5cS3WtU1r+XbAwcOzD6fLNVw+wOHXFzM29HR0TRp0oTAwEC6du2a7XWzFITJuky1WbNmZsVPy+vdtGlTevfuzeXLl3Ocu6XFjenmvt62jo5mJdLw8PB8zyMiIiLFr9IGhIZhMHbsWO69914CAgLM47179+bRRx+lXr16nDhxgqlTp9K1a1f279+Pi4sLMTExODs7ZytFX6tWLasGzpYAMjMfHx+rMbVq1bK638vLC2dnZ3NMTmbOnMn06dOL/Lwrk8IUTckqv3L5w4cPZ8OGDUDpFQtp2bIlaTt3AvDKzWA0OTkZT8u+rBLoQ5iemlqkUsSWfoKZ/52kp6YyBUjO1JMwq4iICJYtW5bt+ObNmzlw4EC+e+fy+7kVRLbgpYCyBoTF3Ycwr0C1Y8eObNmyxaqwimEYhIaGApn6EGZ63TMHz7m9bgEBAVy5coUHH3yQ69evs3r1aq5evYqjoyPLly83H9e9e3dq167NuHHjABg6dCgRERH5Pqegu++2apeR9Ty5Ka+tcERERMqiShsQjhkzhv/973/s2LHD6njmYiEBAQG0adOGevXqsXbtWgYMGJDr+QzDwC5TNUu7HCpbFmVMVpMnT2bs2LHm7YSEBOrWrZvr+MqsMFVGs7JkRwpSxbK4G47n5u2332ZbmzaWSQDg7OzMrBo14LffCl1UpiAZwqIGhDn1E3SJi6MzsMkwzMAk67Uff/xx/P39rf6gsmTJEmJjY/noo4/yLfKSuc1BabFUFs2WISzmojJ5BaoTJkzIvxou1kGqk5OTGbh5enqaWcbY2FiOHDmCnZ0dFy5c4L777uOdd96hTp06bNu2jTvvvJNOnToxf/58OnfubJXVbdGiBRMmTPgzoztjBvz733CzUmhWYSEh2dplNGvWjHXr1uX6OhS16I+IiIjkrFIGhM899xyrV69m+/btVpVBc1K7dm3q1atnBgC+vr4kJyeb1e0sLly4YDZx9vX15fz589nOdfHiRTMr6Ovry/fff291f2xsLCkpKdkyh5m5uLjgkmnZl+TuVpaMWhSkimWpthPIqe3Eze/tSmDJaFpycvH8kvjtN9p88QWQ0SbDyCVD+NrNiqOZvf/++/zyyy9lvvWJkZpaohnCvISFhVndjouLo3r16uYfuCaTsbQ4Zu1afG8ux2zRogUrV64EYO/evWaG8dFHH+WTTz7BwcGBrl27cuTIEY4ePUpiYiKNGjViy5YteHh4kJSUlGtG99tvv834Jp/egEam1+Szzz5j5syZNGvWjB49ejBjxgw8PDyYOnUq/fr1M8eV51Y4IiIiZVGlatxkGAZjxoxh1apVbNmyhQYNGuT7mD/++IMzZ85Qu3ZtAFq3bo2TkxMbN240x5w7d47Dhw+bAWHHjh2Jj49nz5495pjvv/+e+Ph4qzGHDx/m3Llz5pgNGzbg4uJC69ati+X5VnbGLSwZtbAsfcxqypQp5veZP+gbJdyk3tJz0C5TsGF/8/vCXrsgAUpxBTGxp0//eSMtzQxGCxLEWvbOWWTeO1eWGOnp1o3pSzEgzCrraoblQB+g81130adPH/r06UNISAg1a9YE/sww1qtXD1dXVwIDA7n33nuZP38+6enptG7dmmvXrtGpUyfWrFnDP//5T2rUqGFmdAMDA62+hg8fXqB5Zn5N5syZw86dO5kzZw5/+9vf2LNnDzt27OCtt96yekx5eT+IiIiUF5UqQ/jss8+ybNkyvvzyS6pVq2bu1fP09MTNzY0rV64wbdo0Hn74YWrXrs3Jkyd58cUX8fb2NpfAeXp6MmrUKMaNG0fNmjWpUaMG48ePp3nz5nTv3h0Af39/evXqxejRo3n//fcBePLJJwkJCTF7HgYHB9O0aVNCQ0N56623uHz5MuPHj2f06NF4eHjY4NWpeIojQ5jT0keAwMBA8/vMGcK0tLRs2cTilJyaygFg77VruBw4kLH/NYesYUFYsnTpeSyptSqYYxhmMZDCOnfhAmY+PS0tW9P2vBS1yEtpGDp0KGZOM5clo8VVVKYwsv5xYCTgD1SpV482md67lsAtc4bRx8eH//3vf7Ro0YKnnnqKp556iqVLl/LEE0+we/duc1n7l19+mev1w8PDCzTPzK+Jm5sb7u7uuLu7061bN7NoUtZ/T2X5/SAiIlIeVaqAcOHChQB06dLF6viiRYsYOXIkDg4OREVF8fHHHxMXF0ft2rUJCgri008/tWq2PG/ePBwdHRk4cKDZmH7x4sU4OJj1HomIiCA8PNysRtqvXz/effdd834HBwfWrl1LWFgYnTt3tmpML8XDzBAWMYgp8HUyLX9ML+Q+vsJYsmQJb/z6K92AhBs3OL5oEQcOHKD39eu0zrh4oc5XoD2EmYOY9HTI9B4vDOdMPwMjPd0sKlOQELaoRV6KU0Gqn6ZnLSqTJSgrzYBw1apVVrdfJWPJ6KksS3UzB24HDx5k6tSpODk58Ze//IX9+/cDMGrUKD788EOGDRvGc2FhbFq7lmOnThVuQrn8MSHzktGWLVuSlpaGg4ODGdwlJyebWUyLsvB+EBERqUgqVUCY35I6Nze3AhWlcHV1Zf78+cyfPz/XMTVq1Mj3L9Z33HEHa9asyfd6UjTFkSEsiMxZtLRc9sYVh/fff59369eny9GjRHp60mH+fFJTU2nr5sYUKHSGMLdKn5lZKpFavre/GRCmpqYWKhNql+k8pKXleu2NGzcyZcoUHBwcCA8PZ/DgwQD06dOHtWvXFvh6xS3PvXK//ZZxIy2tzCwZzVoFOacqo1mFh4fj5eXFvHnzaNeuHXPnzmXs2LH8mqkgTPuFC8n9tx5s27aN1157jRYtWtCrVy8mAZ7AzB076HjffdnGG5neF1mDPMs+SMs+RxERESkZlSoglMrFDAhLOEOYnmnJaElmCN3c3Dh09ixdAAzD3DtlZt+KuIewoBnCHw4d4qXp04mLi8PR0ZGUlBS8vb2ZMWMGzZs3z/NaaTdumN/bpaWZgUnWn8wrr7zC+vXrcXZ2ZsqUKezcuZN33nmHa9eu5XjezFmtCRMmmHt0LVmt4pJT9VO4ueRy/Hgge5XRrM+tNAPCXN18j+SU8Tx58iRnz56lfv36/Pjjj7zzzjuMHj2a1ExBW+aSLZl7cVqqlU6aNIkVK1YQFxdHcHAwewF3YMBLL7F1+/bs08n8h4IsBgwYcMs9JUVERCR/CgilwiqOojKZ5ZYVSy+lDOGSJUt4rmlTVgDxMTF43X8/bdq0YUbVqhAbW+glo5bxeT0qc/ZzzPPPs/yzz6zanJw+fZqhQ4fy3Xff5XmptJstQOBm5iyXuTo4OFC9enUA5s6dy+LFi3nwwQe5cuVKjuPDw8NZtGgRjo6OTJgwgcjIyGxZreKQU/VTy/V/vRkQkp5uVewn6z5JWwSEmYM2+DNDGBERwfTp07nrrrvM+77//nuzIbyXlxfTpk1j6dKlLFmyxBxjhpETJ/LZZ5/Rrl07vvvuO2JjY+nbty+urq7UrVuXp59+Gn9/f+rc3KftYJ9z/bK8AsKSLtAkIiIiGSpVlVGpXIojIIyKiuKBBx6gU6dOdO3alY4dO9K3b1+ioqLMMZk/6KeXYEDo6+tL+G23sRP40MeH7777jnnz5uGT7yNzlp7Hh3GLzB/Y01JTzUIfFh4eHgUKgnPLEGbVsmVLTp48ad4eOXIkY8eOzbHSK2T08mzYsCH169dnxYoVJCQkZMtqlZasewhtWVTGwlI05p/AAmDl/v0sWLCAFi1aMHv2bI4cOWJWBt22bRujR49m48aNtG/fnk6dOuHo6EiLFi1o164d1atX521gNbB69WouXbrE0aNH+eCDD2jatCl79uzh999/JyUlhWvXrpnZvVQy3js5yes1yboPUkREREqGMoRSJJYlYmVZcQSEYWFhLFu2LM+smFWGsJQ+9Nulp3No1y7Wd+7MA87O5rFCKUDQlPn5TJ88mZCQEJydnfHw8CA+Pp7Dhw8XaI9XeqYMYeY9hPZZskBZ9+XGxcURFBREdHR0tnMOHToUHx8fTp48aTY3zymrVWpSU8EwSCXjF2vWPYR5ZcNuVbt27bIdMwzD7J/6HlAPaO3oyJIlS3j66aeZM2cOVatWtXpMeHg4nTp1MpftvvDCC/z888/ExMTQs2dP7t26lecAn+hoevTowY0bNwgJCeHXX38lPDycFi1aMGDAAKuMriOw+uOP/7xI5ixqHq9J1n2QpbU8WEREpLJRQFgJFSaYK0h1xbLKrKKZyx7CghRGSUtLyzcrZpUhLOHMlNmH0DCI+egjJgFY9jAWsTF9Xm0nLGMmAkkbNtChQwdSUlJISkqiXr16/Prrr9yXQ7GQrKwCwvR0frp0iTfIeH2n7tqV64f7AQMG0KZNm+zzuvkePHHiRLb7hg0bVqoNyu2BKGD8hg1cuXwZLyAFqPbXvzLnvfdocnPcrb438gqIEhMTiYqKsno/T5w4kYsXLzJx4kQeAI4Bi7//nhuOjoSGhvLpp5/m2C8w87LdEydOMHToUPr27cuVK1fMFhuGYTBlyhRWrlzJyZMnzWqlI0eOpF69ejzzzDPWJ8303I3U1D+L3BTiNbEsD/7xxx95+OGH8fb25v333zeXByswFBERKRoFhBVYcQRzeVZXLOOMm0FI5jApKiqKSZMmFbgwyuuvv54tK5aamsobb7xhjsn8Qb/EM4SZeg46urlluauQuVBLQ/u8htx8bhHAvwIDqernZ3V/fnsHLTLvIbRLT+edvXtZBcTa2fHmvHm57v0zDKPU34M5BV6fffYZzzzzDL1796ZHjx7MmDEDDw8Ppk6dSkvDIAwY364dtaKjuffYMQD2T5hAWFgYlrIot7pkNK/9kjNmzCAxMdEqqxYREcHEiRNp2bIlvPUWIUBUUBBzDh6kX79+XLp0yRybOcN46tQp7r77bpydnYmOjmbDhg18++23VkFeyo0b5lLTrMtzc8ropmb6+aclJ5v/48kcEOb2BxrLPkjL8uC//OUvfPfdd7z77rtWgX9x7xst64xz58DODrtMe0RFRESKQgFhBVYcH6TzrK5Y1uXQZ68gS0BzChqrVq3KmDFj6NSpE66urlaXsVWG0Cnrh+ciZghze9TQoUOZ+cQTADwO3FW/Po06drQaU9D3QdYMoR3QELhgZ8eKFSuYNm1ajnv/Vq1axdy5c0v1PZhT4PXpp5/SrFkz5syZQ8uWLYmOjsbV1ZXu3buzDEgDqjg6Wi3brebsTFpaWpGyYTmxBESA1Wt25MgR+vfvbz3YMHh8xAgee+wxq9fN+fbbeaFLF4YNG8aNTPs6ExMTCQsLs+qlahgGkyZNYvbs2YwfPz4jyLuZTX6pXTsO16lDfHx8gf6wknL9uvl95oDwp3Pn+NsDD+T5B5rhw4ezYcMGc3mw5XV4++23adOmDSNHjrTZvlFbsrP8cUbFd0RE5BYpIKzAiiOYy6u6Ylln2UOYeUlkQZaAFiRotLpOll59JSpThjBrpc7C7iG0zHt6ejpVsmSTLZnk9BEjAHgNuFStWrZzFGS5KFi35rBLS8PLxYWTQNWbzye3vX9eXl6l/h7MKfA6ffo0DRs2pFatWnTr1s18Dzk6OmJvGMwCntu6FaerV7kDiAeuTZrEm/Pnw/33A7eeITx//jxPPfWU1fv3999/5+LFi9nGXps/n9dmzoQpU6yOG2lphIeH07VrV6uWDjNmzGDy5MlcunSJ2bNnY3fz30ytWrX4z3/+w3hLJdWbIg8fZu7UqbR59FFz7OnTp3nggQeoUqXKn30kb44f8te/snn3biAjW+hiue7WrXy5Zw9169Y1s5RnzpyhU6dO+Pv7W+2DtOxVzbxv1LI82Gb7Rm3Bzo6UmTNxsvU8RESkwlBAWIGV52CuWOSQAZs1a1a+S0ALEjRmVpoZQrNypWHgcIsBoaWwyypgeZ8+2e7+9ttvraqBfrhsGdXq1Mk0FYOFCxcSFhZGWFhY3tPOnCE0DKa3a0f9334jNtOYouz9K4lG9jkVqomMjDQz60uXLgUgOTmZmjVrYg/cD7zbpQup+/dz56+/4gPEz55Nrfvuw/KOuNUM4ZUrVxgyZIjVsT59+nD+/PlsY4/Nnk1r4PKJE9Ro1sw8bil0c/jwYQYOHGj1mICAADZt2sSXX37JvffeywsvvMCnn37K9UzZvTnAOCARGD1lCm7z5pGcnGxmTk+dOsWZM2dISkrijTfeYCfwDnAtS4bQ/D493fy3ZtkHeeXKFR544AFzaXuPHj2s5plTEaPS3jdqa9dfeUUBoYiIFBsFhFJhmUVTMh27//772b59O9evXycuLg4vL69sS0ALEjRmZlVltBSXjFoFWZAtQMyPJdgbDLlmkjM/t/8sX86dTZowcOBAMytkb2+frVJlTqwyhJn6EGatMpqbrP30LArbyL4gcgo41q1bl+2Ys7MzK1euJObmMksjLQ1XwBNwBeIyPWe49YCwMBn/Gzd/tilxcdZ33Hzd3dzceOONN7DP1B/QMAxCQ0P573//S0BAAN9++y2XLl1i/fr15pi1ZASETsCN9HQSEhI4ffo03bp144477uD//u//qF69upmBXDxvHg8CV69e/XMKmd5Tz7Vubf5b8/T0pGvXrtjZ2Vn9W5uSJctZmVkK8jhmeW+JiIjcCgWEUnHl0XbCzc0NtyxFWSwKEjQGBwezYcOGjPNnqaBYkuwzl+zPtAcs630FcjNomGxvny3IgIxM8vFMveC+jYhg64kTrFixgoEDBzJo0KBcK1VmZdz8APsHNwNCS9uJAk7Vso/M4uDBg7Rq1arQjexLgvkc0tNxSEvjOhlBoaX3YnHtISxMxj/9ZpCadOkSf1y6RCxQA8zXfdKkSVSrVg1vb2+rx40ZMwZ7e3vq1q3Lxx9/zI0bN6wK1VwFjpIREH786quMfOcdjhw5wmOPPcagQYP4xz/+wbFjx8wCRyPJaHcxKlOAnjlDeI+3N098/XWe/9YCAwML8OpUDilXruDMn+8pERGR4qCAsBK4fPkyly9fpkaNGtSoUaNYzpk5ICqrLB/A7YpYdMHNzY0RN/fQWZ3XMKwb05dilVG7mx/oc8oQFjYgtLw+eWXpMmdzjLQ0hgwZwuDBg4mIiKBfv37s3LmzYNdKTiYNOFKlSkaW6uZcHbKMy6mf3vnz57lw4QILFizIOFempaqWRvaW5Z25tj0oQZbXz0hPxz49nWtk/BEiNdMySSi+PxYU5N+zPbAZmDBhAnUaN8YTiANOrVnDvM2bsy3xjYuLo3r16gwaNAiA9evXZ9tnCNAUeAtoAvxx/jyOjo54eXnh7e1NeHg4/v7+PP3001y+fNl8TBDw1Ztvmrezvqcg9z/QzAsLo/7dd9P/qadyXR78wAMP8PXXXxfglSv/bsTH44z1qgcREZFbpYCwAtu8eTMvv/wy3t7eeHh4EBcXR2xsLNOnT6dbt24FOkfWfUaQPSAqs/IIeAoaJO/du5ctW7bkuLTOvJ05Q5jLPsPiYu4TNIxsGcLCLhnNWpQmJ5bnMxC4NmUK7pkyia6urri4uOTyyCznSUoiGfCoXp3E69fZc+ECE8kIXP66fLn54f7o0aNmxUmLZs2acfXqVdzd3bMtVS1MI/uSEBMTgwsZe+vapqXx8/XrzALcgMQXX+Td22/HUnbnVovKFObfs51h8DLw/pgxtBw1Cqeby3o3BAby8ssvm+MtS3EHDBhgFfylvPACRpZqxDExMSzKdPsg0LVrV/744w++/PJLIGO/n5+fH+PGjbN6bFqm92rmDCH5/Ht5YeFC/gB46ilzefDChQvZs2cPX375JSdPnuTo/7d33+FxFOcDx7+7V6WTdJIlWbIlWe64GxsbY5tmWiAONbRAQk0BE0oo+SVAgAAxPSGBAKEZcOjGxmCIce+94YZ7k2yrlzudru/8/rjCyZKMXIXt9/M8euzb29ub3ZvdnXdmdmb9ek455RReeOEFzj777P1ur7Uppdi6dWt80KID5a+tBcBxOBMlhBDihCcB4XHskUceYfLkyaQmjA7pcrm46KKLWhwQtiQg+tFqooXwQIPkBx54oNmudTE/lmcID7bLaOyXbSpIju3bUmDsrbdSEB0xEw4wHwQCBAB0Hc0wGLNlC/OIdH3765Il8Wf/Onbs2Gg+vbVr1/LII48wceLEH+yqum9gczA++eQTnnrqKXr37t1ozsFLLrmkwbo33HADnynFV8CgcJh/ulw8ZjZzWSjEwttu4/6HHmJOdN1DbSHc93xWSuF2u5s8nzWl0IHysrIGLdg1bneDcznWFbfRHJb//CfjGy6JrJvwOlRXx/z58xt0Zd2wYQO9e/du9Mxl4jyUDQLjFhyTzOi/se7BU6dOZcaMGfTp04fs7Gy6d+/OV199xeWXX/7DLdZuNzQxWu6RVPfFF2iGgeOyy5j62GNc8PjjbJo+ne7nnHPA2wq4XI0XGgboLe18LY4nhmE0OJ+FEOJgSUB4HNN1nfLy8gYBYXl5+QHdQFoSEP1YadHCpimhsNuSIHnfgGD48OHxgODMM89s0LUOjm4LoSkhIGSfgSUOuIUwmtZ5SvHM8OFNBsm50XUeAJKtVgoLCxtsosX5IBAgoGkoXYdosJJOpOtb4rN/SUlJDYJBiEwD8cQTT2AYRryrauKk6okaBTYH4YUXXmD+/Pm43e74nIPnnXce119/PT179mzwXZs3b8ZC5Nm6HS4X9YZBe4sFQiHSLRZ0XT9szxDu3buX8vJytm/fzu9+9zsgMjJnU+ezbhi8DtwxYQJ//eYb1sWWT59Oxx49OPXUUxtM6TA+4VnR2Hta5EWDfU1k1Nc3Ot7Dhg1r0F00piTh90oMCBft2cOoIUNaNEpsrHuwx+Nh/fr1pKWl8cgjj3D77bfTtm3bH7yuVX79NZkjR1Lxv/+RdeGF+133cEq59NLIf5TCPCdSPeCeOxcOIiD0NxUQmkws/c1vGPz664eSTHGMWbF4MfNOO43z5s6l1+mnt3ZyhBDHOAkIj2Ovv/469913HyUlJZECnqbRrl07Xm+m4FDx73+T8uyz2HfujC9rbjqBxIDoR6uJLqMtCZKbCghik5C/+OKLjVqgVCu1EHKYWghHA1ObCZL/E22FGwVsczjw+/2sW7cu3pLYaEL05gQCBAF0Hd0w6JqWxo7aWjoCKNXss3/rvv2WJTNncvM996DrOr/61a8YOXJkg0nVEyUGNgcrKSmJ5ORkkpOT43MO1tXVMXDgQGbPnt1g3fPPPx/ztGn0Aj7avp3Ouk5ldEAXV21tg+7IhxoQZmdnc9999zFz5kw6duxIUlIShYWF7Nmzp9G6mlL0BJ678kp6jBrFoNxc1gALzzmHMxJa72JTOiQG4W63mzVEbg5qzhy06CAv559/PkybBkS6EFeOG4ezd+94t3KlVIPRRBM99t//ctEjjwANu4++vmEDs7dta9EosbHuwb169eK5556jR48e8fPT7Xb/4PPR695/nzOB9Z98wplHMSBMpKLPSRoHOehR0O1ucrnj/fdBAsITSvGHH3IX8O3TT8OkSa2dHCHEMU4CwuNYz549mTBhQovXD959N/ZwODLXnXYcjGMX6zKasKglQXJTAQFEJiFvqgUqsevm0RpltKkWQvNBBoRmaDZIDicMjDJ+2jTGjx7N4MGD4y2JK1as4Pbbb//BOeC0YJCgrqNMJjSluKdLFzru3g1Eh9K3WJp89u/bIUO42e+He+6JL7vyyiub7Ra6b+viwTj55JMJh8OYTKb4nIOPP/54kxOfP/zQQ5inTWMMMKtHD7KWL6fSYoG6OuxKMXHiRIzouXQ48sbf/vY3fv3rX8fn6AM444wzGq0X6yYd9noJBwKMJjJ34L55pqkpHUaPHo37iivIAAI1NVQDubm5kXWjAeFS4JmBAxmSMFiMUorJkyc3GhhIARuKiuKvQwnBng7NjhIb8PuxNnEMxowZ0+B1bECc2HOMzYrmd/Uj6GJ3sC3ZTXYZZT+jjobDMH8+DB8Opn2HcBLHstiveeh9IoQQQgJCkcAcKzD5fGjNTMlwLNGaaCFsSZDcVEAQm4T8jTfeaLS+kfh81BEOCBt0C91nkJIDHmU0+nu/Adx3772UlJY2CpK9CYXsDydPZun69Q1aU0OhEGeffXaLAsKApsWfIdQSjpMRCmGyND3N9kXRY2sEAujWSHhwOLqF7s+LL77YaNlVV13FVVdd1Wj56UOGfP/CMLCGwwSiA7iEfT6MYPD7aSkOsTtxYstYdXU1GRkZzbaMxQJCw+cj7PUSa8dV+wSE+07p4Ha7G7T6eisquOHee5kyZQpnJjw/+gBgD4UadSFOS0tjwQsvYM7PR3XsiBbNK4PbtYuvk9hC2D0lpdlRYusqKmjJmMgtfW40NkLvhs2bWf3SS9x5550t2PphFj1HQ820pP6QUDMti82dEaVvvknObbdR/tZbZN9yy0F9p/hxiuXnI/uQghDiRNH6VaXiRyNWG++rrGyw3O/3s2LFCqZNm8aKFSsIHCOTIscKv6YDDCBefPFFTPvUpscmIW+qBSoxIDzSzxDGgj6zYaAfpmcIewIfv/suCxcuZNGiRSxcuJDx48fTs2fPBvtmt1obdJlUSjFhwoT4vHG+zz4j0MxUJFogQEjXI11GlUJPnKpjP/kpFG1dq4u2JkLLuoWWlJT84DqHRCl4+WVCO3Z8v8wwsIVCBB2RMSANv59AQgH+UFsIx4wZw5gxY3j77bfj+TA1NbXJlrFYJYjh9xNMDCKCQdxuN+++8w7dCwsZOHAgTz/9NBB5djAvL49TTz2VU4FTgbOvuoolS5aw6JZb8BUXxzczCnAm5LfY8X755Zdxn3kmqnt3ggmB3y8TAufE6Tge6NYtHgzGxFqK68vKWnRcQi08rrEC9Klz5nByE3M3HnFKxdNw0F1GE1oIEzvVNneF2xQ9XzcktCiL44OKjjjrP8JTHe03DUoxZdy4I15JJ4Q48iQgPM4dSDAXCwgTC2Jjx45lxIgRvPvuu8yePZsxY8YwYsSIeMvZj5kW3dcj3fk1scuocYSD5VhB3xoON2ohPNDAV08IXmPD2e/LSCjUP/273zFx4kSGDx/Oaaedxplnnsn9998fzwv2K6/E+pOfNLkdLRSKBHfRLqNaIIAfWAH7zZuxffImDFTSkm6hTY1Aelht2wZ33omeMMJmyO9nUzDISk1jBeCvryeQ8MzXkaosaCr4NRkG7wG/+uQTzr32Wp6OLteCQS699FKevv9+1u3axaRnnyU5OZkrr7wSl8vFgAEDWLJkCUuAJcAXTz/NSR07ctqYMWz/6U8bfklC3ogd78svv5wMIr930OMh1gG4X05OfN3Ebsj7azX17zM4zXvvvUffvn0bBLHQ8hZjPdpVdQBwBpF5I4+mxU88AdGWQeMgWwjDCfmpOmF5c3uiEqapEceZ6DU7sM+z5EfTglde4YKrrmLGX//aamkQLaeUOmpTMoljj3QZPY6NHTuWV199tcXPfMUCQm/CiID/+c9/mDdv3kF1E2xtsYBwfxOvx8TmY2upxPUbdMPbZzLyw80aLUDbwmH0Q+wymvg8WaCZwSpiAe6pgO+FF7AnjDbr8/mora1t0XHTAgFCJhPKZEJXisllZdwPDAbsc+dSP2tWk3kz1pHUX1PT5Habmsi+qRExD9S+g+f06dMHq/X7J9r2rFpFe6Bk7VoKgLHAM2vWcKZhUBMMsgeY++WX3N69O/Fhco5Qd+LY1BGJLKEQrwJvnH8+nW+5hS8uuogrgdv8/ki34Pp6LEDtpk3xCeXvueceysvLG2wnUF3NL88/H779Fr2mhsSj7Z4/n9R9RitNDPACHg+jgBmASjgvYl1Gvey/1TRQXd3g9auvvsqKFSuwWCz861//4sorr+S9995rMGclwLvXXcfJV19N/8sua7Bc7ZPHvVVVJO8zevKRNOTRR6mNPU/axKA5LRFOaFl0m83xPGU08cy38vsZPG5c5HPNnN/Hqwfz8+n761/zi8cea+2kHDF6rLX4IFubD1XJypVYooPZmH9ouhfxozDrzTdp99vfsvTDDxkcHdFZiBgJCI9jBxrMxTpJJgaESUlJzJ49mxEjRgCRwvbs2bPj3QR/zGIBYUuGUti3UP1DAUHi+okBoXaQBb2WsobDGIA9HG7Q7bIeMB1gC5SW0MLTVEBYUlISb/10Ax//8Y/0u+22+PtKKQa2bcveNWto17fv/r8sGCRsNoPZjNUwmFhVxUoiXRRcf/gDaYWFTebN2AXKXVbGihUrGv0ebrebNWvWNAoKYqNnHoyWVKRUbttGe6B2zx4KgP8AbzidDPV6mX7OOfR66y12nXoqd3744fcB4SG2EMamg/B6vYRCIcxmM3a7nS1btjRa1xIKoQPmYJCgx8NdQHfgge3bCek6pzqd7PB68ZSWApHj9cknnzSYUH4DEK6upk/ivIcQH4F0dp8+nBXtihg73rU7duCMfj4UDTqh4XkRayH0EmlVbYrb7SawTyWArutYos+axoLYiy66qME0F0opbvzwQ3Z9+GHjVrF9WuXqdu8+4gGhCoUa9FBwxtJ0sC2ECYX/epvt+4CwiXVXv/02/WPPmTXTA4CNG6F792YHEdvxwQfYt28n96GHDiq9rUEpxejduyn961/hOAwIS6+9lpyPP8Y0aBAA+kHmpUNlDB7MqbFxB46HQehOAGrKFHoAC2bOBAkIxT4kIDyOHWww5094hnDs2LE8/fTTPPzww4TDYSwWC4MGDTomuozGWtDMCQXDlrQoJQYE48aNIxQKUV9fT9u2bcnMzGzcApVQ2NWO8M3ZbhhUaBrJhoEpoTDt4vtnpFpKS/h8sIla5htuuIG/dugARKamcO/zTFfZmjW8WFHB5p/9jJytW/fb/1wLBDDMZkJ2OxmGgc1kYjYwAlAeT7N500Kk9e3vf/kLZ44c2ShAGz16dKOJ7KHp0TNbqiUVKb69ewEwRysDLMCGkhKGAvmDBlH+9tus3LYNW8LgTNohdicuLi6msLCQc889t8FxyM/Pb7SuNRRiJLCnupq20Tx5GnBfVhb/zcvjF7pOx5ISyqLdTZuaUH4U8EJ1NaFYq2E4HB+t9EvgsZUrSR84kKuvvjp+vC++5hrmxI6Z18s30f/rCedIMBqceHSdr0pK+G3fvlgsFq6++mr+9Kc/AXDppZfy3MiRDfZp5MiR8QFo/H4/mZmZ/OpXv+Ltt98mEAhgtVrxlJeTAnRo4vjtW1nj2bsX+vdv/oAfBt6qKpKbSstB9iRQCdcXb3JyPLBsqjIolDj3YxOjk6qSErQePfA99hj2Rx9t8vs6Xn995D/HUEBYXVREGyDnB9c8NuV8/DEA5uhvb25BXpr58MPodXWc1cSAWQerfUKe299z4M2pXLyYzIEDoZkBxUTLlZeW8ukf/8hv3nwzXmnWFCOaVwLNVRCJE5oEhMexAwnmAoFAvMtoYlet3NzcxqMuHiPTUsQCJgdEWmdMpha1KCUGBFOmTGHNmjUAnH322cybN6/R+rjd1AJOjkJAqBQlVitZgQDWhBa+arM5MmXIAdADAXzAmYD/9tuxJQRVsaA3nJYGwOXA8n32rXLlSs4C5geDuHfvjrcMNUULBlFmM8HkZNIMg7+lpfGBz8fDgP+qq0hq06bJvGkm0vr21m23MfD+++PLYwFa7PeI2bBhAz169Gg0euaBaElFij/asmaPFoSetlj4MBhkOBB+7TW8mkbf3bt57vnn4be/jRyDQ7wJO51OJk2aRGZmZnxZKBRiwIABjda1hMM8CMzWdQLRwGCZrtNF15k8eTKzu3ePpCka7I0aNSo+UqcKh9GIBLnBmhpUrCIgOlrp7cBi4K3OnWn3wQdMmTKFl156icGDBzcYSCZxEnU9odAail5fvFYrEyoqWLVtW6NuoEqpeOAYS9ODDz4IfF9h07VrVwoLCznllFMYMWIEt9xyCz/p1YuUZo6faZ+Csy/6Gx5J3srKJgNCvZl5NH9IYlfTsMMB0d/P1kTXW3/CQExaExU+xYsXUwBsfOst+jcTEDYrEIApU+BnPzuwzx0FVevWtWh02gMVXL0aS//+BNeuxdK7N59ccw11a9dyy7p17HnqKazl5WT9/e8/uJ3qTz8FTSPjyisPKT2p0fNo2M6dTBsxgvNmzmx23RF/+1vkPwcYENbv2sXmW2+l76RJ6DZbs+upZrr0N6dk+XJyTzuNRZddxmn7GfW7buJEMJtJ2adyqNH3h8Os+dvf6PvQQ2jH+PQqruJivv3LXzj9rbfiozTvyzCMBhWWC++9l1EffMCi3r057Y9/bH7j0Wu5OgrXPnHskUFljmOxYG7+/PksWrSIuXPn8o9//KPJZ74qE+YJC+7z7E4Dfj+12dlUjR59JJJ8WFnr6wkSyeTe6OTdsRalfSW2KMUCgtj6LperUUCQuL5WV0dZ9OKsH8FnCINuNylAdUoKOpCS8F1VTifJBxgQWr1eKjQNN/DBww9HBhOJ/i1dupTBgwdjuFyUE+mSFkxocQDoctNNAATMZup37Yov9zVxDCw+H6GkJAIOB2lKke/38xuzmfnAuD/9ab95MwlYEg3KYf8t3aNGjTqgY9CUsWPHNho8Z9KkSQ2C1XC0IN4uWunQsWdPXgTmpaayaMUKHi8o4NlQCEe04F8NaPs7r1ogPz+f1atXx1/HjkNOTuO2EGtsvsrq6njw+iCRLqQAtmiAoEd7AyTWKscGGPqGSGueFl0nLRqMXPPPf2LoOtZgkFGjRnHXXXdx2223cdFFF1GZ0LvAE21FhYYBSbi2lgDgs9vRDaNBN9DYdioqKggnBJRNPddcXFzME088wUsvvcQjI0fyn1//mj3ffENzzPsEYb4WjmIKsGPzZsZfeinhYJC5L77IxH2eT2zOviM2x2gHGRAm9kbQo/M3AtiaeH44lHj8m6ioqlq/PpLGFoxSaezTurrjllvg4ovxrlr1g5892uoSulA3N+DQ5DvuoDgh7VM7dGDySSftd7tr/vEPAJa88AIAV3/yCbdEj2H7Bx8kK/r+D8m4+moympjC5kBlJ3SVPm/WrPj/d/bqRdFTTzX5mQMdSGn1zTfTf9o0Vr/66n7XMx1gZVdJtKu5ZdGi/a6XctllpLSg0mHBQw/R79FH2TZiBKqVnqk8XJZcfjlnvPMOu77+usn3v7jqKqbb7YQTKoEc0WtZaOPGpjeqFMowMEevR/o+z4ofEKUIH46BjCoqDvkxCnF4SUB4nFj43HOs/s9/WPzKK3zz/PN8+NhjrP/qK0pXrKBuxw58ZWX49+whMHFifC6sREUJD4WH91Nw3TV+PM7KSuqefPKI7Mfh5PB62RVtCazdvh2IjoLYxCiViS1KiQHBM888w6WXXtooIEhc31ZTQ2VyMmHAt0/QdDiVLl8OgDvaRbB7IMBaYC5QdPLJ5BjGAT2blFRXR4XdzmigtokbxMMPPwxVVbgsFlxAOKEAUrt9O7H6Yi0Uoj6hQqE6GnwnSvZ6CTudpBUUYAOy3W7Ks7MBqNu5E4AVY8awM3E+uWg+HQvMXLNmvwFazP66y7RUSypSVPRY2IgEy5nXXQeAdvHFoOsEBg6kfX09E6Oj7xXZ7ZgPcWCPpgLVh+66i3uaCIKTosfOVFNDcOdOfIBhtZIeDbLs0QK+JXquf5MQSCWOMjz8vffoHi205UUDh/xevRhutVJaXx8/3ueddx6vvPIKmYmtqNHf1Q+EEloQ/EVFVJhM1DocjDCZ2JEwdUdsO3l5eRgJxysxTbEKm9h3K6X4dswY0gDffiant+zTrW3fCo79WXHbbVzxxResfP55hv3hD1w6cSKhQIAPzz6blU3MTRrjbSboNP1AgSpYW8umggJK58xp+EZCZYuekB/tTVzTtdJStpvNrMnOxuT14n3++XgLgXvTJjyLF0fWayYNiQXO6n2eU90ZTdfOadOa3QfjKI/iGuNNyE+7mphuo3bnTi585RV2nHdefNn5RUVcuGlT/HVlWRlfP/xwg4AyEK1YMfb5Tb0JwVBi18m5//0vgX0D/4RjsvH991u4R99LnGKlYxPdNEu3baPwu+8oePBBSletomj6dIKJFYdNPG+8P+HoeVv33XcNlvv2uc+YD7BnjCu6PVMTLds7lixh4hVXNBxwqpnA/v0772TSE08QiP52XebOZWXi3LBHiTIM5t98M5UrVhzytizRe0tJwhRPic4YN47zg0FKli6NL9Oi17LQ1q1NfmZSYSFbnU7s0bxqPcAW3UTTBg7EZLcf0ijN4bo6yM5mzemnH/Q2xBGgRKv797//rTp27KhsNpsaOHCgmjNnTos/W1tbqwBVG7lktujPDapU09QuUDtNJrXVZFI1oOpBFZlMqlrX1RSbTc3Ky1OzOnZUM7p1U1N79VJTTz5ZrXI4lAJVBerTs85S06+7Ts269VY17+671Td33KEm3HabmvfEE2rG44+rmc88o/43erSa88orat2ECWre2LGqdPlyFSguVnVFRcpTWqpcFRXK7/MpwzAO2/GsqqpSbzzxhKoHNb1TJ6VAbXzppSbXDYdCatPXXyvVwu/3FherHc8+q5RhKMMw1LQvv1TFmqam9OqlinVdzR806LDtR6Lly5er59u2VQFQRTNmxH/LVXfdpWbMmKEmP/64UqAqx41r0fY2fvutqtU09Xm/fioAatWvf91oHb/fr5alp6vFmZlqp66rBcOGfZ+e55+Pp2Glw6FWjR4df71xxowG21mxdKmqBTX/0ktVybhx8fUmXn+98oJacf31KhwMKgVqnckU/5y3tDS+7pyrrjrII3d4hCZNUsaKFfHXswoL42krys5WyudT6s03laqoUEoptWvlSlULKgiqGNTc/Hy1xuk8rGna9d13SoH6IC2twXJ/RUU8bTOtVjUlK0t9l5SkJp97rqrTNGX4fGqzzaYUqA2FhUoppYI+n/Ls3q2UUmrL+PH7vX64ysrUoqwstSw3t2GCDEPNuf76+HrTLrlEKVBbHA41Ny9PKaXUjBkz1HhNU5vz8tTXffqoIqu12f2bFf28ArVr2rT48r1796q7775bDRs2TA0ZMkSdfvrp6so2bdReUKtTU79P6z7ndGyfY3/zbr21xcf6yx49Gh2H9W+9pRSoNWZzs5/79h//aPIYLm3bdr/ft/rZZ5UCNb937wbLZ3fsqNZomnoP1Mzx49WSkSPV6nbtVACU3+NpsO7CLl3UspQUtaJDB7VT15UCte2005RSSpVGXytQq5rJl2WbNsXX2bzPdWVObq5SoBZfd12z+zAuPV1NGD58v/t5MMo3bFArHA618rXX4ssqN21S8woLVenq1WrOtdcqBSoMakETv/G3L7wQ+f3sdrX9669VxebN8f00wuFI2ocPVwrU6rFj459bEM0DC3v3Vkb0eqVArU+4pm2bOVMppdTGr79WCtQMUJtnz45vo2r9+vi6C/LzD3jfd6xe3ex56a+tjRwTUCFQy5KTlQJVPH9+fJ1177zT+Hg8+aRalpenAvX1jd5blJ8f2Y+zzmqwfFvCNhWoJSkpkf0rLlafd+yodiVcK5sy9bzzlAL1XXLy9/v29deqfOVK9XlenlKg1j73XHz75cuWNb2h6Puz+/X7Pq/abI2P2+LF6ruvvlILxoxpNk1TunVTM88+e7/pTjTvww/V4nffVUoptXP69Pj3z3/wwRZvI5ERDKr1v/995HwENe3ccxut46mq+v68feopNXvwYDXLblcLcnKUAjW3W7cG61dt2aI2fPRR/DP1sXt2E+f8+NNOUxMT7vGJVr35pto6dWrkRXQbO+fOPaj9VEqp7955J5Jn+eEQJF7Gra096O8TLSMBYSv76KOPlMViUW+88YZav369uvvuu5XD4VA7d+5s0edjJ8um//1PbZk4Ua0dO1bNeuYZ9dZNN6n3b75ZfXzjjeqZoUPVk/36qb/17q0e79FDfTRggJp02mnq05491ec9e6rpAweqj/r0Ud++8YZa+vbbamK7dmqKzaaWp6er5UlJarXVqtaaTGqzyaQ2Wa1qTq9eagso334KjQf6FwTlAVUDqhzUblBFuq62aJraZLGoNbqu1iUnq0W6rlalpalvnU61Mi1NLU9JUXN0Xa1ITVWLk5LUQqtVrYtuq1zT1KZZs9R3JpOqBbUwJUUtKCxU8086SS3q00ct6NdPzW/TRilQ07Oz1dwzzlBfnXKKGte7t5o+bJh6r0MHNWv4cPVx585q2qBB6uu+fdV3dntkfadTfWazqa3Ri+zmzz9XE3v3VkFQ89u3V3OHD1cLR45Ui66+Wi355S/VsptuUt9cdpmadPHFatGtt6qlv/udmnjZZWrur3+tFt1xh1r2hz+oVQ88oJb+/vdqzg03qA/POktNHjlSfThggHoB1JRoAWf7z36mlFJq6yOPqC3nnacMt1sppVRVRYVaqWmqwmRSU3r1UtMvvVTNv/129e1f/qLWP/qoWnbffWrubbepzy67TP27Sxc1A1QgWtCeZberEl1Xnw8dqiZecYWa9ItfqK86dlSfxm5wt96qJuXmqipdV5+cdZaaetddakpenqoDNfuMM5QL1LQuXeK/5YwLLlCL//EP9cWdd6oXTj5ZjYumvXrmTKXCYVV6ySVq9cCByu/xqP+lpKhyXVdf9+4d//zWr79WW775Rs0eNSq+bFHXripYWqqU16tqduxQE265RZV8+23Dk8Ew1O9+8hN1x4gRh1TBEA6Hlbe+XtVUV6vSkhK1c9q0eDo+evhh9a9hw9QOUHuzs1UwOVn5EgqNiXyffKJKu3VTu19+Wf3v5z9XYVDTRoxQi555Rm2aOFHtXblSBVwu5XW7lQoGlQqFlAqHI38/lP5QSH151VWRAE3XlVFbq2o2blQL3ntPfTFihFKglqenx9P93e23q3n/+U+k0JCfH7kRg9pttyv/zp1qVXZ2pJAxYYL6+NRTmz1PN0YLW1/27asqQE29/HL1nd2ulgwYoHbbbGpB27bfFxhAFZnNavrJJ6sSUP+67DJ1u9msApqmQk8/rabefrtSoFY88IAKRPPxlg8/VMv791dVO3eqbwoKVCCW/uefb/IwbJo4Ue1ZvVotj57HiX91O3bE1wt4PMq9z/tzL7qoxXlifhPbX5FQCG3O7BtuUGFQX4Eqiq7rA7WjiUJrornRAvOCrl2VUkoZhqEWL1qkVpnNanHXrmp3NHhXSqn5jz0WOd7TpikjHFa7p09XyjDUirQ0NS8/X80aOPD738/pVBVr1zbYj60WS5NpWPfyy/F1lhUUqEUnnxzPl2ujwcbcAQPi629dsEDNuOYaFQoEVPmWLY2CrKY0d56umDJFzXrqqaaP6W23xYOJOb/5jQr6fGp2NAic9ZOfqNmnn65267paZbOp5d27q28//FD5XK7vP3/ZZUqB8kbTV5EQHJdFrylzY4HQwIFqzg03qJDPFz+f1rVpo3YnBESTzz8//v85f/2rUkqpOTfc8H2A4nDEv3tltCJtTteuqh5UVcJ9fsXHH6ut+ylke/buVVPPPLPBbzfn6qvV+qQkpUDtmDxZTb788nhAGFvnm+h1QoGa+ZvfKLfLpWYMGxYP8vZarUqBmnfxxY2+c330fjenY0ellFL+mhq16s9/VosfeiiSn0Dt1jS1K1qRN+OmmyLfM2RIs/uhlFKzE+4Xa8eMUX63Ox4grIruz8J27b6/p/z0p2rqBReoZc89p9Y6HKp48WJVkpCP10U/Ez8ul1+uPDU1SimlQsGg2prw3s5YsGoYau1DD6nSVavUxkWL4u9XFxc3meayXbtUWfSaEgoGVTCWv0MhNTu63wrUimiwtefbb9Xq999vtJ2dK1aooN+vDMNQ3733nlr/2mvq2z/9SS3+4x8b7MOMgoJGn533hz/E319w6aXfX+ui/65KT4+vu33atHgaE/98oHbsc86vTKjgjVUMlO3YoWb076/mDBoUOTdAeV2u+HoL//SnJo/T3vXrlauystHy+poa9fE556htc+aomdFzUIFa8O9/q7ry8vh6hmGo8VdcoZZHK/FnfPqpkoDw6NCUUqoVGyhPeEOGDGHgwIG8mtBHv2fPnlx22WU81cxzAIlcLhdOp5Pa2lrSogOAHA1KKZRS6EDQ46Fi925qS0tpk5xMXXU1WijEjs2bqa+pwWQY2E0mSouKSLZYCPt82HUd3TDwuVykWK14XS5sJhPuigrsJhOVJSXkZWfjrqoi2WLBW1uLTdfRQyFMmobZZELXdYxwmJraWlKSk0lJScFms0FWFs5+/ejwwANoeXlsX7SI1bffTnZ5Ofa6ukg3lXAY3TAwmc14/X7SNQ2zUvGROlX0D10nbBjfv05ORuk6KIVKTSVl8GByH3kE06BBlO3ezZxLL6Xjhg1keDwkExnQxkSkb3bsL/Z6f0JAEAjoOhVmM0anTnT8/e+x3HYbmJseC2rJ55/jeeABOu7YQU4o1ORgFgD1mkZZTg65//439iuuYMUXX1Dzy18y2O0mNbqOS9OotNmw33wz7f79b9bNmUPVz37GsLq6+DQe33TrRvs//5lOt9xCCjCra1ey9+yh9z7PG1W1aUPqc89hueWWRmlZNmkSvmuuYWh9PQbfzzsYs8lkYleXLpyX0J2rKQaR3yeWtjDfD8Wf2CVOa2LZwfSbr8zMJPmrr0hqYfekepeLmX36cH5RUXzwpgMR25dYPvyh0cCWdupE/3nz8Nx/P6knn4z5/vsxgC9/9jOGTJ6MR9NY3q8fVzfzDNii/HwyHnkE18cfY1u5Eh54AL75hrb/93/kXnghKz74gPzrr6dtU58dPJjcoiIySkspfuwxkoYMIfXii8mOdjn1/fSn2D/7jPpAgGUdO3JmdTVhoEbTyNzndvTVySfTY/Vq2hsGRXY7QauVsKZFfudwmJ51dYSgwTFdazLRIxzGB2xLToZwmBy/nyxg8m234V63jvz16xlUWcnmrCyM5GRCZnPk2IbD2CwWwoEA4WAQU3RZn7Ky+HeEmjj+y/PzCSYloQwDIxwm5PVira2lt8/HjrQ0CnbsoGrJEspuvpm6007j/AkTWON04tN1QklJtKuooLigAJ/JhO7z0W3XLgoAH7ApOZm06PnRGdj58ssU3nFH/LtrtmzB1K0bdZpGhdlM32CQDUAPYOG110J+PkOffz6+/jqTid77PLuzoHt3PNERcf0+H+ZwmAFbthDWNFKUInZnmZWXRygpibO2bMECVGkaK3v0IKW8nCHRbmvz2rbFYhjx1wv798fIyCBUXU1Q0wglJWEymcDrJWflSqpPOglrp04Eg0Fsuk5dVRW9ly4lF/gwI4N2nTujb92K0b07oWCQgtWrOSkh/YszMshzucgPhynTNJRSbMvNpTwzk0vWrQNgQ1ISIbMZv9VKlstFYTPPTa52OAiaTPR2uUh8QrlW13EaBvVAMvCd3c5JPh810GAAm01WKy6Hg/a1tbRP6FI3s3NndMMgp6iIHMPAv2ABbYcOZVVaGvX5+dQXF3OBy0UtsKxHD5LMZkyhEHowGBkZ0ucjr7qafKWYm5uL5YILqKitZeT48VRs2kRyz56EoMmBvYKAB1CaRoZSuDSNtOh5tiQ7m1PLy3EDqUC5ycTWzEx8djvW8nKGeb24iVxXF7RpQwePh+7R7s7rrVZOqqtj1gMPcO4//8lKh4M8j4e2RLqJL+nUCS0pCXP0nA1VVuKoqsJntzOgooLdVivdAwHqgU0pKZzcxLN/FSYTYaUij0Mk2GizETCZ6Jtwr1lw9dUMePVVlgwZwllbtlCq6+zMy0MLBBicMIjKspQUPPn5JNfVMbi4mGog8SGSJUlJVCYnk9apEyHDwKTrhINBOq9ZgxnY3LEjFo+HodFtrsjKol1VFR67ndrOnemzdi0ru3enx6ZNpAMbHA7K8/II6TrpO3cywOtlndlMdijU4PpZB/EBsTY5HBR6PCzJy8Mwm9GCQUxmM7127WJrZiZaKMQp+zy3+Z3FQvdgkKW5uVgNg6yKCjpEj9vsLl2weDx0Ky1l5YUXcsH//sdCiwWL04k9GKRPwrYWpafjdzrpUFREp32O+2qzmX7RrrxbbDa2tmuHOTUVk65jVopgXR2nbNtGtdnMzj59IoMZer2kFheT6vPRGSjXtEhZymymbfQ83GEysd3pJCk1laDbzRnRbrNLsrLoUVGBE456GfdEJAFhKwoEAiQnJ/Ppp59y+eWXx5fffffdrFq1Kj6wSSK/348/cboBl4uCggI5WQ6z2PMviSN5KaXQWji6qlKKcDiMpmkEg0GCwSCGYVBaWkpeXh6hYJDKigowDIxQCIvJhEnX8YZC6BYLbXNySElJafH37cvj8VCzdy9hj4dajwdbUhIZmZlktW2LZrVCE6OXGYYRmdcsEEB3OJocSdbnclG1eTO2tDQyu3UDoGTHDqyGQUanToT8frbPmEGSyUR2hw7YO3aEhKkXmhOqr0e32dizdCkV8+ejm0xkdupE9nnngdnMkpdfJrh9O0ZdHX5No32fPlSsWoW/rg4jHMZsNmPWNNK7dsXncuHavRsMg/jlTdMIh8OYTCYUsHfvXpIdDjIyMkhKSsKIVnCYLZbItszm+P9xOkn/2c9w+nyk+P1YTz0V2hzcOIZ+t5sd06dTt3MnofJyKjZvpqKsjIKCAkKBAIFAAE9dHaFwGE0pdF0nHApht9nQNA2b1YqmadQHg6R36MDpf/kLK19/HdeuXdjatCG/Rw8Kzj4bW/S3aUosXwLMfvVVAuvXk9KpE86uXamYMYOcgQPpfv31mH7gecxta9dSuXAhXQYPZvf06RSccw6uzZsp+PnPIyP9KfV9HvL7YceOyHGLPjsKoAyDNe+8w97//Q9bbW2kkmXAAOoXL6a2XTsueuklti5YwIaHH8ZWVobZ68UIhTDbbGi6Tr3DQTgpCWfXrnT7859Z+eyzDPjTn/juiy8IT5hAal0dusVCMCODNjfeSO9opcTaGTP49te/pn19PbrfjzUcRoXDKF0nrBS62Qy6jqFpaCYT4fbt6f/uu7i9XtK6dmX5iy+if/wxabfdxp6XXqJtZSVWiM/HFtI0zLm5hLt0oes//kFGwoAl4VCIGdddh33BAqyAta6OkM2Go64Ok1KEbDYCqalY7roL79tvE3K5CDqd5HfpQsFdd2FJePYtZuO4cZQ/8wxJbje6yYTZZEINHkzf114Dk4klTz5J+2HDKLnrLsxuN0l33YUpN5f2Z5zByksuIWPLFhzhcPz3Cmka5Tk5pL7xBiVTpuD/6itS6upoX15OGKhs356sxx6j4o9/pF1tLR5dp8bpJNnhIH3HDkK6zvYBA7Bt2kTH6mp0pQharSQBluh5aQB7dZ3scBizYUQqF4GgplGflEQwECA9FMLQdarMZtqGwxgmE/V2OyUXX4xv3TrsbdqQOW8efqsV/9VXY/36a+psNjq+9RYBk4niX/6SlECAFL8fv8WCKRwmoOuE7rmH2vHjaX/ddZHKzbQ0KidNwjl/Pl5Ng6QkjKuugs8/x9+nD8m7d2O22yl87jm2/fa3mGprcZ1/Pr1/+1vKH3yQ3GuuYevmzZjHjiWgFCalSH3uOfLPOIN1555L8t69WBwOVHo61vvuo9eddzL3lluwffwxSYaBT9OoyM8nrbiYNsEgIbOZoK4T1HX8mgZ2O6a0NDL+8hd63nBDo/vCstdew/3eewSSkxn4zDNsfPttTA4HusWC57PPSPvtb9HDYWrffx+ttBRT167UV1WRvWcP7i5d6P/556weORKfy0Xb2lpMoRClmgZ9+zJozBhWXXEFtm3b0J1O3L16kaZpdHjmGXIHDiQUDDLj2msxzZ6NoWk47r6b4Kef0mbbNrRwmLDfj8VsxqMU7rQ07F4vnpNOYuCHH2JoGmt/+lNS6+qoHzkSY9s2AvX1ZN16KyV//zt9Hn2UWrebqtdfJ5CdjXXdOrx9+pCxdCkaELriCrSCAlRlJac9+yx69Jq1/p132PLMM+Tu2oWm64SGDqX9ww+z/ZVXcH75ZWRKKpMJb4cO6G43rpQUnL/4Be5du0gfPx7CYRw+H7quowBN16my2bBoGuZQiJCmUdWvH1ogQPrGjdSnpdHun/8kvV8/Vp93HhmVlfiTk9GSkwmFQrSprETXdWocDsoKC2mzbh2qsJBwly5Y6+vB7ydUXEz7f/8bNI38YcOYN2IEaZs2YdI0sFrRDYP6/Hy6jxsHhsGGxx9Hz83F1L49lStWMPSFF1h+2WU4d+wgaDKBw0H2vfdSvHkzA+67j9S8PIxwGMMwmHjRRaQtW4au61jT0tB69aLPm2+y9IYbaLdyJSiFLy8Py/XX46+p4bQnn2TOeedh2riRwPDhJA0aBM8+S1JdHcm6jtJ1lKYRAkqTk7EZBm3q6tB1nYDFgisvj7DLhfXMMwksXIjVZqPre++xKXr/sRYX462owG6zoQO1ublkEBkMq2dZmQSER4kEhK1oz5495OXlMX/+fIYNGxZfPnr0aN599102NjFi1GOPPcZfowNVJJKTRQghxLEqVhRJDHYOpBJOCHH8cf385zjHj5cy7lEgo4z+COx7w9vfTfDPf/4ztbW18b+ihNEdhRBCiGORpmmN7nsSDApxgnvppdZOwQlDAsJWlJWVhclkoqSkpMHysrKyJucWA7DZbKSlpTX4E0L8eIyeO5rt1dtbOxlCCCHEsS0l5YfXEYeFBIStyGq1csoppzB16tQGy6dOndqgC6kQ4tjx0IyHWL53eWsnQwghhBCiRX5osDpxhN1777386le/YtCgQQwdOpTXX3+dXbt2cdttt7V20oQQB0kezRZCCCHEsUICwlZ2zTXXUFlZyeOPP87evXvp06cPX3/9NYWFha2dNPEjNWvHLM7ueHZrJ0Psh0ICQiGEEEIcGyQg/BEYNWoUo0aNau1kiGPEiHdHYDxiyIALP2LSQiiEEEKIY4U8QyjEMShkhA7Ldso8Zbj8rsOyLfE9aSEUQgghxLFCAkJxXHtj+RuUecpaOxmHXdAIHpbtXPjfC3l05qOHZVsnKqUUV3x8RYNlv/jsF62UGiGEEEKIAyMBoTiu/XbSb1mxd8UR/55qbzU1vpoj/j0xgXCgweuDbTF0B9yY9f33HFdKHZYukMdrN8oaXw0TNkwAjt99PFgV9RVc/enVjZa/9+173DP5nqOfICGEEEI0IgGhOO5pHPln7a4edzX3fXPfEf+emFhAWOwqBsDyhOWgtuMP+bGZbftd58VFL3L5x5cf1PYTZTyTQeazmQCEjTAV9RWHretra9hevR2lFHvr9saXvb3y7fj/Y8GhoQz2uPcc9fQlUkpR7a0+6t+7pWoLn67/tNHyxcWLmblj5lFPjxBCCCEak4BQxLn8Lp6b/9wPrlcXqDumWkISC+xHyrRt00i2JB/x74lZtmcZAAX/KODk104G4LVlrx3QNkJGiD3uPawuXb3f9VaWrGTixok/+JvvryVRKUWtv5YqbxXBcJAP135I9nPZBx3IHm2GMhrtW+d/dWZT5Sbm7ZoHRILcGTtmxN+fvXM2AIuKF5H397yjes6EjTBD3xoaf72+fD1tnm3DzpqdLfp8MBxkW/W2Rsu/3vw1s3fMpqi2qFErdczjsx+PH5PmWs23VG+h0CkjKR+MFxe9yNhvx/LFxi/43Ze/2++63qC32d8JYG3Z2v3my2A4SGldaZPvtUYFQ2vb3/XtaFVuKaXwBr1H5buEECcOGWX0OPHXWX/FsBr4Qj68IS+lnlKcNicp1hT2uPfg8rvwh/1Ue6sZnDcYu9lOIBxAQyMrOYvy+nIykzJ5aclLjN8wHotuYWC7gbj9bpItydT4a0g2J6NpGv9Z/h8KnYUMLRhKjiMHDS2+/VRrKgpFqjWVUk8p3pAXpRQFaQUs37ucDs4OpNnS0NDQNC3+b42vhjRbGr6Qj6ARpNZXS6GzkN3u3WQlZ1Htq8ZhcVAXqMNpc6JrOmbdjMVkocZXg8PiIDcll8zkTFKtqQDxrqI3T7yZd1a9E98fhcIdcJNmTcNQBhaThWA4iM1sQ0PDHXDHg6WeWT3ZWbuTVFtkm22T2xI0guSn5VPoLCQnJYevN38NwMtLX2Zj5Ua6ZHSh1FOKQjUIEj0BD+6Am07pnQgZITZVbiLVlorVZCXJnISu6fhCPjxBD1aTlc7pnclKziKswpxZeCZ92vbhhgk3ADDyg5G8c+k7wPethf837f+YtGkS2Y5swkYYQxnomo7L7yLFmkK6PZ2O6R3JsGfQp20fXlryEmEV5stNX3LOu+fQPbM7NpMNp93J9O3TubrX1VR5qxi7eiwAw98eTp+2fQgZIXRNp9Zfy6bKTfRt25fMpEz+teRfnJR5Emd3PJsMewZ2s52hBUPpktElvo1CZyEzts/grZVvAZDjyOH0t0/nlHanUOwuJmSEaJ/SHpvZRn2wni1VW5i5YyY/7/lz0mxphIwQ3pCXXEculd5KvCEvFt1CijWFukAd/XL6UR+sZ0fNDsIqcgxMmgmFIhAOYNEtKBR73HswaSYKnAU4bU6C4SAhFUJDa5Q3NTRWl60mzZbGLSffQtAIoqFh0S3M2zWP302KFMqX7lnK1qqt35+Ts/9Khj2D4W8Pj+z7i4WM7DYyPuBMVnIWJXUlVPuqaWNvQ1iF8Ya8uPwurCYrvpAvnn6LyYKGRpIlKZ6X2qW047zO5/HFpi+w6lasJit5aXlYdAt/mv4nAD5b/xntUtvF03DVp1fRp20fyjxlLN2zlM4Zneng7BA5b5UixZqCrum8uPhFAK7sdSVhI8yEDRP4WfefMWnTpPj+5ThyOLvj2SRZkjBrZhxWB1nJWTw661GW7lnKir0r2FixEYDbJ93OhV0v5NS8U0mzpWHSTHy56UtGvDuCbm26oWs6Fj1SOeAKuMh15LKnbg9tk9vyzdZv6JTRqcnrRtgIEzSCZCVlsbV6K3azHYBt1ds4Ne9UnDYnNrMNk2ai1FPKGyve4KzCs9jj3oPFZGFA7gB0TcdQBp6gB4fFgSfowW62YygDp80JgK7prC1bS+eMztT6a/EEPKTb08lPy2dDxQYykjLi57BSkfO+a5uuuANu/jLzL/Fjdn7n87GYIvuZYc/AZrJhN9txBVykWFLiv7OhDIrdxWQmRVrU/WE/V/a8kpAR4g/f/IEcRw51gTo8QQ+vr3gdp83JDf1vwGFxsLB4IVf0vIKi2iKeX/g8ANf3vZ65u+Zy6UmX4rQ5WVe+ju0121lVsopr+1xLiiUFm9lGhj2DoBGMtOB7K1i5dyXfln7LJSddgsPiIMeRg0KhofHi4he5dcCt8X0262b8YT/JlmQMZeAP+XEFXJg0E2bdjMPiwKSbCIQD8d87yZKEL+Rr9LuaNBO73bspchXRI7MHqbZU3H43Jt2E1WQlZIQory+nPlhPjiMnch3XLVhNVqp8VYSNMDmOHPbU7SEvNQ9DGQTDwfh3VPuq8QQ9dG/TnbpAHWbdzJ66PeQ4crCarNT6a/GH/HhDXjLsGaRaU0m2JPP8wuf5/eDfEzJC+MI+zJqZbEc2u927Gbd+HNf0vgYNjQpvBR3SOlDsLo6fv+m2dFJtqex276bMU0bv7N7xylWFok1SGzZWbsRhcdAmqU38GNUH62nraIsv5GNP3R48AQ8TN04kxZpCdnI23TMj+9C3bV8AJm2exE+7/hRN0/CFfJg0UyTPBiPXjCRzEt5QJKA0aSaqfdXx+0MgHIjfO+pD9aRaU5m7ay7dM7uTbEkmMymTukAdFt3C6rLVLCpeRJotjS4ZXShML8Ssm8lPzSdoBAkZIUJGiCpvFen2dEJGKD4ytt1kZ/bO2QxqP4gkcxK+sI9NlZsYXjCc+mA9dYE6HBYHW6u3omkabR1tSTInETSC8eMS6/mzs3YnXTK6MH37dFJtqZzb6VzWlK2hIK0Ab8iLWTOTZkujLlCHLxzJawqFrunxMgB8/9hF7PpcH6wnxZoSf3/fPGoz2fAEPQBYTVa8QW/8fV/Yh8PiINmSjCfgiZcxYtvyhX0km5MJqzCZSZm4/C6SLEnsqt1Fl4wuTN02lVPanYI7ECl/JVuScVgckYpJFFO3TWVI3hDMupn6YD1hFSbdlk55fTmp1lTMujlePjLrZvbW7UVDw2lzkpWcxftr3qcwvZAuGV3i112AUk8pabY0LLoFk26Kl8ti5YxkSzJ2s5115etIt6dj0S2EjFD8vhE2wigU/rA/Xl5Ls6WhazreoBeTbkIpRZotjXHfjeOyky6jyleFUoqgESTNmoamafjDfiy6JfJv8NioND4eaOpYauoRjbhcLpxOJ3M3zSU3Mxdv0EtFfQWeoIeubboSDAexmqzxC1hmcmYk6Ah48If9JJmT8AQ97KzZSaW3kjMLz6Stoy2ldaX4w/74BSdW0DKUQY4jhxpfTeRGrmkopbCb7fGLf6xwbjVZ4xcwi27BF/KRZkvDbrajUPEboVIqfsOPBWhAvAAPkQKZSTdR66vFaXeiocVvOm6/G5vZRq2vlmpfNdXeana7d9MjqweegIfLe15OsauYQDhAuj0dDS1e4K4P1mPWzYSMEDazjZARwhPw4LA6GgQPhc5CQkaIoBHErJvZXr2dbdXb2Fq9lSF5Q3BYHYx4dwSuP7ko9ZTSJqkNSeakBrXGid8VK/hZTVZMuglfyBc/XrqmU+Ypwxv0Uh+sZ/KWyQTCAZbsWcIFnS/g3in3MuemOawrX8e7377Lo2c9ykXvX8SMG2bQM7sn3qA3Upi1OzFpJhxWB5X1ldT6a9nj3sOu2l0sKFrAJSddwsUfXsyLP3mRG0++kW3V2wgbYQBSrCks3r2YvNQ8rvjkikjh80EP26q3kWJNwW62k25PZ3Xpajqld6LGV0NdoI5KbyWd0jtRH6yn1FPKmtI1bKjYQOeMztw15C4K/lFATkoOL1/0Mue8dw5jLh3DhV0vZGfNTtqltovcTEM+FAqHxUGRq4gJ303gkbMeoT5YHyl8Eun+mJWcRYo1haARxBPwoGka49aPw6ybubr31fG84w15sZlsWE3W+GA8sTztD/nxBD3YTLb4zWrfvKmIBEpbq7aybM8y0mxpVHmr6JfTj9PHnM7dQ+6mraMtWclZjF09lnm75mHWzbw68lX+b9r/kZ+Wz+rS1dT9uY4iV1E8QK0P1pOVnBW/0RrKIM0WKaDUByOFMZNuwqSZ0DQtkv/CQbwhL06bkzk75/D5hs+5+7S7Sben4w/52VW7C3/YT15qHr6Qj682f8WqklVsqtxEuj2dmTfOZEvVFiwmCz//5OcsuGUBgXAgUolUV4o74MZutscD91Pan0K6PZ1NlZuo8dXgCXi48tMrAfA/7KfGV4OhDDS0eAuwzWRjV+0uVpaspMZXw00n34ShDJbsXsL478ZT5injwTMe5Jpx12A8YlDsKsZQBmEVjgcXsaD4wvcvZMI1E+iX0w9v0NvgN4kFHYYycPldeIIeemb15L+r/8vPe/2cYDiIO+AmEA5Q66vFHXDz+OzHubbPtSwoWsAHP/+AWl9tvBBn1s34Qj6cdie+kC9+PdK0SIXXrtpdtElqQ7IlmaLaIs4oPIOVe1dyUtZJWE1WPAEP3pAXXdOp9lZT6a2MB5t92/alyFVEtbea9eXruX3w7XgCHuqD9fECVbWvmrARjl8b0mxp7K3bS5ukNux172V+0XySzEn0z+3P4PaD0R/X+fq6r/GFfAxoNwBfyIcv5CPDnsHq0tXkpuSSm5LLjpod5KTkkGxJZlv1Niy6he6Z3dlZuxOHxUG1r5qO6R3xhXxUe6sJhAPYzDZSrCkAmHUzSeYkNE2jtK40fp1y2p0opRoEebHrsq7pFLuKcdqcFKYX4gl4CBkhDGXEPx80grj97vj3JP62vpCPkroSemT1iJ8PsaAidt122pxU+6rjQX+1t5okSxLJlmQWFS+iTVIbTs49mdK6UiymSLCoVCTf7KrdRWF6Id6gF7vZzvry9fTM7olJM8WD2u3V28l2ZOMNeuP3px01O+jg7EBGUgYQGaW5LlBHuaecczufG79/2Mw2imqLMOkmCtIKCBqRYKDaW4074MakmUi2JNPW0RaA8vpyvEEvWclZ8YAXiN9zqrxVWE1W8tPymbJ1CgNyB+AJevjz9D/z2FmP0TenL/XBemp9tex27ybHkYPdbI9XIM3ZOYcBuQNItaUSDAdRqHgagkaQyvpKrCYryZZkLCZLvCJRqch1ymF1oJTCYrLgsDjYUbOD8vpy2iS14e8L/87LP305XsEcK8zHghGryUogHMAT8GDSTYSNMIFwgJK6Ejqmd8RutmMz26jyVlEXqCPDnhG5/tlSqQ/WU1lfSU5KDibNRJIliXJPeTzI2Fi5kQ7ODgTCAaq91aTaUuPBRWZSJmbdjEk3UewqJsOeQZW3igJnQeR+b7LhDrjxhXyYdTPeoJdKbyUnZZ5Eja+GbEc2/pAfi8nS5H3BHXCjlMJhdcTvTbtdu+me2R2zbo5fVxOPRcgIUeurJd2eHi9LxCpsq7xVOCwOdtbuxGay0Tmjc/zcCoaD8fMKwO13U+AsoMZXg9vvJt2eztqytZzT6Rz8YX+kgjOad0JGiBpfDVnJWUCkV8DQ/EjvkdgYAoYyqPJWkZmUGW8siN07vUEvTnuk0tRisuDyu1hfvp6R3Uayt24vTpszXlb0h/xU1FeQl5ZHyAhh0iLpV0SCwDJPGen2dErqSshOzqakrgSn3RkPrmMV6J6AhzZJbSK/XXkxgzsPpra2lrS0tMNSbhZNk4DwGBcLCOVkaV0LihYw/O3hqEeP7OlUWlfK+2ve596h98aXLduzjMFvDGbxrxdzat6pB7S9qz69ik+vavyMV6IaXw2frvuU35zym4NKc6IeL/fg7z/5Oz/t9lO0v2os+80yTml/yiFvt7VV1FdQ+GIhN/W/iVeWvYLNZMP3sC/+fsgI/eDgPUfSBWMvIN2ezidXfXJI21FKsXzvcmp8NZzX+byD+vy8XfM4vcPpvLzkZe4ccucPri/zbTYtVjkmhBDHKynjHj3SZVSIwyDHkXN0viclp0EwCMRr1WI17Qfih4JBgHR7+mEJBgHWjVqHSTfFXxemHx/PkWUlZzHhmgn0yOrBK8teaRT8tWYwCMS7Nx8qTdMY1H7QIX3+jMIzAH4wGIytL5omwaAQQojDRQJCIQ6DLm26EPpL64yYeVLmSbx9yduclHlSq3z/gUgMBh8Y9kD8GanjwQVdLoj/P3E/fwz+c/F/4t2NhBBCCCESSUAoxGHSWkGASTdx84CbW+W7D8Wz5z/b2kk4YkzajysglGBQCCGEEM2RUoIQQhxmU381tbWTIIQQQgjRIhIQCiHEYXY8DJQjhBBCiBODBIRCCCGEEEIIcYKSgFAIIYQQQgghTlASEAohxGG0ftT61k6CEEIIIUSLSUAohBCHUc/snq2dBCGEEEKIFpOAUAghhBBCCCFOUBIQCiGEEEIIIcQJSgJCIYQQQgghhDhBSUAohBBCCCGEECcoCQiFEEIIIYQQ4gQlAaEQQgghhBBCnKAkIBRCCCGEEEKIE5QEhEIIIYQQQghxgpKAUAghhBBCCCFOUBIQCiGEEEIIIcQJSgJCIYQQQgghhDhBmVs7AeLQKKUAcLlcrZwSIYQQQgghDo9Y2TZW1hVHjgSExzi32w1AQUFBK6dECCGEEEKIw8vtduN0Ols7Gcc1TUnYfUwzDIM9e/aQmpqKpmlH5TtdLhcFBQUUFRWRlpZ2VL5THP8kX4kjQfKVONwkT4kjQfJVY0op3G437du3R9flKbcjSVoIj3G6rpOfn98q352WliYXLXHYSb4SR4LkK3G4SZ4SR4Lkq4akZfDokHBbCCGEEEIIIU5QEhAKIYQQQgghxAlKAkJxwGw2G48++ig2m621kyKOI5KvxJEg+UocbpKnxJEg+Uq0JhlURgghhBBCCCFOUNJCKIQQQgghhBAnKAkIhRBCCCGEEOIEJQGhEEIIIYQQQpygJCAUQgghhBBCiBOUBISiWXPmzOHiiy+mffv2aJrG559/3uB9pRSPPfYY7du3JykpibPPPpt169a1TmLFMeGpp55i8ODBpKam0rZtWy677DI2btzYYB3JV+JAvfrqq/Tr1y8+ofPQoUP53//+F39f8pQ4VE899RSapnHPPffEl0m+EgfqscceQ9O0Bn+5ubnx9yVPidYiAaFolsfjoX///rz88stNvv/ss8/y97//nZdffpmlS5eSm5vL+eefj9vtPsopFceK2bNnc8cdd7Bo0SKmTp1KKBTiggsuwOPxxNeRfCUOVH5+Pk8//TTLli1j2bJlnHPOOVx66aXxgpTkKXEoli5dyuuvv06/fv0aLJd8JQ5G79692bt3b/xvzZo18fckT4lWo4RoAUBNmDAh/towDJWbm6uefvrp+DKfz6ecTqd67bXXWiGF4lhUVlamADV79myllOQrcfhkZGSoN998U/KUOCRut1t169ZNTZ06VZ111lnq7rvvVkrJtUocnEcffVT179+/yfckT4nWJC2E4qBs376dkpISLrjggvgym83GWWedxYIFC1oxZeJYUltbC0CbNm0AyVfi0IXDYT766CM8Hg9Dhw6VPCUOyR133MHIkSM577zzGiyXfCUO1ubNm2nfvj2dOnXi2muvZdu2bYDkKdG6zK2dAHFsKikpASAnJ6fB8pycHHbu3NkaSRLHGKUU9957L6effjp9+vQBJF+Jg7dmzRqGDh2Kz+cjJSWFCRMm0KtXr3hBSvKUOFAfffQRK1asYOnSpY3ek2uVOBhDhgzhvffeo3v37pSWlvLkk08ybNgw1q1bJ3lKtCoJCMUh0TStwWulVKNlQjTl97//PatXr2bevHmN3pN8JQ7USSedxKpVq6ipqeGzzz7jxhtvZPbs2fH3JU+JA1FUVMTdd9/NlClTsNvtza4n+UociIsuuij+/759+zJ06FC6dOnCu+++y2mnnQZInhKtQ7qMioMSGxUrVqMVU1ZW1qh2S4h93XnnnXzxxRfMnDmT/Pz8+HLJV+JgWa1WunbtyqBBg3jqqafo378///znPyVPiYOyfPlyysrKOOWUUzCbzZjNZmbPns2//vUvzGZzPO9IvhKHwuFw0LdvXzZv3izXKtGqJCAUB6VTp07k5uYyderU+LJAIMDs2bMZNmxYK6ZM/Jgppfj973/P+PHjmTFjBp06dWrwvuQrcbgopfD7/ZKnxEE599xzWbNmDatWrYr/DRo0iOuvv55Vq1bRuXNnyVfikPn9fr777jvatWsn1yrRqqTLqGhWXV0dW7Zsib/evn07q1atok2bNnTo0IF77rmH0aNH061bN7p168bo0aNJTk7muuuua8VUix+zO+64gw8++ICJEyeSmpoarwl1Op0kJSXF5/mSfCUOxIMPPshFF11EQUEBbrebjz76iFmzZjF58mTJU+KgpKamxp9tjnE4HGRmZsaXS74SB+r+++/n4osvpkOHDpSVlfHkk0/icrm48cYb5VolWpUEhKJZy5YtY8SIEfHX9957LwA33ngj77zzDn/84x/xer2MGjWK6upqhgwZwpQpU0hNTW2tJIsfuVdffRWAs88+u8HyMWPGcNNNNwFIvhIHrLS0lF/96lfs3bsXp9NJv379mDx5Mueffz4geUocGZKvxIEqLi7mF7/4BRUVFWRnZ3PaaaexaNEiCgsLAclTovVoSinV2okQQgghhBBCCHH0yTOEQgghhBBCCHGCkoBQCCGEEEIIIU5QEhAKIYQQQgghxAlKAkIhhBBCCCGEOEFJQCiEEEIIIYQQJygJCIUQQgghhBDiBCUBoRBCCCGEEEKcoCQgFEIIIYQQQogTlASEQgghhBBCCHGCkoBQCCGEEEIIIU5QEhAKIYQQQgghxAlKAkIhhBBCCCGEOEFJQCiEEEIIIYQQJygJCIUQQgghhBDiBCUBoRBCCCGEEEKcoCQgFEIIIYQQQogTlASEQgghhBBCCHGCkoBQCCGEEEIIIU5QEhAKIYQQQgghxAlKAkIhhBBCCCGEOEFJQCiEEEIIIYQQJygJCIUQQgghhBDiBPX/7N1gVcemNJUAAAAASUVORK5CYII=", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import os\n", "\n", "p = PowderPattern()\n", "\n", "data_dir = \"./data\"\n", "dat_path = os.path.join(data_dir, \"cime.dat\")\n", "if not os.path.exists(dat_path):\n", " os.makedirs(data_dir, exist_ok=True)\n", " os.system(\"curl -o {} https://raw.githubusercontent.com/vincefn/objcryst/master/Fox/example/tutorial-cimetidine/cime.dat\".format(dat_path))\n", "\n", "p.ImportPowderPatternFullprof(dat_path)\n", "p.SetWavelength(1.52904)\n", "\n", "# Index\n", "pl = p.FindPeaks(1.5, -1, 1000, verbose=False)\n", "if len(pl) > 20:\n", " pl.resize(20) # Only keep 20 peaks\n", "\n", "ex = quick_index(pl, verbose=False)\n", "\n", "print(\"Indexed unit cell:\")\n", "for s in ex.GetSolutions():\n", " print(s)\n", "\n", "# Use solution to create a crystal\n", "uc = ex.GetSolutions()[0][0].DirectUnitCell()\n", "c = Crystal(uc[0], uc[1], uc[2], uc[3], uc[4], uc[5], \"P1\")\n", "pdiff = p.AddPowderPatternDiffraction(c)\n", "\n", "# Fit profile\n", "p.SetMaxSinThetaOvLambda(0.3)\n", "p.quick_fit_profile(auto_background=True,plot=False, init_profile=True,verbose=True)\n", "p.quick_fit_profile(plot=False, init_profile=False, asym=True, displ_transl=True, verbose=False)\n", "\n", "# Plot\n", "p.plot(diff=True, fig=None, hkl=True)\n", "print(\"Fit result: Rw=%6.2f%% Chi2=%10.2f GoF=%8.2f LLK=%10.3f\" %\n", " (p.rw * 100, p.chi2, p.chi2/p.GetNbPointUsed(), p.llk))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Find the spacegroup\n", "We'll use part of the list of possible spacegroups as options to test" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Beginning spacegroup exploration... 37 to go...\n", "P 1 21/c 1 nGoF= 1.4866 GoF= 13.575 Rw= 6.50 [ 92 reflections, extinct446= 17]\n", "P 1 21 1 nGoF= 1.6488 GoF= 14.108 Rw= 6.61 [101 reflections, extinct446= 2]\n", "P 1 21/m 1 nGoF= 1.6488 GoF= 14.108 Rw= 6.61 [101 reflections, extinct446= 2]\n", "P 1 c 1 nGoF= 1.6649 GoF= 13.922 Rw= 6.58 [ 96 reflections, extinct446= 15]\n", "P 1 2/c 1 nGoF= 1.6649 GoF= 13.922 Rw= 6.58 [ 96 reflections, extinct446= 15]\n", "P 1 m 1 nGoF= 1.8392 GoF= 14.458 Rw= 6.69 [105 reflections, extinct446= 0]\n", "P 1 2/m 1 nGoF= 1.8392 GoF= 14.458 Rw= 6.69 [105 reflections, extinct446= 0]\n", "P 1 2 1 nGoF= 1.8392 GoF= 14.458 Rw= 6.69 [105 reflections, extinct446= 0]\n", "P 1 nGoF= 3.2428 GoF= 14.982 Rw= 6.80 [186 reflections, extinct446= 0]\n", "P -1 nGoF= 3.2428 GoF= 14.982 Rw= 6.80 [186 reflections, extinct446= 0]\n", "P 1 21/n 1 nGoF= 5.4155 GoF= 26.697 Rw= 9.11 [ 92 reflections, extinct446= 19]\n", "P 1 n 1 nGoF= 5.7672 GoF= 27.063 Rw= 9.17 [ 96 reflections, extinct446= 17]\n", "P 1 2/n 1 nGoF= 5.7672 GoF= 27.063 Rw= 9.17 [ 96 reflections, extinct446= 17]\n", "Chosen spacegroup (smallest nGoF): P 1 21/c 1\n", " (# 1) P 1 : Rwp= 6.80% GoF= 14.98 nGoF= 3.24 (186 reflections, 0 extinct)\n", " (# 2) P -1 : Rwp= 6.80% GoF= 14.98 nGoF= 3.24 (186 reflections, 0 extinct) [same extinctions as:P 1]\n", " (# 3) P 1 2 1 : Rwp= 6.69% GoF= 14.46 nGoF= 1.84 (105 reflections, 0 extinct)\n", " (# 4) P 1 21 1 : Rwp= 6.61% GoF= 14.11 nGoF= 1.65 (101 reflections, 2 extinct)\n", " (# 5) C 1 2 1 : Rwp= 62.70% GoF= 1246.13 nGoF= 311.68 ( 52 reflections, 84 extinct)\n", " (# 5) A 1 2 1 : Rwp= 62.83% GoF= 1253.74 nGoF= 313.87 ( 53 reflections, 85 extinct)\n", " (# 5) I 1 2 1 : Rwp= 60.91% GoF= 1196.43 nGoF= 246.94 ( 52 reflections, 87 extinct)\n", " (# 6) P 1 m 1 : Rwp= 6.69% GoF= 14.46 nGoF= 1.84 (105 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", " (# 7) P 1 c 1 : Rwp= 6.58% GoF= 13.92 nGoF= 1.66 ( 96 reflections, 15 extinct)\n", " (# 7) P 1 n 1 : Rwp= 9.17% GoF= 27.06 nGoF= 5.77 ( 96 reflections, 17 extinct)\n", " (# 7) P 1 a 1 : Rwp= 9.26% GoF= 27.58 nGoF= 5.97 ( 97 reflections, 14 extinct)\n", " (# 8) C 1 m 1 : Rwp= 62.70% GoF= 1246.13 nGoF= 311.68 ( 52 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", " (# 8) A 1 m 1 : Rwp= 62.83% GoF= 1253.74 nGoF= 313.87 ( 53 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", " (# 8) I 1 m 1 : Rwp= 60.91% GoF= 1196.43 nGoF= 246.94 ( 52 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", " (# 9) C 1 c 1 : Rwp= 62.51% GoF= 1236.15 nGoF= 280.76 ( 47 reflections, 93 extinct)\n", " (# 9) A 1 n 1 : Rwp= 62.99% GoF= 1258.62 nGoF= 291.60 ( 49 reflections, 93 extinct)\n", " (# 9) I 1 a 1 : Rwp= 59.00% GoF= 1120.91 nGoF= 221.05 ( 48 reflections, 93 extinct)\n", " (# 9) A 1 a 1 : Rwp= 62.99% GoF= 1258.62 nGoF= 291.60 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 9) C 1 n 1 : Rwp= 62.51% GoF= 1236.15 nGoF= 280.76 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 9) I 1 c 1 : Rwp= 59.00% GoF= 1120.91 nGoF= 221.05 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", " (# 10) P 1 2/m 1 : Rwp= 6.69% GoF= 14.46 nGoF= 1.84 (105 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", " (# 11) P 1 21/m 1 : Rwp= 6.61% GoF= 14.11 nGoF= 1.65 (101 reflections, 2 extinct) [same extinctions as:P 1 21 1]\n", " (# 12) C 1 2/m 1 : Rwp= 62.70% GoF= 1246.13 nGoF= 311.68 ( 52 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", " (# 12) A 1 2/m 1 : Rwp= 62.83% GoF= 1253.74 nGoF= 313.87 ( 53 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", " (# 12) I 1 2/m 1 : Rwp= 60.91% GoF= 1196.43 nGoF= 246.94 ( 52 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", " (# 13) P 1 2/c 1 : Rwp= 6.58% GoF= 13.92 nGoF= 1.66 ( 96 reflections, 15 extinct) [same extinctions as:P 1 c 1]\n", " (# 13) P 1 2/n 1 : Rwp= 9.17% GoF= 27.06 nGoF= 5.77 ( 96 reflections, 17 extinct) [same extinctions as:P 1 n 1]\n", " (# 13) P 1 2/a 1 : Rwp= 9.26% GoF= 27.58 nGoF= 5.97 ( 97 reflections, 14 extinct) [same extinctions as:P 1 a 1]\n", " (# 14) P 1 21/c 1 : Rwp= 6.50% GoF= 13.58 nGoF= 1.49 ( 92 reflections, 17 extinct)\n", " (# 14) P 1 21/n 1 : Rwp= 9.11% GoF= 26.70 nGoF= 5.42 ( 92 reflections, 19 extinct)\n", " (# 14) P 1 21/a 1 : Rwp= 9.20% GoF= 27.22 nGoF= 5.61 ( 93 reflections, 16 extinct)\n", " (# 15) C 1 2/c 1 : Rwp= 62.51% GoF= 1236.15 nGoF= 280.76 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 15) A 1 2/n 1 : Rwp= 62.99% GoF= 1258.62 nGoF= 291.60 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 15) I 1 2/a 1 : Rwp= 59.00% GoF= 1120.91 nGoF= 221.05 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", " (# 15) A 1 2/a 1 : Rwp= 62.99% GoF= 1258.62 nGoF= 291.60 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 15) C 1 2/n 1 : Rwp= 62.51% GoF= 1236.15 nGoF= 280.76 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 15) I 1 2/c 1 : Rwp= 59.00% GoF= 1120.91 nGoF= 221.05 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", "Restoring best spacegroup: P 1 21/c 1\n" ] } ], "source": [ "p.SetMaxSinThetaOvLambda(0.2) # Important for stability of profile fit. And faster !\n", "spgex = SpaceGroupExplorer(pdiff)\n", "\n", "# NB:verbose C++ output does not appear in a notebook\n", "spgex.RunAll(keep_best=True, update_display=False, fitprofile_p1=False)\n", "\n", "for sol in spgex.GetScores():\n", " #if sol.nGoF > 4 * spgex.GetScores()[0].nGoF:\n", " if sol.GoF <= 2 * spgex.GetScores()[0].GoF:\n", " print(sol)\n", "\n", "print(\"Chosen spacegroup (smallest nGoF): \", c.GetSpaceGroup())\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Setup the 'meta'-structure solution\n", "In the spacegroup search above the first solution `P 1 21/c 1` actually is the correct one, and with its multiplicity (4) only requires a single independent cimetidine molecule in the asymmetric unit cell. But let's proceed as if we did not actually know that.\n", "\n", "What we do is:\n", "* download the cimetidine z-matrix\n", "* create a list of the possible spacegroups that we want to test\n", "* create a function which, given a spacegroup, will :\n", " * apply the spacegroup to the crystal\n", " * determine the appropriate number of independent molecules (as a function of the multiplicity)\n", " * optimise for 5 runs and 2 million trials\n", " * return the solutions using the XML string of the Crystal\n", "* use `multiprocessing` or `multiprocess` to test the different spacegroups in parallel with multiple processor cores\n", "\n", "Note: *this is a generic approach - it would be possible also to completely change the contents of the crystal, e.g. if the number of independent units (atoms, molecule, polyhedra) was unknown, as is often the case for inorganic or metallic structures due to special positions*" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "import os\n", "\n", "# Get the cimetidine z-matrix\n", "fhz_path = os.path.join(data_dir, \"cime.fhz\")\n", "if not os.path.exists(fhz_path):\n", " os.makedirs(data_dir, exist_ok=True)\n", " os.system(\"curl -o {} https://raw.githubusercontent.com/vincefn/objcryst/master/Fox/example/tutorial-cimetidine/cime.fhz\".format(fhz_path))\n", "\n", "# Disable dynamical occupancy correction (no special position expected, usual in organic structures)\n", "c.GetOption(1).SetChoice(0)\n", "\n", "# Create the Monte-Carlo object with the crystal and the powder pattern\n", "mc = MonteCarlo()\n", "mc.AddRefinableObj(c)\n", "mc.AddRefinableObj(p)\n", "mc.GetOption(\"Automatic Least Squares Refinement\").SetChoice(2)\n", "\n", "nb_step = 1e6 # Increase this for more complex problems - it's ok if the spacegroup is correct (1 independent molecule)\n", "\n", "# Disable profile fitting for the powder pattern (or nothing gets optimised !)\n", "pdiff.SetExtractionMode(False)\n", "\n", "\n", "def solve_for_spacegroup(spgname):\n", " # Set spacegroup\n", " spg = c.GetSpaceGroup()\n", " spg.ChangeSpaceGroup(spgname)\n", " \n", " # Multiplicity\n", " mult = spg.GetNbSymmetrics()\n", " \n", " # Empty Crystal of existing scatterers (should not be necessary here)\n", " for i in range(c.GetNbScatterer()):\n", " c.RemoveScatterer(c.GetScatterer(0))\n", " \n", " # Add 4/mult independent cimetidine molecules\n", " nb_mol = 4//mult\n", " for i in range(nb_mol):\n", " m = ImportFenskeHallZMatrix(c, fhz_path)\n", " \n", " # Disable all display update if not in the Main process-or strange things happen !\n", " if current_process().name != 'MainProcess':\n", " # we must do that for the crystal, monte-carlo and powder pattern object\n", " for o in (c, mc, p):\n", " o.disable_display_update()\n", " \n", " # Run the parallel tempering optimisation\n", " # We could run multiple times the optimisation (using nb_run), but it is more \n", " # efficient to distribute that using the multiprocessing pool\n", " nb_run = 1\n", " t0 = timeit.default_timer()\n", " for i in range(nb_run):\n", " mc.MultiRunOptimize(nb_run=1, nb_step=nb_step)\n", " dt = timeit.default_timer() - t0\n", " print(\"Spacegroup: %12s LLK: %12.2f dt=%3.0fs\" % # /run (%3.0fs remaining)\n", " (spgname,mc.GetLogLikelihood(), dt,)) # dt/(i+1) * (nb_run-i-1)\n", " \n", " # Extract all solutions as the XML output of the crystal\n", " vsol = []\n", " for i in range(mc.GetNbParamSet()-nb_run, mc.GetNbParamSet()):\n", " mc.RestoreParamSet(i, update_display=False)\n", " s = c.xml()\n", " llk = mc.GetLogLikelihood()\n", " vsol.append({'xml': s, 'llk': llk, 'spg': spgname, 'nb_mol': nb_mol})\n", "\n", " return vsol\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the tests: **this will take a little while (5 to 20 minutes for each spacegroup, in parallel processes), and is longer for spacegroups with lower multiplicity and not centrosymmetric (more independent atoms)**." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Solving structures in // - this will take a little while, be patient !\n", "Spacegroup: P 1 21/c 1 LLK: 18495.13 dt= 30s\n", "Spacegroup: P 1 21/c 1 LLK: 18497.70 dt= 30s\n", "Spacegroup: P 1 21/m 1 LLK: 256613.45 dt= 31s\n", "Spacegroup: P 1 21/m 1 LLK: 297780.55 dt= 31s\n", "Spacegroup: P 1 2/c 1 LLK: 335891.83 dt= 30s\n", "Spacegroup: P 1 2/c 1 LLK: 288920.12 dt= 30s\n", "Spacegroup: P 1 c 1 LLK: 91573.42 dt= 79s\n", "Spacegroup: P 1 c 1 LLK: 72883.09 dt= 81s\n", "Spacegroup: P 1 2 1 LLK: 236363.10 dt= 89s\n", "Spacegroup: P 1 21/c 1 LLK: 18498.68 dt= 30s\n", "Spacegroup: P 1 2 1 LLK: 180490.60 dt= 92s\n", "Spacegroup: P -1 LLK: 142046.67 dt= 67s\n", "Spacegroup: P -1 LLK: 137882.23 dt= 68s\n", "Spacegroup: P 1 2/c 1 LLK: 268907.40 dt= 30s\n", "Spacegroup: P 1 21/m 1 LLK: 254364.25 dt= 31s\n", "Spacegroup: P 1 c 1 LLK: 130411.66 dt= 80s\n", "Spacegroup: P 1 21/c 1 LLK: 18495.45 dt= 30s\n", "Spacegroup: P 1 21 1 LLK: 95965.21 dt= 78s\n", "Spacegroup: P 1 21 1 LLK: 104310.84 dt= 79s\n", "Spacegroup: P 1 m 1 LLK: 313023.54 dt= 87s\n", "Spacegroup: P 1 m 1 LLK: 291594.11 dt= 87s\n", "Spacegroup: P 1 2/c 1 LLK: 318014.98 dt= 30s\n", "Spacegroup: P 1 2 1 LLK: 255142.75 dt= 86s\n", "Spacegroup: P -1 LLK: 111644.89 dt= 67s\n", "Spacegroup: P 1 21/m 1 LLK: 273165.66 dt= 31s\n", "Spacegroup: P 1 21/c 1 LLK: 18494.21 dt= 29s\n", "Spacegroup: P 1 21 1 LLK: 93373.67 dt= 84s\n", "Spacegroup: P 1 2/c 1 LLK: 338329.99 dt= 30s\n", "Spacegroup: P 1 c 1 LLK: 93566.20 dt= 82s\n", "Spacegroup: P 1 2 1 LLK: 203632.21 dt= 87s\n", "Spacegroup: P 1 21/m 1 LLK: 262459.32 dt= 30s\n", "Spacegroup: P 1 c 1 LLK: 100817.93 dt= 78s\n", "Spacegroup: P 1 m 1 LLK: 345530.12 dt= 85s\n", "Spacegroup: P -1 LLK: 121915.00 dt= 66s\n", "Spacegroup: P 1 2 1 LLK: 224594.45 dt= 83s\n", "Spacegroup: P 1 21 1 LLK: 77726.30 dt= 67s\n", "Spacegroup: P -1 LLK: 126293.48 dt= 57s\n", "Spacegroup: P 1 m 1 LLK: 210979.84 dt= 72s\n", "Spacegroup: P 1 21 1 LLK: 95344.71 dt= 67s\n", "Spacegroup: P 1 m 1 LLK: 243392.35 dt= 63s\n" ] } ], "source": [ "# List of spacegroups to test (this can be larger than the number \n", "# of available processor cores, process will loop over possible spacegroups)\n", "v_spacegroup = [\"P 1 21/c 1\", \"P 1 2/c 1\", \"P 1 c 1\", \"P 1 21 1\",\n", " \"P 1 2 1\", \"P 1 m 1\", \"P 1 21/m 1\", \"P -1\"] * 5\n", "\n", "# Use a multiprocess pool to solve in parallel - this should use all available processor cores\n", "print(\"Solving structures in // - this will take a little while, be patient !\")\n", "with Pool(nproc) as pool:\n", " res = pool.map(solve_for_spacegroup, v_spacegroup)\n", "\n", "# Merge all the results\n", "vsol = []\n", "for v in res:\n", " vsol += v\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Look at solutions\n", "If you have ipywidgets, just use the dropdown menu to select available solutions" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "XML: Loading Crystal:\n", "XML: Loading Crystal:(spg:P 1 21/c 1)\n", "Input ScatteringPowerAtom:C(C)\n", "Input ScatteringPowerAtom:N(N)\n", "Input ScatteringPowerAtom:S(S)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a82f1aa443024717b8571727b6f34587", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(Dropdown(description='solution', options=('# 0 P 1 21/c 1 : 1 mol LLK= 18494.21', …" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", "text/html": [ "
\n", "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "24925378d78d408985cc110df32585a8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "195fed70b78f4a53a1b09edc23cb7eef", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA0JFJREFUeJzs3XlcVOX+B/DPsIPCiCICLmiZimJhLgiWSCpKouYSGopSxi1JyUQ0b655c7lumaa3+nU1FbX0Zmma4pKYC4qKCSlpprniyjJurM/vD5jjDLMwAwPD8nm/XrxyzjxzzjOHYTrf8zzP9ysTQggQERERERFRrWNh7g4QERERERGReTAgJCIiIiIiqqUYEBIREREREdVSDAiJiIiIiIhqKQaEREREREREtRQDQiIiIiIiolqKASEREREREVEtxYCQiIiIiIiolmJASEREREREVEsxICQiIiIiIqqlGBASERERERHVUgwIiYiIiIiIaikGhERERERERLUUA0IiIiIiIqJaigEhERERERFRLcWAkIiIiIiIqJZiQEhERERERFRLMSAkIiIiIiKqpRgQEhERERER1VIMCImIiIiIiGopBoRERERERES1FANCIiIiIiKiWooBIRERERERUS3FgJCIiIiIiKiWYkBIRERERERUSzEgJCIiIiIiqqUYEBIREREREdVSDAiJiIiIiIhqKQaEREREREREtRQDQiIiIiIiolqKASEREREREVEtxYCQiIiIiIiolmJASEREREREVEsxICQiIiIiIqqlGBASERERERHVUgwIiYiIiIiIaikGhEREJjZixAhzd4GIiIjIIFbm7gARUXU1efJkjW1CCBw5csQMvSEiIiIyHgNCIqIyiouLw4YNGzS2//LLL2boDREREZHxGBASEZXRW2+9BS8vL7i6uqptHzVqlJl6RERERGQcmRBCmLsTREREREREVPmYVIaIiIiIiKiWYkBIRERERERUSzEgJCIyoeTkZHN3gYiIiMhgTCpDRFRGK1euVHsshMCqVasQFRWFqKgoM/WKiIiIyHAcISQiKqPPP/8cP/30ExwcHFCnTh3UrVsXFhYWqFu3rrm7RkRERGQQZhmt5goLC3Hjxg04OjpCJpOZuztEtYoQAlu2bMEPP/yAQYMGYfDgwQgNDcWWLVvM3TUiIqJqTQgBhUIBDw8PWFhwDKsiMSCs5q5du4amTZuauxtERERERCZ39epVNGnSxNzdqNG4hrCac3R0BFD0x+Lk5GTm3hDVboWFhbh16xbc3d3N3RUiIqJqLTs7G02bNpWudakCCarWsrKyBACRlZUlbVu+fLmoV6+ecHJyEvXq1RPff/+92Ldvn7C3txcAxM2bN6W2AwcOFI6OjsLV1VX8/fffavv+9ddfBQDxf//3f0IIIebMmSMCAgKEEEJcvnxZNGvWTNSrV094eXlp9Ktjx47C0dFR1K1bV3Tv3l0IIYRcLhdOTk4iJydHLF26VFhaWgq5XC6cnZ1FWlqa2utff/11YWlpKRo3bqz1fXt4eAgnJyfh6Ogo1q1bJ4QQIjY2VtjY2AgHBwe1ttu3bxedOnXSex61nZ8///xT1KlTR2cfiIiIiKhiaLvGpYrBCbk1zIULFzB16lScOHECWVlZOHLkCAoLC/H8888jLS0Ncrlcanvu3DkkJCQgMzMTQ4YMwdtvv62xP1tbW8yYMUNj+8CBAzF//nxkZGTg7Nmzas/9+OOPSE9PR3Z2NhQKBdasWSM998cff8DGxgYA4OPjg8zMTHTr1g3jxo1T28fMmTMRHx+v833GxcUhKysLmzdvxsSJEwEAkZGRuHfvnkbb//u//8Pw4cN17guA1vPz7LPPYteuXXpfR0RERERUnTEgrGEWLlyIPn364NlnnwUAeHl5YciQIXBxcUGzZs3U2n733Xfo0KEDLCws8MEHH+C3337T2J+LiwsKCwuxc+dOte2XLl3C7NmzUa9ePUydOlXtOUdHR9y/fx8///wzAKBFixZ6+9y1a1fcuHFDbVu7du2kwFGbHj16AADs7e1haWkJAHjuuee0ZndMSkrCO++8g3379qF+/fqoV68eOnfurPE+S54forJKT083dxeIiIiIDMKAsIa5evVqqQGY0u3bt6URsaZNm+LRo0da202fPh0TJkxQ25adnY3p06cjLS0Ny5YtQ3Z2tvTcK6+8gnfeeQdhYWGwsbHB9OnT9fbj559/RqtWrQzqc0lhYWF693///n1YWlqibt26CA8Px+eff47MzEwcPXq0TMcjMsSoUaPM3QUiIiIigzCpTA3j6emJv/76y6C2jRo1wrlz5wAAf//9NxwcHLS2i4qKwkcffYQ///xT2mZjY4MRI0YAABo2bIhTp05Jo3YAsHTpUixduhSpqano3Lkz5syZo7Hf06dPo169emjQoAG+//57Q9+iJCAgAC+88ILeAuArVqxAt27dAABZWVl44403AABWVvzoU/l16dJFY5sQAhcuXDBDb4iISFVhYSFyc3PN3Q3SwdraWprlRebFq+IaJjY2Fj4+Prh48SKeffZZ/PHHH0hNTcWQIUM02r7++utYunQpAGDZsmXw8fHRud+oqCgsXrwYXbt2BVAUBB48eBBdu3bFvXv34O3tLbW9ePEiCgsL8dxzz6FZs2Y66yP6+PjgxIkTZXqfY8eOxc2bN3H+/Hm97bZu3Yply5YBAORyOb777juEhoYiPz+fQSGVm0KhQEpKisZnqXfv3mbqERERAUBubi4uXbqEwsJCc3eF9KhXrx7c3NxYS9vczJ3VxpQSEhJESEiIcHd3FwDE1q1b1Z4HoPXn3//+t9QmICBA4/lhw4ap7ef+/fti5MiRwsnJSTg5OYmRI0eKjIwMtTZ///23CAkJEQ4ODqJBgwZi/PjxIicnR63NmTNnRPfu3YWdnZ3w8PAQs2fPFoWFhUa9Z31ZRpUZPH/88Ufx119/CWdnZyGTyUS9evXE7NmzhRClZxlVZtgsKCgQNjY2UpbRnTt3inr16ok6deqIiIgItdclJCRI56Zu3brigw8+EEIUZRlVZvBcunSp6Nixo873NX78eOHo6ChkMplwdnYWeXl5as8DEI6OjkIul4uWLVtK+3R2dhYAhLOzszh58qRwc3OTXrN3717pvHTp0kVtf7rOj+o5ICrp+++/F/fv39fYfuDAATP0hoiIhBCisLBQXL58WVy4cEE8fPhQPH78mD9V7OfRo0fi7t274uzZs+LGjRtaf4/MMlp5alRh+p9//hmHDx/Giy++iCFDhmDr1q147bXXpOdLJnr4+eefMWbMGPz555945plnABQlK2nVqhU+/vhjqZ29vb1a9sng4GBcu3YNX375JQDgH//4B5o3b47t27cDAAoKCuDj44OGDRti8eLFuHfvHkaPHo3Bgwdj+fLlAIrW4LVq1QqBgYH46KOPcP78eURERGDmzJmIiYkx+D1nZ2dDLpcjKyurytchbNasGbKzs3H79m29CWNMJTs7G/PmzcO8efPK9PqLFy+iQ4cOaNasGVJTU03cO6qJ0tLS0KZNG3N3g4ioVsvLy8Off/4JDw8Ptes3qnru3buH27dvo1WrVhrTR6vTNW51V6PmzAUHByM4OFjn825ubmqPf/zxRwQGBkrBoJKDg4NGW6Vz585h165dSExMhK+vLwDgq6++gp+fH/744w+0bt0a8fHxOHv2LK5evQoPDw8AwOLFixEREYFPPvkETk5OiIuLw5MnT7BmzRrY2trC29sb58+fx5IlSzBx4sQaOXR+5cqVSj2ek5NTmYNBoKjshGqyHKLSREVFYf/+/ebuBhFRrVZQUAAAlXLzmcpHmb8iLy+P6wnNqNZmGb116xZ27NiBMWPGaDwXFxcHFxcXtGvXDpMmTYJCoZCeO3r0KORyuRQMAkVlE+RyOY4cOSK18fb2loJBAOjTpw9ycnJw8uRJqU1AQABsbW3V2ty4cQOXL1829dslokpgbW1t7i4QEVGxmnhzvabh76hqqFEjhMb45ptv4OjoiMGDB6ttHzFiBFq0aAE3NzekpqZi6tSp+O2337Bnzx4ARdNOXV1dNfbn6uoqTUlNT09Ho0aN1J53dnaGjY2NWpvmzZurtVG+Jj09XWfpiJycHOTk5EiPOYJFVHXs3r3b3F0gIiIiMkqtHSH873//ixEjRsDOzk5te2RkJHr16gVvb28MHz4cW7Zswd69e3Hq1Cmpjba7GUIIte1laaNczqnvbsm8efMgl8uln6ZNm5byTomoUi1fDiQlmbsXRERUwxw4cAAymQyZmZnm7grVMLUyIPz111/xxx9/4O233y617Ysvvghra2uprpibmxtu3bql0e7OnTvSCJ+bm5tGApuMjAzk5eXpbXP79m0A0BhdVDV16lRkZWVJP1evXi31PRBRJYqOBrTUJyQiIiKqimplQPj111+jY8eOeOGFF0pt+/vvvyMvLw/u7u4AAD8/P2RlZeH48eNSm2PHjiErKwv+/v5Sm9TUVNy8eVNqEx8fD1tbW3Ts2FFqc/DgQbWCqfHx8fDw8NCYSqrK1tYWTk5Oaj9ERERERERlUaMCwgcPHuD06dM4ffo0AODSpUs4ffq0WnbL7OxsbN68Wevo4MWLF/Hxxx/jxIkTuHz5Mnbu3InXX38dHTp0QLdu3QAAXl5e6Nu3LyIjI5GYmIjExERERkYiJCQErVu3BgAEBQWhbdu2CA8PR3JyMvbt24dJkyYhMjJSCuDCwsJga2uLiIgIpKamYuvWrZg7d26NzTBKRERERPrl5OQgOjoarq6usLOzw0svvYSkEssQDh8+jBdeeAF2dnbw9fVFSkqK9Nzff/+N/v37w9nZGXXq1EG7du2wc+fOyn4bVM3UqIDwxIkT6NChAzp06AAAmDhxIjp06IAZM2ZIbTZt2gQhBN544w2N19vY2GDfvn3o06cPWrdujejoaAQFBWHv3r1qqXDj4uLQvn17BAUFISgoCM8//zzWrVsnPW9paYkdO3bAzs4O3bp1Q2hoKF577TUsWrRIaiOXy7Fnzx5cu3YNnTp1QlRUFCZOnIiJEydWxKkhIiIioipu8uTJ+N///odvvvkGp06dQsuWLdGnTx/cv39fahMbG4tFixYhKSkJrq6uGDBgAPLy8gAA7733HnJycnDw4EGkpKRgwYIFqFu3rrneDlUTNaowfW3Eop1EVYxyhJ9frUREZvHkyRNcunQJLVq0kJIHPnr0CGlpaZXelzZt2ki19krz8OFDODs7Y82aNQgLCwNQVJ+vefPmmDBhAjp37ozAwEBs2rQJw4YNAwDcv38fTZo0wZo1axAaGornn38eQ4YMwcyZMyvsPZmStt+VEq9xK0+tLTtBRERERLVDWlqalMehMp08eRIvvviiQW0vXryIvLw8aZkSUFTftkuXLjh37hw6d+4MoCgPhVL9+vXRunVrnDt3DgAQHR2NsWPHIj4+Hr169cKQIUPw/PPPm/AdUU3EgJCIiIiIarQ2bdrg5MmTZjmuoXSVHytZtkwb5fNvv/02+vTpgx07diA+Ph7z5s3D4sWLMX78eCN7TrUJA0IiIiIiqtEcHBwMHqkzl5YtW8LGxgaHDh1SmzJ64sQJTJgwQWqXmJiIZs2aASgqa3b+/Hm1wLNp06Z499138e6772Lq1Kn46quvGBCSXgwIiYiIiIjMrE6dOhg7dixiY2NRv359NGvWDP/+97/x6NEjjBkzBr/99hsA4OOPP0aDBg3QqFEjfPTRR3BxccFrr70GAJgwYQKCg4PRqlUrZGRkYP/+/fDy8jLju6LqgAEhEREREVEVMH/+fBQWFiI8PBwKhQKdOnXC7t274ezsrNbm/fffx4ULF/DCCy9g27ZtsLGxAQAUFBTgvffew7Vr1+Dk5IS+ffti6dKl5no7VE0wy2g1xwxMRFUMs4wSEZmVvsyVVLUwy2jVUKPqEBIREREREZHhGBASERERERHVUgwIiYiIiIiIaikGhERERERERLUUA0IiIiIiIqJaigEhERERERFRLcWAkIiIiIiIqJZiQEhERERERFRLMSAkIiIiIqrmZs2aBR8fH3N3g6ohBoRERERERES1FANCIiIiIiKiWooBIRERERFRFVBYWIgFCxagZcuWsLW1RbNmzfDJJ58AAKZMmYJWrVrBwcEBzzzzDKZPn468vDy9+/vvf/+Ldu3awdbWFu7u7hg3blxlvA2qZqzM3QEiIiIiIgKmTp2Kr776CkuXLsVLL72EmzdvIi0tDQDg6OiINWvWwMPDAykpKYiMjISjoyMmT56sdV+rVq3CxIkTMX/+fAQHByMrKwuHDx+uzLdD1YRMCCHM3Qkqu+zsbMjlcmRlZcHJycnc3SEimazov/xqJSIyiydPnuDSpUto0aIF7OzszN0dgykUCjRs2BArVqzA22+/XWr7hQsX4ttvv8WJEycAFCWV+eGHH3D69GkAQOPGjfHmm2/iX//6V0V2u1z0/a54jVt5OEJIRERERDXbo0dA8UhbpWrTBnBwMKjpuXPnkJOTg549e2p9fsuWLfj000/x559/4sGDB8jPz9cZKN2+fRs3btzQuS8iVQwIiYiIiKhmS0sDOnas/OOePAm8+KJBTe3t7XU+l5iYiOHDh2P27Nno06cP5HI5Nm3ahMWLFxu9L6KSGBASERERUc3Wpk1RcGaO4xroueeeg729Pfbt26cxZfTw4cPw9PTERx99JG37+++/de7L0dERzZs3x759+xAYGGh8v6lWYUBIRERERDWbg4PBI3XmYmdnhylTpmDy5MmwsbFBt27dcOfOHfz+++9o2bIlrly5gk2bNqFz587YsWMHtm7dqnd/s2bNwrvvvgtXV1cEBwdDoVDg8OHDGD9+fCW9I6ouGBASEREREVUB06dPh5WVFWbMmIEbN27A3d0d7777LsaMGYMPPvgA48aNQ05ODvr164fp06dj1qxZOvc1evRoPHnyBEuXLsWkSZPg4uKCoUOHVt6boWqDWUarOWZgIqpimGWUiMisqmuW0dqIWUarBhamJyIiIiIiqqVqVEB48OBB9O/fHx4eHpDJZPjhhx/Uno+IiIBMJlP76dq1q1qbnJwcjB8/Hi4uLqhTpw4GDBiAa9euqbXJyMhAeHg45HI55HI5wsPDkZmZqdbmypUr6N+/P+rUqQMXFxdER0cjNzdXrU1KSgoCAgJgb2+Pxo0b4+OPPwYHbImIiIiIqLLUqIDw4cOHeOGFF7BixQqdbfr27YubN29KPzt37lR7fsKECdi6dSs2bdqEQ4cO4cGDBwgJCUFBQYHUJiwsDKdPn8auXbuwa9cunD59GuHh4dLzBQUF6NevHx4+fIhDhw5h06ZN+N///oeYmBipTXZ2Nnr37g0PDw8kJSVh+fLlWLRoEZYsWWLCM0JERERERKRbjUoqExwcjODgYL1tbG1t4ebmpvW5rKwsfP3111i3bh169eoFAFi/fj2aNm2KvXv3ok+fPjh37hx27dqFxMRE+Pr6AgC++uor+Pn54Y8//kDr1q0RHx+Ps2fP4urVq/Dw8AAALF68GBEREfjkk0/g5OSEuLg4PHnyBGvWrIGtrS28vb1x/vx5LFmyBBMnToRMuQ6JiIiIiIiogtSoEUJDHDhwAK6urmjVqhUiIyNx+/Zt6bmTJ08iLy8PQUFB0jYPDw94e3vjyJEjAICjR49CLpdLwSAAdO3aFXK5XK2Nt7e3FAwCQJ8+fZCTk4OTxTVwjh49ioCAANja2qq1uXHjBi5fvqyz/zk5OcjOzlb7IaKqpdDcHSAiIiIyUK0KCIODgxEXF4f9+/dj8eLFSEpKwiuvvIKcnBwAQHp6OmxsbODs7Kz2ukaNGiE9PV1q4+rqqrFvV1dXtTaNGjVSe97Z2Rk2NjZ62ygfK9toM2/ePGntolwuR9OmTY05BURUCWrVFysRERFVazVqymhphg0bJv3b29sbnTp1gqenJ3bs2IHBgwfrfJ0QQm0Kp7bpnKZoo0woo2+66NSpUzFx4kTpcXZ2NoNCIiIiIiIqk1p9I9vd3R2enp64cOECAMDNzQ25ubnIyMhQa3f79m1p9M7NzQ23bt3S2NedO3fU2pQc5cvIyEBeXp7eNsrpqyVHDlXZ2trCyclJ7YeIqhZOGSUiIqLqolYHhPfu3cPVq1fh7u4OAOjYsSOsra2xZ88eqc3NmzeRmpoKf39/AICfnx+ysrJw/Phxqc2xY8eQlZWl1iY1NRU3b96U2sTHx8PW1hYdO3aU2hw8eFCtFEV8fDw8PDzQvHnzCnvPRERERERESjUqIHzw4AFOnz6N06dPAwAuXbqE06dP48qVK3jw4AEmTZqEo0eP4vLlyzhw4AD69+8PFxcXDBo0CAAgl8sxZswYxMTEYN++fUhOTsbIkSPRvn17Keuol5cX+vbti8jISCQmJiIxMRGRkZEICQlB69atAQBBQUFo27YtwsPDkZycjH379mHSpEmIjIyURvTCwsJga2uLiIgIpKamYuvWrZg7dy4zjBIRERGR0WbNmgUfH58KPcaaNWtQr169Cj0GVb4atYbwxIkTCAwMlB4r19qNHj0aq1atQkpKCtauXYvMzEy4u7sjMDAQ3377LRwdHaXXLF26FFZWVggNDcXjx4/Rs2dPrFmzBpaWllKbuLg4REdHS9lIBwwYoFb70NLSEjt27EBUVBS6desGe3t7hIWFYdGiRVIbuVyOPXv24L333kOnTp3g7OyMiRMnqq0PJCIiIiIiqkg1KiDs0aOHlJhFm927d5e6Dzs7OyxfvhzLly/X2aZ+/fpYv3693v00a9YMP/30k9427du3x8GDB0vtExFVL7q/hYiIiIiqlho1ZZSIyKz03JAiIiIqTWFhIRYsWICWLVvC1tYWzZo1wyeffAIAmDJlClq1agUHBwc888wzmD59OvLy8vTu77///S/atWsHW1tbuLu7Y9y4cXrbZ2RkYNSoUXB2doaDgwOCg4Ol5IuqfvjhB7Rq1Qp2dnbo3bs3rl69Kj3322+/ITAwEI6OjnByckLHjh1x4sSJMpwNqiwMCImITIUBIRERlcPUqVOxYMECTJ8+HWfPnsWGDRuk7POOjo5Ys2YNzp49i2XLluGrr77C0qVLde5r1apVeO+99/CPf/wDKSkp2LZtG1q2bKn3+BEREThx4gS2bduGo0ePQgiBV199VS3wfPToET755BN88803OHz4MLKzszF8+HDp+REjRqBJkyZISkrCyZMn8eGHH8La2rqcZ4Yqkkzom2NJVV52djbkcjmysrJYgoLIzERBAWRWVigAYMmvViIis3jy5AkuXbqEFi1awM7OztzdMZhCoUDDhg2xYsUKvP3226W2X7hwIb799ltp9G3WrFn44YcfpOSKjRs3xptvvol//etfBh3/woULaNWqFQ4fPixlzr937x6aNm2Kb775Bq+//jrWrFmDN998E4mJifD19QUApKWlwcvLC8eOHUOXLl3g5OSE5cuXY/To0aUeU9/vite4lYcjhEREplIcBDIUJCIiY507dw45OTno2bOn1ue3bNmCl156CW5ubqhbty6mT5+OK1euaG17+/Zt3LhxQ+e+3n33XdStW1f6UR7fyspKCvQAoEGDBmjdujXOnTsnbbOyskKnTp2kx23atEG9evWkNhMnTsTbb7+NXr16Yf78+bh48aJxJ4IqXY1KKkNEZE6isBAyACwcQ0RU9Yz9aSyuK65X2vEaOzbGqpBVBre3t7fX+VxiYiKGDx+O2bNno0+fPpDL5di0aRMWL15s9L4A4OOPP8akSZPUtumaNCiE0CiJpq1EmnLbrFmzEBYWhh07duDnn3/GzJkzsWnTJqnMG1U9DAiJiExEFBaauwtERKSDMcGZOTz33HOwt7fHvn37NKaMHj58GJ6envjoo4+kbX///bfOfTk6OqJ58+bYt2+fWkk2JVdXV7i6uqpta9u2LfLz83Hs2DG1KaPnz5+Hl5eX1C4/Px8nTpxAly5dAAB//PEHMjMz0aZNG6lNq1at0KpVK3zwwQd44403sHr1agaEVRgDQiIiExGcMkpERGVkZ2eHKVOmYPLkybCxsUG3bt1w584d/P7772jZsiWuXLmCTZs2oXPnztixYwe2bt2qd3+zZs3Cu+++C1dXVwQHB0OhUODw4cMYP3681vbPPfccBg4ciMjISHzxxRdwdHTEhx9+iMaNG2PgwIFSO2tra4wfPx6fffYZrK2tMW7cOHTt2hVdunTB48ePERsbi6FDh6JFixa4du0akpKSMGTIEJOeKzItriEkIjIRjhASEVF5TJ8+HTExMZgxYwa8vLwwbNgw3L59GwMHDsQHH3yAcePGwcfHB0eOHMH06dP17mv06NH49NNPsXLlSrRr1w4hISFaS0ioWr16NTp27IiQkBD4+flBCIGdO3eqZQl1cHDAlClTEBYWBj8/P9jb22PTpk0AAEtLS9y7dw+jRo1Cq1atEBoaiuDgYMyePbv8J4cqDLOMVnPMwERUdeQqFLBxckI+ACt+tRIRmUV1zTJaGzHLaNXAEUIiIhPh/TUiIiKqbhgQEhGZiHLKKMNCIiIiqi4YEBIRmQpHCImIiKiaYUBIRGQiTCpDRERE1Q0DQiIiE+EaQiIiIqpuGBASEZkI1xASEVUdvElX9fF3VDUwICQiMhFOGSUiMj9LS0sAQG5urpl7QqV59OgRAKjVOaTKZ2XuDhAR1RS800lEZH5WVlZwcHDAnTt3YG1tDQsLjn9UNUIIPHr0CLdv30a9evWkIJ7MgwEhEZGJcISQiMj8ZDIZ3N3dcenSJfz999/m7g7pUa9ePbi5uZm7G7UeA0IiIhNhQEhEVDXY2Njgueee47TRKsza2pojg1UEA0IiIlPhlFEioirDwsICdnZ25u4GUZXHSdVERCbCNYRERERU3TAgJCIyleKAkGEhERERVRcMCImITIRrCImIiKi6YUBIRGQinDJKRERE1Q0DQiIiE+EIIREREVU3DAiJiEyEASERERFVNzUqIDx48CD69+8PDw8PyGQy/PDDD9JzeXl5mDJlCtq3b486derAw8MDo0aNwo0bN9T20aNHD8hkMrWf4cOHq7XJyMhAeHg45HI55HI5wsPDkZmZqdbmypUr6N+/P+rUqQMXFxdER0dr1MJJSUlBQEAA7O3t0bhxY3z88cecckZUjTEgJCIiouqmRgWEDx8+xAsvvIAVK1ZoPPfo0SOcOnUK06dPx6lTp/D999/j/PnzGDBggEbbyMhI3Lx5U/r54osv1J4PCwvD6dOnsWvXLuzatQunT59GeHi49HxBQQH69euHhw8f4tChQ9i0aRP+97//ISYmRmqTnZ2N3r17w8PDA0lJSVi+fDkWLVqEJUuWmPCMEJE58LYOERERVRc1qjB9cHAwgoODtT4nl8uxZ88etW3Lly9Hly5dcOXKFTRr1kza7uDgADc3N637OXfuHHbt2oXExET4+voCAL766iv4+fnhjz/+QOvWrREfH4+zZ8/i6tWr8PDwAAAsXrwYERER+OSTT+Dk5IS4uDg8efIEa9asga2tLby9vXH+/HksWbIEEydOhEwmM8UpIaJKxBFCIiIiqm5q1AihsbKysiCTyVCvXj217XFxcXBxcUG7du0wadIkKBQK6bmjR49CLpdLwSAAdO3aFXK5HEeOHJHaeHt7S8EgAPTp0wc5OTk4efKk1CYgIAC2trZqbW7cuIHLly/r7HNOTg6ys7PVfoioiuCUbyIiIqpmatQIoTGePHmCDz/8EGFhYXBycpK2jxgxAi1atICbmxtSU1MxdepU/Pbbb9LoYnp6OlxdXTX25+rqivT0dKlNo0aN1J53dnaGjY2NWpvmzZurtVG+Jj09HS1atNDa73nz5mH27Nlle9NEVKG4BpiIiIiqm1oZEObl5WH48OEoLCzEypUr1Z6LjIyU/u3t7Y3nnnsOnTp1wqlTp/Diiy8CgNbpnEIIte1laaO8mNQ3XXTq1KmYOHGi9Dg7OxtNmzbV2Z6IKg+njBIREVF1U+umjObl5SE0NBSXLl3Cnj171EYHtXnxxRdhbW2NCxcuAADc3Nxw69YtjXZ37tyRRvjc3NykkUCljIwM5OXl6W1z+/ZtANAYXVRla2sLJycntR8iqhqUASHHCYmIiKi6qFUBoTIYvHDhAvbu3YsGDRqU+prff/8deXl5cHd3BwD4+fkhKysLx48fl9ocO3YMWVlZ8Pf3l9qkpqbi5s2bUpv4+HjY2tqiY8eOUpuDBw+qlaKIj4+Hh4eHxlRSIqoeOEJIRERE1U2NCggfPHiA06dP4/Tp0wCAS5cu4fTp07hy5Qry8/MxdOhQnDhxAnFxcSgoKEB6ejrS09OloOzixYv4+OOPceLECVy+fBk7d+7E66+/jg4dOqBbt24AAC8vL/Tt2xeRkZFITExEYmIiIiMjERISgtatWwMAgoKC0LZtW4SHhyM5ORn79u3DpEmTEBkZKY3ohYWFwdbWFhEREUhNTcXWrVsxd+5cZhglIiIiIqJKIxM1KAvCgQMHEBgYqLF99OjRmDVrls5ELb/88gt69OiBq1evYuTIkUhNTcWDBw/QtGlT9OvXDzNnzkT9+vWl9vfv30d0dDS2bdsGABgwYABWrFihlq30ypUriIqKwv79+2Fvb4+wsDAsWrRILatoSkoK3nvvPRw/fhzOzs549913MWPGDKMCwuzsbMjlcmRlZXH6KJGZXU9KQuMuXfAYgH3N+WolIiKqdLzGrTw1KiCsjfjHQlR1XD9+HI19fRkQEhERlROvcStPjZoySkRkTry/RkRERNUNA0IiIhNhllEiIiKqbhgQEhGZCLOMEhERUXXDgJCIyEQ4ZZSIiIiqGwaERESmwoCQiIiIqhkGhEREpsKAkIiIiKoZBoRERCbCpDJERERU3TAgJCIyEa4hJCIiouqGASERkYkwyygRERFVNwwIiYhMhSOEREREVM0wICQiMhGOEBIREVF1w4CQiMhEuIaQiIiIqhsGhEREJsIso0RERFTdMCAkIjIRmbk7QERERGQkBoRERCbCKaNERERU3TAgJCIyESaVISIiouqGASERkYkwICQiIqLqhgEhEZGpcMooERERVTMMCImIiIiIiGopBoRERCbCshNERERU3TAgJCIyEa4hJCIiouqGASEREREREVEtxYCQiMhUmFSGiIiIqhkGhEREJsI1hERERFTdMCAkIjIVjhASERFRNcOAkIjIRBgOEhERUXVTowLCgwcPon///vDw8IBMJsMPP/yg9rwQArNmzYKHhwfs7e3Ro0cP/P7772ptcnJyMH78eLi4uKBOnToYMGAArl27ptYmIyMD4eHhkMvlkMvlCA8PR2ZmplqbK1euoH///qhTpw5cXFwQHR2N3NxctTYpKSkICAiAvb09GjdujI8//hiCIwxE1ZaMf79ERERUzdSogPDhw4d44YUXsGLFCq3P//vf/8aSJUuwYsUKJCUlwc3NDb1794ZCoZDaTJgwAVu3bsWmTZtw6NAhPHjwACEhISgoKJDahIWF4fTp09i1axd27dqF06dPIzw8XHq+oKAA/fr1w8OHD3Ho0CFs2rQJ//vf/xATEyO1yc7ORu/eveHh4YGkpCQsX74cixYtwpIlSyrgzBBRZeAaQiIiIqp2RA0FQGzdulV6XFhYKNzc3MT8+fOlbU+ePBFyuVz85z//EUIIkZmZKaytrcWmTZukNtevXxcWFhZi165dQgghzp49KwCIxMREqc3Ro0cFAJGWliaEEGLnzp3CwsJCXL9+XWqzceNGYWtrK7KysoQQQqxcuVLI5XLx5MkTqc28efOEh4eHKCwsNPh9ZmVlCQDSfonIfFLWrxcCEFk196uViIioUvAat/LUqBFCfS5duoT09HQEBQVJ22xtbREQEIAjR44AAE6ePIm8vDy1Nh4eHvD29pbaHD16FHK5HL6+vlKbrl27Qi6Xq7Xx9vaGh4eH1KZPnz7IycnByZMnpTYBAQGwtbVVa3Pjxg1cvnxZ5/vIyclBdna22g8REREREVFZ1JqAMD09HQDQqFEjte2NGjWSnktPT4eNjQ2cnZ31tnF1ddXYv6urq1qbksdxdnaGjY2N3jbKx8o22sybN09auyiXy9G0aVP9b5yIKg+njBIREVE1U2sCQiWZTKb2WAihsa2kkm20tTdFG1GckEJff6ZOnYqsrCzp5+rVq3r7TkSVRzCpDBEREVUztSYgdHNzA6A5+nb79m1pZM7NzQ25ubnIyMjQ2+bWrVsa+79z545am5LHycjIQF5ent42t2/fBqA5iqnK1tYWTk5Oaj9EVEUwICQiIqJqptYEhC1atICbmxv27NkjbcvNzUVCQgL8/f0BAB07doS1tbVam5s3byI1NVVq4+fnh6ysLBw/flxqc+zYMWRlZam1SU1Nxc2bN6U28fHxsLW1RceOHaU2Bw8eVCtFER8fDw8PDzRv3tz0J4CIKh4DQiIiIqpmalRA+ODBA5w+fRqnT58GUJRI5vTp07hy5QpkMhkmTJiAuXPnYuvWrUhNTUVERAQcHBwQFhYGAJDL5RgzZgxiYmKwb98+JCcnY+TIkWjfvj169eoFAPDy8kLfvn0RGRmJxMREJCYmIjIyEiEhIWjdujUAICgoCG3btkV4eDiSk5Oxb98+TJo0CZGRkdKIXlhYGGxtbREREYHU1FRs3boVc+fOxcSJE0udwkpEVZOy7AQRERFRdWFl7g6Y0okTJxAYGCg9njhxIgBg9OjRWLNmDSZPnozHjx8jKioKGRkZ8PX1RXx8PBwdHaXXLF26FFZWVggNDcXjx4/Rs2dPrFmzBpaWllKbuLg4REdHS9lIBwwYoFb70NLSEjt27EBUVBS6desGe3t7hIWFYdGiRVIbuVyOPXv24L333kOnTp3g7OyMiRMnSn0mIiIiIiKqaDLBLAjVWnZ2NuRyObKysriekMjMznz9NZ5/+21kAqjHr1YiIqIy4zVu5alRU0aJiMyKQSARERFVMwwIiYhMhBMuiIiIqLphQEhEZCJMKkNERETVDQNCIiITYX5gIiIiqm4YEBKR2YwYMcLcXTApThklIiKi6qZGlZ0goqpp8uTJGtuEEDhy5IgZelNxOGWUiIiIqhsGhERU4eLi4rBhwwaN7b/88osZelNxlFNGOU5IRERE1QUDQiKqcG+99Ra8vLzg6uqqtn3UqFFm6lHF4AghERERVTcMCImows2ZM0fr9ujo6EruScXiGkIiIiKqbphUhojIRJhllIiIiKobBoRERCbCKaNERERU3TAgJCIiIiIiqqUYEBJRhfvuu+/QoUMHjBw5Et988w1at26Nzp07Y9u2bebummkVryHkSkIiIiKqLphUhogq3OLFi3H48GEoFAr4+PggLS0NdnZ26NWrFwYMGGDu7pkMp4wSERFRdcOAkIgqnL29PRwcHODg4ICePXtCLpcDAKys+BVEREREZE6cMkpEFc7HxwcFBQUAgPXr1wMAcnNz0aBBA3N2y/RYdoKIiIiqGd6eJ6IK9+mnn2pss7GxwZYtWyq/MxWIU0aJiIiouuEIIRERVajk5GSEhIRg0KBBOHLkiLR9zJgxZuwVERERARwhJCIyHU4Z1So6OhqrV6+GlZUVYmNjkZiYiIkTJ+Kvv/4yd9eIiIhqPY4QEpHZpKenm7sLpsWyE1rJZDK0bNkSzZs3x+bNm5GdnY3IyEjk5+ebu2tERES1HgNCIjKbUaNGmbsLJsU1hNq5urri8uXL0uNZs2YhICAASUlJ5usUERERAeCUUaIaY8SIEYiLizN3N7Tq0qWLxjYhBC5cuGCG3lBl05Y8aOTIkRg5cqQZekNERESqGBASVTOTJ0/W2CaEUEvWUdUoFAqkpKRo1B3s3bu3mXpUQbiGkIiIiKoZBoRE1UxcXBw2bNigsf2XX34xQ28MM3fuXCgUCjg7O6ttnzZtmpl6VEEYEBIREVE1w4CQqJp566234OXlBVdXV7XtVXk93qBBg9Qep6WloU2bNggICDBTjyqGYEBIRERE1QyTyhBVM3PmzNEIBoGi1P7VRVRUlLm7UDEYEBolKCjI3F0gIiKq9WpdQNi8eXPIZDKNn/feew8AEBERofFc165d1faRk5OD8ePHw8XFBXXq1MGAAQNw7do1tTYZGRkIDw+HXC6HXC5HeHg4MjMz1dpcuXIF/fv3R506deDi4oLo6Gjk5uZW6Psnqgqsra3N3YWKURwQyszcjaomNDRU4+f1119HSkqKubtGRERU69W6KaNJSUkoKCiQHqempqJ37954/fXXpW19+/bF6tWrpcc2NjZq+5gwYQK2b9+OTZs2oUGDBoiJiUFISAhOnjwJS0tLAEBYWBiuXbuGXbt2AQD+8Y9/IDw8HNu3bwcAFBQUoF+/fmjYsCEOHTqEe/fuYfTo0RBCYPny5RX2/omqgt27d5u7CxWCU0a1S0pKwv79+2Fh8fQepBAC4eHhZuwVERERAbUwIGzYsKHa4/nz5+PZZ59VW8tka2sLNzc3ra/PysrC119/jXXr1qFXr14AgPXr16Np06bYu3cv+vTpg3PnzmHXrl1ITEyEr68vAOCrr76Cn58f/vjjD7Ru3Rrx8fE4e/Ysrl69Cg8PDwDA4sWLERERgU8++QROTk4V8faJqCKxML1WsbGxcHR0hIuLi9r2cePGmalHREREpFTrpoyqys3Nxfr16/HWW29BJns6yevAgQNwdXVFq1atEBkZidu3b0vPnTx5Enl5eWprXzw8PODt7S2l/T969CjkcrkUDAJA165dIZfL1dp4e3tLwSAA9OnTBzk5OTh58qTOPufk5CA7O1vth2qXPXv2wNfXF/7+/ti0aZO0vV+/fmbsFQHglFEdoqKiNIJBABg2bJgZekNERESqanVA+MMPPyAzMxMRERHStuDgYMTFxWH//v1YvHgxkpKS8MorryAnJwcAkJ6eDhsbG430+Y0aNUJ6errURlvSD1dXV7U2jRo1Unve2dkZNjY2Uhtt5s2bJ61LlMvlaNq0aZneO1VfM2fOxO7du7F3714cP34c48ePR2FhIR49emTurhGnjBIREVE1U6sDwq+//hrBwcFqo3TDhg1Dv3794O3tjf79++Pnn3/G+fPnsWPHDr37EkKojTKq/rs8bUqaOnUqsrKypJ+rV6/q7RfVPJaWlqhXrx4cHBywZMkSdOzYEQMHDsSDBw/M3bVaj+EgERERVTe1NiD8+++/sXfvXrz99tt627m7u8PT0xMXLlwAALi5uSE3NxcZGRlq7W7fvi2N+Lm5ueHWrVsa+7pz545am5IjgRkZGcjLy9MYOVRla2sLJycntR+qXXx8fHD58mXpcUREBCZOnAiFQmG+TlGRwkJz96Ba4WeWiIjI/GptQLh69Wq4urqWuu7q3r17uHr1Ktzd3QEAHTt2hLW1Nfbs2SO1uXnzJlJTU+Hv7w8A8PPzQ1ZWFo4fPy61OXbsGLKystTapKam4ubNm1Kb+Ph42NraomPHjiZ7n1TzLF++HM2bN1fbFhgYiLS0NPN0SIfk5GSEhIRg0KBB0tpZABgzZowZe1XBOGVUq7Vr16J9+/Z48cUXMX/+fGn7wIEDzdgrIiIiAmppQFhYWIjVq1dj9OjRsLJ6mmj1wYMHmDRpEo4ePYrLly/jwIED6N+/P1xcXDBo0CAAgFwux5gxYxATE4N9+/YhOTkZI0eORPv27aWso15eXujbty8iIyORmJiIxMREREZGIiQkBK1btwZQVJC5bdu2CA8PR3JyMvbt24dJkyYhMjKSo35UI0RHR+PTTz/F0qVLsXTpUixZsgQA8Ndff5m5Z1TZVq1ahVOnTuHUqVNwcHDA0KFD8ejRI5bpICIiqgJqZUC4d+9eXLlyBW+99ZbadktLS6SkpGDgwIFo1aoVRo8ejVatWuHo0aNwdHSU2i1duhSvvfYaQkND0a1bNzg4OGD79u1SDUIAiIuLQ/v27REUFISgoCA8//zzWLdundqxduzYATs7O3Tr1g2hoaF47bXXsGjRooo/AUSVQCaToWXLlmjevDk2b96M7OxsREZGIj8/39xdqzCCU0a1srCwgLW1NYCiGwXvvPMOgoODcffuXTP3jIiIiGSCt2irtezsbMjlcmRlZXFksYbLz89XG9EuKT09XWf9THMYOnQoFi1apDa9df369Xj77bfx5MkT83WsAiVOnYqu8+cjA4Azv1olc+fORVhYmNpn4ffff0dMTAx27dplvo4REVGVxWvcysOAsJrjH0vNlpKSgilTpiAzMxNWVlbIy8uDi4sL5s6di/bt26u1DQoKQnx8vJl6SgBw9MMP4bdgAQPCUqSlpaFNmzbm7gYREVVhvMatPLqHG4jI7KKiorBhwwa1epM+Pj7w9/eHl5eXtE0IIWXCJTNiEGiQqKgo7N+/39zdICIiIjAgJKrSCgoKIJfL1bY9fvwY3t7eOHr0qNr23r17V2bXSBsGhAZRrickIiIi86uVSWWIqov58+cjJCQEvXr1wuDBg9GzZ09YWVlh+vTpGm2nTZtmhh6SqqoyA7+ql/zYvXu3ubtARERExThCSFSFde/eHQcPHsTjx4+RmZkJZ2dn2NnZqbVRrscKCAgwUy+Nw7WOFS86OhqrV6+GlZUVYmNjkZiYiIkTJ7LkBxEREWlgQEhUDdjb28Pe3l7rc1V1PVZoaKjGNiEEUlJSzNCbSlJcdkJm5m4oS34AwObNmzFr1qwaX/KDiIiIyoYBIVE1V1XXYyUlJWH//v2wsHg6M10IgfDwcDP2qoJVkSmjrq6uuHz5slTmYdasWVi/fr1aLVQiIiIigAEhUbVXVddjxcbGwtHRES4uLmrbx40bZ6Ye1R5btmzR2DZy5EiMHDnSDL0hIiKiqoxJZYiqsD179sDX1xf+/v7YtGmTtL1fv35PG+3bB8hkwPXrZuihblFRURrBIAAMGzbMDL2pHMqkMlVjnJCIiIiodAwIiaqwmTNnYvfu3di7dy+OHz+O8ePHo7CwEI8ePXraSJmg5c8/zdNJeqqKrCEkIiIiMhQDQiITGTFihMn3aWlpiXr16sHBwQFLlixBx44dMXDgQDx48OBpI+UaveJghEib5ORkc3eBiIiIqiCuISQy0uTJkzW2CSHU6r2Zio+Pj1pykIiICHh6emLs2LFSm5z8fNgCKMzLqxZ3eNLT0+Hm5mbublSMKpJUZuXKlWqPhRBYtWoVoqKiEBUVZaZeERERUVVUHa4fiaqUuLg49OvXT+0nJCQEDRo0MPmxli9fLgWDSoGBgUhLS5MeH05MBAD8Xk3KOYwaNcrcXag4xQGhuaeMfv755/jpp5/g4OCAOnXqoG7durCwsEDdunUr9LjJyckICQnBoEGD1G6QjBkzpkKPS0RERGXHEUIiI7311lvw8vKCq6ur2nZzBToFykQmpdSYS05OxvTp02FtbY3Y2Fj4+/sDKLpY//rrr03ery5dumhsE0LgwoULJj+WueTn58PKSuVrtIqMEKampmLjxo3YvHkzQkNDMWzYMHz77bcV/hmNjo7G6tWrYWVlhdjYWCQmJmLixIn466+/KvS4REREVHYMCImMNGfOHK3bo6OjK7knxYrXEJYWEFb2xbpCoUBKSop6wASgd+/eFXK8ypKSkoIpU6YgMzMTVlZWyMvLg4uLC+bOnVtlsozKZDKEhYVh+PDhiIuLw4ABA3D37t1KOW7Lli0BAJs3b8asWbMQGRmJ/FI+m0RERGQ+DAiJqiHVdXhCGRAWFOh9TWVfrM+dOxcKhQLOzs5q26dNm1Yhx6ssUVFR2LBhA5o2bSptu3LlCkaMGIH5zz8PwPxTRpUsLCwQHh6OESNGID09vcKP5+rqqrbmddasWVi/fj3WrVtX4ccmIiKisuEaQqJqSG3qn6UlAECUkmVUebGuNGvWLAQEBCApKakiuohBgwapBYPKdY8BAQEVcrzKUlBQALlcrrbNyckJBQUFpf4OzMXCwgIeHh4VfpwtW7ZorHkdOXIknjx5UuHHJiIiorLhCCFRFWbQOrziEUJZKSOEW7Zs0dg2cuRIjBw5snydNFBUVBT2799fKceqSPPnz0dISAhsbGzg5OSErKws5OfnY8GCBcCGDebuHhEREZFRGBASmUhQUBDilUXiTcSgdXiyogmKVXV0Ssna2trcXTCJ7t274+DBg3j8+DEyMzPh7OwMOzs7AMChuDgz9+6pnJwc/P7777h//z7q168Pb29v2NjYmLtbREREVMUwICQyUmhoqMY2IQRSKqDsgyHr8CyKA8LCKpLhsiRlJs7du3ebuysmZW9vD3t7e/WNVeR3sG7dOqxatQqdO3eGk5MTMjMzcerUKYwdO7ZSRoTv378vBaL169dXe04jMysRERGZFf+vTGSkpKQk7N+/HxYWT5fgCiEQHh5u8mMNGjRI63bVdXgyIwNCfRfrpqIvE2f79u0r5JhVgagiAeEXX3yBQ4cOqX1G8/Pz0aNHjwoNCPft24cZM2bAxcVFCkQzMjIwevRobN26tdZ9HoiIiKoDBoRERoqNjYWjoyNcXFzUto8bN67iD372LNCuHXDuHNCmDYCnAWFpwYiui/XZs2ejZ8+eJu2mvkycv/76q0mPVRUkJyejQ4cO0mNzZxm1t7dHQkICAgMDARR9NhISEqSprRVlxowZ2LVrFxwdHaVt2dnZaNKkCX7//fda83kgIiKqThgQEhkpKipK6/Zhw4ZV/MFPniz67969RgeEui7Wg4ODpYDQVMXr9WXiVHrw4AHs7e1hWZwltbpYuXKl2mMhBFatWoWoqCi0ryLrONetW4f58+dj2rRpKCgogLW1NTp16oT169eXeZ+GTPW0sLDAnTt31D5jd+7cAYBSPw+kX0JCAubMmYPnn38effv2xZQpUyCXyzFv3jz4+fmZu3tERFSNMSAkqkaS/vwTnQFcPHkSz5Z4rrTJirou1lWnFZqqeL3eTJzFHB0d8eabb+K///2vUfs2t88//xyenp4IDQ2VgnELCwvUrVvXzD17ys3NDZ9++mm592Ps1N8vv/wSMTExSE9PhxACMpkM7u7u+Pzzz0v9PJB+U6ZMwebNm5GZmYmgoCAkJSXBwcEBgwcPxoEDB8zdPSIiqsYYEBJVI/cyMwEAWRkZ0jaZcmRQpn+ioq6L9S+//PLpvkxUvF5fJk5VW7ZsqXYBYWpqKjZu3IjNmzcjNDQUw4YNw7fffotRo0bh14QEc3dPu2PHgM2bgUWLjHqZsVN/vby8sHXrVq37Cg8PL/XzQLrZ2dmhadOmaNq0Kby8vNCkSRMAqHYj7EREVPUwICQykfT0dLi5uVXoMZRT9gq0BGiyUgJCfRfrSsri9cri4rNmzcL69euxbt26MvVXaybOYtsAbMjLK9N+zUkmkyEsLAzDhw9HXFwcBgwYgLt37xY9WUWSypT0pHdv2CkURgeEhkz9NYa+zwPp5+bmhoKCAlhaWkr1PPPz81FYRaYpExFR9WVRepOaY9asWZDJZGo/qhfwQgjMmjULHh4esLe3R48ePfD777+r7SMnJwfjx4+Hi4sL6tSpgwEDBuDatWtqbTIyMhAeHg65XA65XI7w8HBkFo/sKF25cgX9+/dHnTp14OLigujoaOTm5lbYe6eKN2rUqAo/hrKWn7EjdobasmWLFAwqjRw5Ek+ePDH5sfoD+LIC9ltZLCwsEB4ejm3btuGHH34o2lhFA8IHDx6U6XXKqb+9evXC4MGD0bNnTwwcOJBTPc1g06ZNGqOBVlZW2LNnj5l6RERENUWtGyFs164d9u7dKz1W/R/sv//9byxZsgRr1qxBq1at8K9//Qu9e/fGH3/8Ia27mjBhArZv345NmzahQYMGiImJQUhICE6ePCntKywsDNeuXcOuXbsAAP/4xz8QHh6O7du3Ayi6696vXz80bNgQhw4dwr179zB69GgIIbB8+fLKOhVURl26dNHYJoTAhQsXKvzYUkCobYSmigYj+lS/HmuysLCAh4cHgKL3kwxgKgD7QYPKlZinKjB06m9pFAqF9B1648YNnD9/Hs2bN9e4+UDGY01HIiIqr1r3fxIrKyut0/qEEPj000/x0UcfYfDgwQCAb775Bo0aNcKGDRvwzjvvICsrC19//TXWrVuHXr16AQDWr1+Ppk2bYu/evejTpw/OnTuHXbt2ITExEb6+vgCAr776Cn5+fvjjjz/QunVrxMfH4+zZs7h69ap0Ibl48WJERETgk08+gZOTUyWdDSoLhUKBlJQUjQux3r17V/ixLbRkFJXWEBoQEObk5OD333+X6hB6e3vDxsbG5P387rvvMG/ePLRr1w69e/fG3Llz4eTkhOnTp2PAgAFSu5oQEKopLEQ0gOUA6i1dWq7EPFWJoVM9165di4ULF8La2hqhoaH48MMPAQDPPPMM7ty5gy+//BIbNmyAv78/fvvtN/j7++Ojjz6q6O4TERGRHrVqyigAXLhwAR4eHmjRogWGDx8uXaRdunQJ6enpCAoKktra2toiICAAR44cAQCcPHkSeXl5am08PDzg7e0ttTl69CjkcrkUDAJA165dIZfL1dp4e3tLwSAA9OnTBzk5OTipLCtAVdbcuXOhUCg0tk+bNs0MvXkaVJVW+27dunUIDAzEN998g4SEBKxevRqBgYHlKkWgy+LFi3H48GEsXrwYH374IY4fP45Dhw5h4cKFJj9WVZGeng4Zin4PzwJo3rw5Nm/ejOzs7DIl5jGlygq8V61ahVOnTuHUqVNwcHDA0KFD8ejRI+m9b9y4Efv378fcuXOxY8cOaRYFERERmU+tCgh9fX2xdu1a7N69G1999RXS09Ph7++Pe/fuIT09HQDQqFEjtdc0atRIei49PR02NjZwdnbW28bV1VXj2K6urmptSh7H2dkZNjY2UhtdcnJykJ2drfZDlWvQoEFqn4G0tDQAQEBAQOV1QiWBjHKEUJSSXOKLL77AoUOHsGzZMsyZMwfLly9HQkIC/vOf/5R6ONWbIIawt7eHg4MDGjVqhJ49e0Iul8PW1lZjVNXcBdxNadSoURBCwBXA3yrbZ82ahYCAACQlJVXYsZOTkxESEoJBgwZJN56AommqhkhISECvXr0wceJExMfHo0OHDujRoweOHj0KALh//z7+/PNP3L59W+9+LCwspGnN0dHReOeddxAcHAyZTIaffvoJnTt3xvbt26FQKHDw4EG1Eiik3549e+Dr6wt/f39s2rRJ2t6vXz8z9oqIiGqCWjVlNDg4WPp3+/bt4efnh2effRbffPMNunbtCkAzU6MyPb8+Jdtoa1+WNtrMmzcPs2fP1tuGKldUVJSU9c+cSgsI7e3tkZCQgMDAwKL2QiAhIUFtTVhoaKjmfoVASkqKUX3x8fGRMiIqRyBzc3PRoEED9X2X8nmvivSuIe3fH1sAlEzhMnLkSIwcObLC+mRw/UghtJYn0VXjLjAwEDKZDDdv3kRhYSEKCwuRl5eHdu3a4csvv9SoRdivXz+1LLW9e/eGh4cHPvjgA/zxxx9ITk7Gtm3b4OzsjG7dumHNmjUVdEaqBlMWk585cyZ2794NGxsbTJs2DYcPH8ayZcvw6NGjCuo9ERHVFrUqICypTp06aN++PS5cuIDXXnsNQNHonbu7u9Tm9u3b0miem5sbcnNzkZGRoTZCdPv2bSlxhJubG27duqVxrDt37qjt59ixY2rPZ2RkIC8vT2PksKSpU6di4sSJ0uPs7Gy1GmFU+ZQjIpVC3zrBUgLCdevWYf78+Zg2bRoKCgpgbW2NTp06qU0ZTUpKwv79+9WK1QshEB4eblQ3tRVFt7GxwZYtW6R9ylA91xDqXUNa/Pup7DDX0PqRorAQMi1163TVuPv777/Rtm1bnDhxQvqeyc7OxiuvvIKoqCiNWoT//Oc/1R6npaWhXbt2iI+PBwDExMSY5g1XE+UtJp+cnIzp06fD2toaDx8+xKVLlzB9+nSkpKRg5MiRGDhwIB48eFAtExYREVHVUaumjJaUk5ODc+fOwd3dHS1atICbm5taCu/c3FwkJCRIwV7Hjh1hbW2t1ubmzZtITU2V2vj5+SErKwvHjx+X2hw7dgxZWVlqbVJTU3Hz5k2pTXx8PGxtbdGxY0e9fba1tYWTk5PaD5nX7t27zdsBA6eMurm54dNPP8Xhw4eRmJiIX3/9FUuXLlVLshQbGwtHR0d4enpKP82bN8e4ceNM3OXqGAoWMWQNaWUHhMr6kUq6pqkW6qj7qKxxB0Ctxh0APHnyRK0W4Z07d2BtbW1QLcKoqCij3kdNowy027dvLwXa9evXN7iYfHR0ND799FMsXboUDx8+xMCBA/Hpp5/C3d0d58+fR9OmTaFQKKp1wiIiIjK/WhUQTpo0CQkJCbh06RKOHTuGoUOHIjs7G6NHj4ZMJsOECRMwd+5cbN26FampqYiIiICDgwPCwsIAAHK5HGPGjEFMTAz27duH5ORkjBw5Eu3bt5eyjnp5eaFv376IjIxEYmIiEhMTERkZiZCQELRu3RpA0Xqstm3bIjw8HMnJydi3bx8mTZqEyMhIBngVYMSIERV/kGHDgAqcEijRFvQZkWVUw+LFgEoio6ioKLi4uGg0GzZsmPH71kNZTLs6hoUl15AqBQQEmG2E0ND6kQU6AkJdNe5+/fVX1KlTB02aNIFcLkf9+vXh5+eH/Px8g2oRVuroeRWkK9A2tJi8cuS3efPm+PPPPyGTybBgwQJYW1tj8+bNcHV1xcsvv2zWhEVERFT91aopo9euXcMbb7yBu3fvomHDhujatSsSExPh6ekJAJg8eTIeP36MqKgoZGRkwNfXF/Hx8WqJD5YuXQorKyuEhobi8ePH6NmzJ9asWaN2MRUXF4fo6GgpEceAAQOwYsUK6XlLS0vs2LEDUVFR6NatG+zt7REWFoZFixZV0pmomSZPnqyxTQihlmSjwnz3XdF/KyBjpyrlHRzVQEoZfJQ2QqjVpEmAtTWQm2vUy1SnshlTay89Pb3oIjk/v+Z8+fz8M/Df/wKbNwNC4DsAnwBoP3Kk3pIb5qBrhFCX9u3bS9NCjalFOGLECMTFxamNnldWyZOqRDX5i5IxxeSVI7/KYL9z585o27Yt1q1bB6BoJHj9+vXSYyIiorKQieo8d4uQnZ0NuVyOrKysWj+62LhxY2zYsEFje0xMDE6cOFGxB1cm6qjgP6fjU6eiy/z5SOjVCwHFF5UHe/dG9717cXjsWHRbudK4HcpkgKUlYOQIw8svv6yWxMTPzw8TJ05EYGAgfvnlF52vCwoKQnx8PB4rFLB3csJ9mQz1yxLIViUNGgD37wNC4OAbbyB20yb8DCAvPR0+Pj5IS0uDnZ0devXqpbHmrrLcsbBAQyHwMD0ddUpZp2wMXTdhtmzZgkuXLknb1q1bh1WrVqFz585wcnJC5vnzOHXqFMbOnCkl2ynrTQYiIqqZeI1beWrMTXqit956C15eXhplP0aNGmWmHlWA4uBJazbasgZWJYJYQ0ZySktiojcTJ4DC4nY14m6Ura3aQ3sAdQDYqpTcAKCRhMYcCowcCS5NXFyc1pswJW8KKEueSMmKZDLkA+jxn/9IAaHBmVJJjUKhYPkOIiIql1q1hpBqtjlz5mitARkdHW2G3lQMoS2Rh4FJZXRSeZ2hxetLS2KiUChw5MgRHD9+XPpJSkpC586dAZg+MDGnrJycon/k50MIAR8AyjOqr+RGZShZP1IYORKsrf6kEEJKqqO8CRMQEKD2U/ImjLLkibQPAAmA2tRT1fVymzdvRnZ2ttZMqdVdcnJymV63du1atG/fHi+++CLmz58vbR84cKCpukZERLWU+W9ZE5HB9AZ9JpiuqjGSg6IkGD169FCro6csH6FKtdaeMhNnyeQrykychTXoIv92ZibkAPD4MVBYiE8BlFypp1pyoyIYWj9SV1IZXa8/fvw43N3d4e7ujpdfflnKnpyamort27djzpw5WvdX8iaMRskTAJ0AtRsNJdfLlXd9nClrAJbVyhJTuIUQWLVqFaKioozOwLps2TIsXboULVu2xLZt2zB06FCsXbsW2dnZAMo25fbGjRvw8PCQHleFc0ZERJWPASFRNVIhI4QqDCleb4hBgwZp3R4QEADA+CmjyiQlVVGBhUXRKKtKsCVDca1FbVN7K4Ch9SN1jczqev3zzz+PNm3a4JdffoGXlxeaNWuGrVu3onfv3vjoo49w+PBhg/qnLHkiUZ4XlZInpd1kMFZ5awCawueffw5PT0+EhoZKnwULCwvUrVvXoNcPHjwY33//Pb788kv8+eefWLhwIa5fv45nnnkGnp6eeOGFF3D16lWsXLkSGzdu1DvldufOnWr7FkJg1qxZmD17Nl599VUAVeOcERFR5WNASFSdKIM+lUBD+pcJRggNKV5vCrqyXZo1U2wZWRT/Lgrz8ys8qZAuyvqRJUuGKOtHSr3ScdNA1+vd3d3x6NEjnD17Fs7OzoiNjUVwcDCys7NRr149E7+L8lO9caCsAdi0aVOpBiAAg2sAmkJqaio2btyIzZs3IzQ0FMOGDcO3335r8Lpm5ejfxo0bMXnyZHzzzTdo2bIl0tLSMGTIELi7u2PevHmoW7duqet6IyIi0KlTJ3Tt2lWqA5qZmYkTJ05IAaEx56zk6CIREVVfDAipxtizZw+mTZsGS0tLREdHY/jw4QCAfv36YceOHWbunWloGyFUXtxpHT00ksZITinu378vJZ+pX7++wa+TRghLjKAZmqSkqhgxYgRmFf/7yaNHanUIS44QKktuVARd0w9L1o/UFYjrev3o0aORnJyMhQsXok2bNujYsSNWrlyJ999/H3Xq1Clfp8vBkBsHyhqAlpaWZaoBaAoymQxhYWEYPnw44uLiMGDAANy9e9fg17ds2RI//fQTOnfuDG9vb5w4cQILFy7EqVOncPfuXXz44Yc4dOgQRo0ahW3btumdcnvkyBFs3rwZKSkpGD9+PPz8/HDs2DHMmDFDOp6uc3bnzh21EUZto4tERFR9MSCkGmPmzJnYvXs3bGxsMG3aNBw+fBjLli3Do0ePzN01kxHaCrorA8IKGp3asWMHXFxc4OvrK23bt28fZsyYARcXl6IyApmZyMjIwOzZs9GzZ89S96lrDWFVzRSrLwBRBn25KkXgtU0UHTVqFOLj4yuqi4YxIBgquRbtn//8J4CitWjOzs5wdnbG3r17AZjvJowhNw7KWwPQlCwsLBAeHo4RI0YgPT3d4Nd99tlnWL58OZKTk7Ft2zY4OzujW7duOH36NF555RX88ssvUoCpOuVWGbzVr18f33//PXbs2CEFcOPGjZPWI2ZmZqodT9c5S09Px4oVK/SOLhIRUfXFgJBqDEtLS2ka25IlS7BmzRoMHDgQDx48MG/HTEnbBb0yEKygkY+NISG4DSBeJeCcMWMGdu3apZbuPjs7G8HBwYYFhDpGqgxNUlLZ9AUgshs3ADydMqosuCF8faVgUbXkhjkZUpjemPIPprwJ891332HevHlo164devfujblz58LJyQnTp0/HgAED1NqW58aBoeU/DE3SYsz61vDwcKPWwtrY2CAmJgYxMTEazzVt2hTbtm3TGmCWNj102rRpyM7ORlpamkH9uHTpEj777DO9o4tERFR9MSCkGsPHx0dtylRERAQ8PT0xduxY83bMlIqnhaqNQClHDY0dITQwgNS2elAmk+HOnTtqAeGdO3fUkpLoPbSJ6hBWVjFzfQGIiI0FUDxlVwgoAKQAwNGjasFH7969TdYfQ2lMUy1lWvGIESPU1qItX74c//nPf3SWfzDlTZjFixfj8OHDUCgU8PHxQVpaGuzs7NCrVy+NgLC0GwemSEJUMjD+6KOP0LlzZ+zZs0caMda1vrUy1sLu3r0bALSu4zMkgHNyctJaL1SbOnXqYOrUqVAoFDpHF4mIqPpiQEg1xvLlyzW2BQYGGnwXvDrQlklU2mbsCKGR7VNSUjBlyhRkZmYiNzcXnTp1ghACTZs2RZ06deDu7o4vv/zSoH0p1zuWNyCsrGLm+gKQP4sDwoLcXEAIzAWgAOBYIkBXltyoTCWnqSoDcX0BS8eOHaUbK8rXayv/kJ6ebtKbMPb29nBwcICDgwN69uwJuVwOQP+IXkUGXiWTtDg5OaFOnTqoV68e+vXrJ7XTtr61tCmtFbmeFACysrLg5+eH/v3744cffjBZAOfo6Kh3dNEUgThLXxARVT4GhETViTKIUwk2ZGWcMiry87WuddMlKioKGzZsQNOmTaVtV65cwYgRI/Drr78adWxDpi4aorTMipVJGeQqC27kFf9e0tLS0KZNG6nkRkXQNtKjbZqqsjB9yYDl3XffBQDcvn0bV65cQWhoqNrrtZV/0LUmUttNGI2LfAByAPOOHpUu8n18fKSEJsqstrm5uWjQoIHO960v8DJmCqo2Jesivv/++3Bzc0NMTIza71LbNNXSprQas540JycHv//+u5S8ydvbGzY2NmptFAoFRo8eLZWo2LBhA/z9/fHbb7/B398f//d//2fQjTFDz9m//vUvAOrrFrUF4mUZwWfpCyIiMxBUrWVlZQkAIisry9xdqd2KQrQKP8zBESOEAERCz57StoSuXYUAxP6hQ43aV152tmH9Lm7j5+en8TnLyMgQfn5+Rh1XCCH+2r9fCEDctLBQ2x4fHy+6dOki/Pz8xMaNG6Xtr776qtb9DBkyRFy6dElt27p164Stra3RfSqrCzY2QgDixq+/igMDB0rnK+fxYyGEEIGBgRXehzZt2oi8vDyN7b169RJCCJEukwkBiCs//yyEEGLatGni1q1bGq9ftmyZxus7d+6s8dOpUychl8sN7p+vr6+4cuWKOHPmjHBzcxNXAXEPEAEBAca/WRUl34fSsmXLRJcuXcTDhw9Fenq6cHNzE5mZmeLJkyfipZdeKtcxjVHec7d27Vrh5+cnoqOjxbRp00SvXr2Eg4OD8PT0FPPmzZPaBQYGip7F3wk9evQQBQUF0nOlvd/evXtL/zb0nHl4eIgDBw5o/HTs2FGt3UsvvSQuXLggLl26JIYOHSoWL14s9VEX1c+E6t/OK6+8ovd9EFHNw2vcysMRQqpRDLmbXq0VjwLKVEYIhfLfRq4hLMjNNWqKwPz58xESEgIbGxs4OTkhKysL+fn5WLBggVHHBZ6OppUcoTQ2SYmpi5mXh0YdwuJ/W1tbV/ix586dC4VCAWdnZ7Xt0jRVZSba4hHCklNgla8vmbxn2rRpePfdd5GSkqIxddOYNZEa9e2KE6GUtSag6kjWzz//rDGSFR0dje+//97oKaimplAoynXuvvjiCxw6dEham+vn54e7d++id+/ecHBwwNChQ7F27VoIIdRKVGzfvh2vvPIKkpOTpXW+oaGhGvsXQiAlJUV6bOi0XUOT+pRlBL8qlAshIqp1zByQUjnx7slTJe+mjxs3Tvj7+4t169ZV/MEraYQwYdiwohFClTvsCZ07CwGIfYMGGbWvhzdvGjVCqPTo0SNx48YN8bh4BEzVzZs3DTr2hZ07tY4QlhyJWL16tQgJCRGdOnUyaL8V5dtvvxU+Pj5ixIgRYs2aNaJVq1aiU6dO4scff5RGCK/u3St+GTBAOl9PHjwwaR9OnTol+vXrJ1577TVx+PBhaftbb71V6mvTi/t0+YcfDDrWuXPnpH9///334v79+xptDhw4IIQQWkcms7Oz1R4PGzZM5OfnP90AiDxA70iRPoaMZL3//vvqxxRC5OTkiCFDhpTpmGVR2rkrTa9evcT+/fulx/7+/mLv3r3SaGB8fLzo3r278Pb2Fjk5OWLRokWiV69eonXr1qJr164iKipKfPPNNyIoKEg4ODiIzZs3i8uXL4vLly+L0NBQcenSJYPO2UsvvWTUyL2SKUfwtX3OiKhm4zVu5WFAWM3xj+Wpbt26qU2VEqLoIqJbt24Vf/DKCgiHDi0KCLt3f7qtY8eiKaOvvWbUvrL//rtMAaE+qtPP9Plj27aiaZaWlmrbx40bp3EBuX//ftG6dWuD9ltR9AUgfxYHhH/v2iUO9O//NCBUKIpevHq1EEZO59WmLNPvlG4W9+nSli2lto2PjxeOjo7Cz89PTJ8+XfTs2VN88MEHonPnzsLHx0cEBASIdevWieDgYNGyZUvh4OAgHBwcRJs2bcSZM2eEEAZMky3ujyEX+dpuMqhOKxwxYoT077IGmMa6fv26+OWXXzQ+q6VRDbQNcfPmTfH+++8Lf39/4evrKzw9PcWbb76pdk5SU1NFnz591F63d+9e4e/vLwYMGCAaNmwoAgMDRdOmTYWfn5/G52bTpk2l9qNt27YiICBAjBs3TgwePFi4uLiIgIAA0aFDByGE7mAtLCzMqPdLRKSK17iVh1NGqcawt7dHQkICAgMDARRNh0pISICdnZ2Ze2Y6QlsCGeV0QCOnVOkqDm8IQ5OYqMnJARYtAiZNkqYullRVM8UaMpVOWXZCeqz8fbz5pkn6YIoEOrrOu6qZM2eiU6dO+Omnn/Dss8+iT58+GD16ND7//HNcvHgRDg4OaNGiBVJTUxEaGoqzZ8/C2toas2fPRmBgIK5cuWJwCRRDpm9qS8CiKwFN/fr1DTouUDQNUd/xSyZYGTt2LGxsbFC/fn3Uq1cPffv2xW+//Yb09HScPHlS7bV79uzBtGnTYGlpiejoaAwfPhwA8NJLL0mF5A3h5uaGTz/9VOfzaWlpaNeuHXbt2qW2XbVOaPfu3bF//36pTmh2drba52bYsGGl9uPq1avYtWuXlOhl6tSp2LJlC86cOQN/f39cvXoVBQUFsLe3R/fu3dGwYUOjsr3euHFDa/kMIiKqHIYVDSOqBtatW4cff/wR3bp1Q9euXdG9e3f89NNP0gVjTSDTkmVUW+ZRQxTk5pa5HwqFAkeOHMEXX3yB48eP4/jx40hKSkLnzp11v2jvXmDaNGDlSpPVIdyzZw98fX3h7++PTZs2SdtVywKYgjIAAaAzA2bJANvQoMhQyqyXSrNmzUJAQACSkpIM3ocopQ5hUFCQtHbLwcEBrVu3Ro8ePTBt2jTY2tqiSZMmUtAll8thYWEhrZF8//334erqiuDgYKOCHqUuXbpo/HTu3BnHjx9Xa5ecnIw///wTQ4cOxfjx4wEAZ86cQZMmTXDjxg107NhRZzbKlJQUvPrqq/D398crr7wilWZQXUenpKyLuHjxYnz44YewsbHBkSNHcPfuXTzzzDNwcXHBjh07cPHiRY3XKtfC7t27F8ePH8f48eNRWFiIwsJCJCQkoFevXpg4cSLi4+PRoUMH9OjRA0ePHjX6nEVFRWndbmFhgTt37gB4+rlR1gkty+fG0dERBQUFaN++Pby8vPDWW2/hwYMHsLa2xpEjR1BYWIiNGzdi3rx5OHnyJPr164eQkBCtGWJ37typ9rNjxw4MHDgQO3fu1Hn85ORkg/tKRETG4wgh1Ril3U2vCYSeshMVPUK4cuVK6d8vv/wyli5dim+++QZRUVHSham+WnvnL19GKwBXzpyBcHc36ti6GJuEpqy0fa5sbGywZcsWXLS1BVBcSkNLUhnY2ADlCL6VypNAR+pVcUCoL8HI0KFDpXILbm5uCA8Ph6enpzT6m5+fj2eeeQYhISG4desW+vTpg/z8fOTn5+OLL75A/fr1ERMTY9B7EgUFkBUnljE0AYtq7ckuXbqgRYsW2L17N1q0aIGjR4/i9u3bGDRoEA4fPqyRZCo6OhobN240qHRKyVHhffv24a+//kK9evUQHh6OxMREhISESAlfVFlaWqJevXoAgCVLlmDNmjUYOHAgnn32WZOWVdCVsOjLL79ETEwM0tPTkZubizfeeEOtTqixiZe6du0qnTPlzQJra2t4eHjg9u3bUpKZF154AZ9++qlUlqNkkhkhBCIiItCpUyd07dpVummSmZmJEydO4NVXX1X7nlG+ZtWqVWrfM0REZFoMCKnGys/Ph7+fH1b95z/o2LGjubtjGsoRHpXg7+PLl7EHxo9IGTtC+Pnnn8PT0xOhoaHo1q0bgKKRiLp16xpUay/z/n0AwF9//YWGRo4Q6irkrevC+8GDB4a/MRPROWVUmUmzsBDQEjxUpsLiz09SUhL279+vFswIIRAeHq42bVc56qo6bdfKygpJSUmwsrLC48ePkZmZCWdnZ9jZ2Umfg5JTGDWmUBZv7xcSgp0//wzAgEypxVSnzrZo0QIXL17E6dOn0apVKwBFI2IWFhZYt24dVq1ahc6dO8PJyQmZmZk4c+YMdu3ahcjISGl/Tk5O0uivqpLTUgcPHoxDhw4hJycHU6ZMgbOzM5ydnfHw4UOtr1WtYRgREQFPT0+MHTsWbm5u6hlXmzQBULaMq7t379a63cvLC1u3bgVQNOqrr+ah6t/W2rVrsXDhQlhbWyM0NBQffvghACAjI0Otf76+vnjvvfcwefJktG7dGtbW1ti8eTPq16+vlnU4r7je6JkzZ/DOO+8AADw8PNC4cWOkpaVh/Pjx8PPzw7FjxzBjxgwA6t8zMllRHmLl9wwREVUQ8yxdJFPhglvd7t64ITIA8Z82bSr+YJWQVCY2NlYMf+YZEQuI4W5uIjY2VkyaNEm4WVsLAYi9ffsatb8bx44ZlVSmsLBQxMXFiddee01s2LBBFBQUiODgYCGEYbX2TvzrX0IA4pfu3cWZ1auFAMS1EklldNGVrKYqJKFRJpU5v2GDOPDqq9L5enDnjhBCiLzi50VubqX1qaQbxX268NVXQgghPv/8c3GnuH+qDEkwoo+uz4Gfn5/IyMgQDx8+FB988IEYB4gCQHR/+WWjj6GauTIiIkJERESI7t27CxsbG5GdnS2ys7PFgAEDtCaZ2r9/v3BychI9e/YUgwYNEq+88oro3r27OHjwoNH9KCuNjKuiKClLeRPilLXmoerfVteuXUVu8ed02bJlYsiQIeLhw4cafVP9PT969EicPHlSLFy4UHRXSXal2i4oKEikpaUJIYS4deuW8Pf3F9nZ2WLOnDni9ddfV6tlqu97hohqF17jVh6OEFKNZfHkCeoB6H3lirm7YhJxcXGY3KQJfP76C2fkcjxfvE5u+4oVQF5emUcIC2HYYmKZTIawsDAMHz4ccXFxGDBggLRWzJhaewK617IZm6zG3Elo0ovr6QFFU3CFlimjecp6jyaqo3b//n1pCqQxSVSAp+dd19Q7QxKM6KPrc6Axkrt0KQYCeKBQGH2MLVu2YO3atejfv780krV69WoAwCuvvIL9+/fjxx9/RO/evTWSTBUWFkp1+lRHNiuT6lpXJSsrK+zZs6dc+y1tyq0hf1uqa0Kjo6Ph5eWF4OBg3C8e3Vfy8vIC8HR08cUXX8SLL76ISZMmqbV7+PAhzp49C4VCgdatWwN4OoLr6OiIadOmITs7W+3vVd/3DBERVQwGhFRjSQFPDSlo/NZbb6HZoUMIACCrWxfdi6dn9pXLgSdPjA44yppUxsLCAuHh4RgxYoQUEOmauqZKOf1LQHe2y/IW8q5so0aNwn+K/60xZbRkgF5KQpfS7Nu3DzNmzICLi4s0BTIjIwOzZ89Gz549DdqHIVlGddE1bVeVrs+BxhRKAJ4A3inj1N5Vq1bh1KlTsLa2xmeffaZWoF1p3bp1mD9/PqZNm4aCggJYW1ujU6dOWL9+Pezt7WFvb1+mY1cUQzKu6qNryu1zzz0HALh79y6cnZ1hY2OD3NxcLF68GD169FD72+rXr5/a76l3797w8PDQWBO6YsUKANozwColJyejbdu2WLhwIdq0aYOMjAw4OztDoVCo3chwcnLSGqxq+54hIqKKwYCQaqzyZNGsiubMmYMDyos3lQvf1+vVA27dMjrLaHkzfVpYWBiVKl6mGiwVB0eFxUGikqHryCqbIaMroqBA7T2W/H2I/Hyov1vjqJYSUFKWEjA4ICxHUKp68a9rXZqu7VpHcgEk/fJLmfpiyEhWRSWZUigU0u8gOTkZ7u7upQbK2l5raoMGDVJ7rFzPqRx9c3JygpWVlUbiHdW/rX/+858a+2jXrh3Onj2LLl264NGjR1KmWyGEdJNn5cqVao+FnkQwjo6O+PHHHw1+X8Z+zxARkfEYEFKNVdMCQgDSKKBMZTRQaykKQ3ZVnPDBtMURSj8eoDswKXlRq6QvWY02hoxmGUPvyOXBgwCKp4yqPFcy62thXh6MTxvylLKUgGpAoSwlUJqSWUZ1USgUasHln3/+Kf37wYMHCA0NhRACv/76q0amUlGcpdQYZa2FqTqSJYTQGMkyxe+/ZIIVJycnAMCyZcvw/vvvS0FPQUEBzp07p/e1yuQsAwcOxP79+zWOlZycjA4dOpSrv6q6dOkiBYRnz55F+/btcenSJenz6+rqiidPngDQ/7cVFRWF/fv34969e/jrr7/Qr18//O9//0Pr1q0xe/ZsLF26FGfOnMGkSZNga2sLuVyO4cOHw8vLi4lgiIiqEQaEVGMVVlZAaOJ6c/pII1DaRqLKWHbCmN6XTOPv7e0NGxsbw46nEoCWZ+qiIfRNZSsLfSOXsuJRW5GfrzXLqHJUsKCcAaFqKQHlaIxqKQF9lL1Snnd9AYtq8NuiRQspG+mIESOwcOFCCCGwfft2LFiwQGuWUmOUJSBcvHgx/vnPf+LMmTPw8/MDUDRS+vnnn0vZTXX9/ksWm587dy6cnJwwffp0DBgwQK1tyWmp48ePR926dZGbm4tFixYBKAo8ZTLNcV99U1oro6yCQqGAr68v9uzZgzfffBMA0LlzZ/z111/S81cMWFutHIVt3LgxkpKS1NYCJiQkoFmzZoiNjcWpU6dw6tQpfP311/j++++RlpaGb7/9VqPsBKAl4+zwopyz/fr1w44dO/S+p4oaXSUiqu0YEFKNJQUgWi7YTHugSlyjqDyW6ghhWesQGjlCqC2N/6lTpzB27FjDauGpXPwrRwjLG0obm4SmrPSNXF5SHreUKaPlHbFWLSVQVsrPiL6ARTX4jY2NhaOjI1xcXPDJJ5/A09MTADBixAhpu6px48bpPLbazQQA3ijbOdmxYwdiYmIQGxuLhw8fws7ODleuXEH//v3h5eWl9/evLDavUCjg4+ODtLQ02NnZoVevXhoBYclpqYsWLYKDgwNu3LiBTz75BMOGDUNISIhUWkHfa9u2bYsWLVrA1dW1UsoqzJ07Fz169AAAKeEOUBTEAUXTNl988cVS96NcE9qtWzd8+eWX0lrAW7duITs7Gy4uLlAoFGjTpg3atGmD1atXQyaT6U0EM3PmTGzZsgUNGjTQWjvU2NFVIiIqv1oVEM6bN0+6e2lvbw9/f38sWLBAuuMJFNWL+uabb9Re5+vri8TEROlxTk4OJk2ahI0bN+Lx48fo2bMnVq5cKdWTAorqNkVHR2Pbtm0AgAEDBmD58uVSpj2gqCDye++9h/3798Pe3h5hYWFYtGiRwSMupF+hlgu1ilDetWGG+u677/DRiRPwBdDs/n283bo1nJycEKpQwA+o8DWEX3zxBQ4dOqQ2KpSfn48ePXqUOSAsr6qQhEYafdNVh7BYZX0e9So+7/rW4KkGv6ojVqpTC7/++mutu9eVpVTjZgKAUwDe+OEHjGvb1qi3oJq5Mi8vD6dOnUK/fv3w6NEjqbi8rt9/yWLzcrkcgPaELiUTrCxbtgyNGjXC7NmzkZ+fLwU9CxcuVHvd5MmTYWlpiXfeeUfavxACVlZWaNy4MX7++Wds3LgRmzdvRmhoKIYNG6ZzNK2sdK0nVP0dGpIISkk1qAQAT09P2NraSo9ffPFFWFpa4vz58+jRowe2bt2K9PR0rcGdpaUlRo8ejf3792utHWpIwiAiIjKtWhUQJiQk4L333kPnzp2Rn5+Pjz76CEFBQTh79izq1Kkjtevbt6/a/wBLBmgTJkzA9u3bsWnTJjRo0AAxMTEICQnByZMnpeK9YWFhuHbtmjSF6R//+AfCw8Oxfft2AEBBQQH69euHhg0b4tChQ7h37x5Gjx4NIYTWBAwVLT8/v9xZ7qqaylpDWN61YYZavHgxVrRvD5/ERLS9dQt/3b0LOzs7+MrliAWMDgiNnbZpb2+vkcY/ISHB4LT9agGhiaaMVoUkNMqbAYX5+eqJc0w8QmgSxQGhodkkTUXjZsK//oV8AP7ffYdxJRKZlEY1c2VgYCAUCgW2bNmidlNC1++/ZLF5AMjNzUWDBg002pZMsOLl5YU2bdpIgVTHjh1Rr149jYQncXFx2LBhg8b+fvnlF+n/B5VdVkG5FtBUCgsLcfPmTa03YpQJYzw8PLQGd97e3khOTpZeExERAU9PT4wdOxaA4aUviIjIhCqn3GHVdPv2bQFAJCQkSNtGjx4tBg4cqPM1mZmZwtraWq2A8/Xr14WFhYXYtWuXEEKIs2fPCgAiMTFRanP06FEBQCrOu3PnTmFhYSGuX78utdm4caOwtbU1qgBneYp2njlzRgQHBws/Pz/x8ssvi65du4qQkBBx5swZo/dVFZ3/4YeiguH29hV6nJz79yulMH1AQID4xd9fCED0dnKStr9oaysEIOJfesmo/aUUF4d/bGBh+ps3b4r3339f+Pv7C19fX/HSSy+JCRMmiJs3bxp0vCNRUUIAYk/37uLY7NlCAOKylZVRfS7NuXPnTLo/Q/xlbS0EIE7NmycSAgOl85V5+bIQQognxY8zfvutQo5vyPm/WtyH32fM0Pp8RZ+3Xr16if3790uPCwGxFxAvde5cocc1JdVi7NoeK02bNk3cunVLY/uyZcu0ti8oKFD7/4A2Bw4cED179hQffPCB2L17t/Dx8REBAQHiyJEjBvU9KChIY5uhf7fafP/99+L+/fta+6nK399f7XF8fLzo3r278Pb21rnvTz75RFy6dEltW2pqqujTp0+Z+0tE1RML01eemjUkZKSsrCwA0CjufODAAbi6uqJevXoICAjAJ598AldXVwDAyZMnkZeXh6CgIKm9h4cHvL29ceTIEfTp0wdHjx6FXC6Hr6+v1KZr166Qy+U4cuQIWrdujaNHj8Lb21vt7nKfPn2Qk5ODkydPSqMwFSkqKgobNmxA06ZNpW1XrlzBiBEjpKlX1VllZdGsrJEfHx8fFBRPXZ5R/LnJzc2FXDnqYuQaQmHklNHypvFXGxVU9tXE6ztNPRJiDFFQoPY7KDlltKCCpowalUBHx1RdfefNmERCuhJ/aNQEBNAJwJKPPjKs31WActRK12OlOXPmaN0eHR2tdbshZRWmTJmCzZs3IzMzE0FBQUhKSoKDgwMGDx6MAwcOlNp3bdNDjU28pPo58PT0VJtVo21KKgD06tXL6JFoXaUvlKOrRERkerU2IBRCYOLEiXjppZfg7e0tbQ8ODsbrr78OT09PXLp0CdOnT8crr7yCkydPwtbWFunp6bCxsdGYotaoUSOpeG56eroUQKpydXVVa9OoUSO155VFg/UV4c3JyUFOTo70ODs72/g3X6ygoEBa46Lk5OSEAhOt7zK3ylqzVVnH+fTTT3FAeZOhONiwsbHB/AYNgGvXKqTshCgsNN36SGUiGSEqLMuorov0ylDaGsLy3jgwRQIdXWs3dZ03XYmE2rdvj8OHDxuc+EPjZkLxjYBLJb5/KkJycjKmT58Oa2trxMbGwt/fHwAwZswYnWshtSkZVCkfm7rEiTZ2dnZo2rQpmjZtCi8vL2m9unKJgj6m+NyUllBq8ODBsLS0hLW1NQYOHIiZM2cCAH799VfMnj1b2k9Zgjtz3uQhIqotam1AOG7cOJw5cwaHDh1S266aFMHb2xudOnWCp6cnduzYgcGDB+vcn1ApygtAayrysrQpad68eWr/gy2P+fPnIyQkBDY2NnByckJWVhby8/OxYMECk+zf3GpaQAg8rTmoulatrFlGlUGZvlcV5uebbH1kRWQZLcmYRBmmVnKEsGSAXt7PSXkS6JRWh1DXedOVSKh+/fq4d+9e6Yk/Pv8c2LgRKPE9q1TWOoTGjFpGR0dj9erVsLKyQmxsLBITEzFx4kSpBANQvpIGZSlxYmz5Fjc3N2ntozI4ys/PR6EBf/OmSLyk7XOwevVqvPPOO1iyZAkuXbqE7OxsWFtbo1WrVkhJSdH6eVAGd8a8f3Pe5CEiqi1qZUA4fvx4bNu2DQcPHlTLDKqNu7s7PD09pbupbm5uyM3NRUZGhtoo4e3bt6U7z25ubrh165bGvu7cuSONCrq5ueHYsWNqz2dkZCAvL09j5FDV1KlTMXHiROlxdna22pRPY3Tv3h0HDx7E48ePkZmZCWdnZ4MThFQHlRWoVWqyEC1F6MtamN6QTJ/lrZ2nqvGZMwCK+muqLKNVicjP1zplVLUOYXmYJIGOkTcNdCUS0lZWQWviDz1lKICynRNjy5/IZDK0bNkSANC/f3/ExsZi7ty5amUeDClpUJ6RNtXC82Up37Jp0yaNbVZWVtizZ0+pxzbF50bb52DhwoXw9fXF/v378cwzz+CNN97A2rVr0bhxY7z77rtaPw/W1tZGv39z3uQhIqotalVAKITA+PHjsXXrVhw4cAAtWrQo9TX37t3D1atX4e7uDqAos5y1tTX27NmD0NBQAMDNmzeRmpqKf//73wAAPz8/ZGVl4fjx49JFxLFjx5CVlSUFjX5+fvjkk09w8+ZNad/x8fGwtbVFx44ddfbH1tZWLd23Kdjb28Pe3t6k+6wKlIXpK3wNocpFbWkjvOWVV1CAUwCSHj6E/alT8Pb2hoW2YvUGMCRgNlVQLf74A82VmQVraECIwkK9AVd5z6W+WoiGMnaqrsbaP2trdOrUCWPHjlVbG9arVy+4u7sbnaW0LJ8DY8ufuLq6Sn1dtWoVrl27hm+//RYRERFGlTQwdKSttMLz5S3fosqQzNCDBg3CiBEjEBcXp7bdmM+Nts9BZmamFES//fbbaNasmRQE6vo87N69Gy+99JLJ3j8REZlGrQoI33vvPWzYsAE//vgjHB0dpbV6crkc9vb2ePDgAWbNmoUhQ4bA3d0dly9fxj//+U+4uLhIF2NyuRxjxoxBTEwMGjRogPr162PSpElo3749evXqBaAoPXnfvn0RGRmJL774AkBR2YmQkBCp5mFQUBDatm2L8PBwLFy4EPfv38ekSZMQGRkJJycnM5ydmke6+K3gwvSqF/qFhYUGrespi3Xr1mHBhQvoCSDr8WNcXL0ap06dQvCjR3ix6OBG7U9KKqPn/JgqEUrauXPwknZaIE1dlBkZxFZlpSWVMWcdQunS28jPiDGJhMqS+KMs58TY8idbtmyR/q0c2Rw5ciRGjhyJvXv3GlzSwNCRttIKz5e3fIs+kydP1tgmhMCRI0fKtV9tn4O5c+fiyZMnAJ4mgunQoYMUBOr6PFTk+yciorKpVQHhqlWrAAA9evRQ27569WpERETA0tJSWvuQmZkJd3d3BAYG4ttvv1VbX7J06VJYWVkhNDRUKky/Zs0atUAgLi4O0dHRUjbSAQMGYMWKFdLzlpaW2LFjB6KiotCtWze1wvRkGuZYQ1iRAeEXX3yB5c8+i8CUFBypVw/+y5cjPz8fnR0cMA0o85RRvWsIVc+hEGUOrtXOSUFBjRwhLCwoUK9DWBUDwhLnXdvIkT6//fYbkpKS8PbbbxvXAR2fnbKcE12jlsq6gvqUrL9ozMimoSO0qampegvPl6f/pdFXA9HUSmYDBQy7KVCR75+IiMqmVgWEpU0Lsre3N2i9gp2dHZYvX663gHz9+vVL/R9cs2bN8NNPP5V6vIqyZ88eTJs2DZaWloiOjsbw4cMBFF007dixw2z9MhVjyyqUleoaQuUFTkWwt7fHb9evIxBFI2vKO+tSKoYyFqbX9yrVC3ZRUACZAVPUtLFS7VvJ5Cs1hY6kMlLhejMGhP8CUAfA3cOH4VI8ilSWkSMfHx8AMDggLACK1qDm5wNa/i7Kck7KU/6krEGMMWQymd7C8+Ut36IqKChILaHNW2+9BS8vL40s18pgtCow5fsnIiLTqFUBIambOXMmdu/eDRsbG0ybNg2HDx/GsmXL8OjRI3N3zSSEmUYIK8q6deswvl07bAaQdfMmnLt3R6dOnTDX0RG4f7/MAaE+qlkgC/PzYVnGgLCgeGoZUDRyVpNGCJUBX6lZRiuo1IYhvgewCcBfTZrgmX79pO1lGTnSN/6dkJCAOXPm4Pnnn0ffvn0xBYAcwLzDh+FXYmYGYJ4guaLX+SpZWFggPDwcI0aM0FtKyBDK9eqqhBBISUlR22ZsDUQiIiKAAWGtZmlpiXr16gEAlixZgjVr1mDgwIF48OCBeTtmIuaYMlqRNRzd3NwwvlEjdL9/H0cbNYLfr78CAM6sXVvUoAKmjKqNfublwbLEOh9DpxyqBoQylTWENYlGHUITl50ojxEAvADUb9QI7VWmOKqOHBlSr+9LAJF6jqNRQB2AA4DB06fjQPHnVVVF1aNUtXjxYsTExODMmTN45513AAC5ublYvHixxvKBimBI4fnSJCUlYf/+/WqJWIQQCA8PL2/3iIiIGBDWZj4+PmrraSIiIuDp6YmxY8eat2MmUtoFeH5+vkFZ+ko9juooWgUHOlIdQuVIVHr603VrZUwqo7dN8fuZDCD/o49gpRIQGjPlsDAn5+kDlTWEFT9OU3lEySyjJQLCygh+dJkGoB6AWyU+n6ojR4bU69MXDAJaCqgXj4xZqo7IqZyXwkoo2bJjxw7ExMQgNjYWa9asQevWrXH79m0MGjQIhw8fNmpfb7zxBjZu3FhBPdUtNjYWjo6OcHFxUds+rpSyHhXpxo0b5Q50iYioamBAWItpWwMZGBiItLQ0M/TG9LRl0UxJScGUKVOQmZkJKysr5OXlwcXFBXPnzkX79u3LdBy1EcKKHgVSrksTAjn79sG2Vy+0L/GcwQwoDq8cIYwD8N9XXoFdiQyLhk45LFAJCGWFhU+zjBre26ovP199hLAaJJVRpVqvb/PmzZg1axYiIyORb0Agqxwp1iigLpMhH1Dfh0ofjAmSDRnB1Obhw4c4e/YsFAqFlOXZ1dVVbbStJNVsnXfu3EFCQgJycnJw7949+Pn5lek7Q6FQqCUn00XbjaqoqCitbYcNG6b2ODMzU5r1UR4lp/6OHTsWDg4OiIiIgJeXF4QQmDVrFmbPno1XX3213MfThgEnEVHlYUBIZWJsdkJz0JY0JSoqChs2bEDTpk2lbVeuXMGIESPwq5Ypbap0jSiqrSGs6KmQKjUHD27ejN7anjN0VwaUnVCO5L0F4LkWLfDMCy+oPW9osgrVEUJRWIjzd+9iAYrO6YwjRwy+uK+KpLNXWPh05BbQTCpjxhFCQ8pOqNbrA4BZs2Zh/fr1WLdundRGGSaJ2FhpHZ7qSLHWAuoAfly9WnosCgrKlGhH3wimxtrFKVMgl8sxb948tG3bFgsXLkSbNm2QkZEBZ2dnKBQK1K9fX+exVLN1jh8/HgsWLICrqytiYmJw9OhRvd8Za9euxcKFC2FtbY3Q0FB8+OGHAIDu3bujQYMGWvtYt25d429Uvf02kJUFbN4sfR97eHjA398fQ4cOxeDBgzWSyxhKOfX33XffxcaNG5GXl4dnnnkGy5cvx5tvvgmgKPg8ceKESQLCnTt3qj2ujICTiIieYkBIelVUXavKoG30oaCgAHK5XG2bk5OTzrV/howoVuYIoTRlVAigZHmLMq4hNGSEcA6ALC0jD4Ymqyi5hnBZUhK+B3BfJsPCpUu1Tk+sLpRTdjXWEJYIvsw5ZVT6pKh8zpOTk9GhQwfpsWq9PiVlvT6lOAAbABQEB6uVEiltpFg1wVNhXp7UH9VzUtoUbn0jmBprF5OS4ODggMGDB+PAgQMa+3J0dMSPP/6o81iq2Trr1q2LPn36wMnJSboBou87Y9WqVTh16hSsra3x2WefYejQoVi7di0uXryIbdu2ae1jQUGBQTeq1L6Pi2+ciNhY6fvY19cXa9aswZYtWzB06FBYW1tj6NChGDJkiN7gsOT3/I0bN/DZZ5/h7Nmz8PLywvbt2/HZZ58hJSUFQUFB8PPzw7FjxzBjxgyd+zRGREQEOnXqhK5du0prb00ZcBIRkX4MCGu5nJwc/P7777h//z7q168Pb29v2NhIhQwqta6VyWm5AJ8/fz5CQkJgY2MDJycnZGVlIT8/HwsWLNC6C0NGFNVGCCv4ol+mMkJoUzKNfwUEhKoX7OUJaNTWEBYWQiYEWgK4JZMZPT2xohk7NVE1y6iFahBY4r1U1JRRraP1x48DY8YAycmAlRW+QtGX/fXz5/HrypUQQmDVqlWIiorSOR1Rm7dQlJzmvLU1Xnr5ZWl7aSPF+Sq//wKVgPD8tWuY9eqrBo2M6RvB7Nq1K5o2bYoPP/ywaO1ikyYAUOaaoKrZOkt+Z/z44496vzMsLCyk0jPR0dHw8vJCcHAwCgoK1NdXqvQxNzfXoBtVat/HCxfiHoAGISHS97FMJkOTJk0wYcIETJgwAdevX8eWLVvw+uuvIyEhQef7Lfk9f+LECQQHB+OXX34pmvqLonWMO3fuxL59+7B48WJkZmZq7Kes0zwvXbokBZzjx483ecBJRET6MSCsxdatW4dVq1ahc+fOcHJyQmZmJk6dOoWxY8dKowLVoa6VLtouwLt3746DBw/i8ePHyMzMhLOzM+xKZM5UZciIYsnSDBVKZYTQouRUT2NLXhhSh1Dl/ZRn9LOwxBpCZ1tbXAZQpziI1TY9sTQVNW3ZkOQqqixVk/qo/g5KnK/yjhAaNVo/Zw6QmgpkZAANG+I/AJoD8LewQJ06dQAUBS5169Y1qg/KMOm17t3xw61b0vdCaSPFeY8fS/9WzVy7aNs2bD90yKAp3KojmKrnIjo6Gtu3b0dMTAyOHDmCS5cuASgacTRFGRhjvzP69eunFrj27t0bHh4e6NWrl/r6SpU+GnqjquT3cRCA+IAA6fvYy8sLwNO/jcaNG8PHxwfbt2/HxIkTNaaq+vn5ad2vsn+q3/Pnzp1D3bp1sXPnTshkMty4cQNdunRBREQEmjdvXuo0z9JutEydOhUKhQLLli3D0qVLtQacRERUMRgQ1mJffPEFDh06pJZcIT8/Hz169JACwmpd10rPBbi9vT3s7e1L3YUhF2rmGCGUCVFUvkGFRQWMEKoVpi/PCKFqNsnCQszu0gXNt27FPZU2JacnKlX2tGVjk6tII4TFI59SMfbic2eqNYTGjNZfuXYNzQA8zsqCfcOGOAPgOwBfX7+Ot21sMGzYMHz77bel3tgpOa1U6QiAa5cvAyVuFO3ZswfTpk2DpaUloqOjMbx4e3hMDPYdOwZA/caCsVO4lUqei37FtRVVR8GsrKywZ88enftIT0+Hm5ub3uOoMvQ745///Kfa47S0NLRr1w43b97UaKvso5WVld6gs0uXLtK/VyxZgoYeHpADOIOnfx+TJ09GnTp1EKsyhRTQUgpEy3RaQ77nS86WcHV1RZ06dTB79mzUqVMHjRo1wo0bNzBmzBh4eHjAzs4Orq6uUvAXHR0NNzc3LFy4UOeNFkdHR0ybNg3Z2dlIS0srcyIhIiIyDgPCWsze3h4JCQkIDAwEUHSRnZCQoPfud3ViijVbhowOCBONohlEZcqoRYljWRiZ0MaQ4vCljRAGBQUhPj6+9GOVzDJaPHJjyIS+yp62bEhyFVVSIF5QAFlhIZ4AqAOYfITQmNH6G+npaAbgwZ07sG/ZElYAwgC069QJZ/LzMWDAANy9e1ftNStXrlTvbynTSnMVCo1tM2fOxO7du2FjY4Np06bhMIBlAB6pjBCq3mQYGxBg1BRuY8+FvjWJo0aNMuizW15RUVHSiJs2qn3UFXQqFAqkpKQUtZXJsPn6dbwOwA5Pg2FVqn8bGqVAyjidtmTwfunSJSxYsACHDh3CF198gWeffRadO3fGn3/+iddffx35+flYunSpFPzJZDLcvXsXzZs3L/VGi5OTE7p06YKXX37ZqNF6IiIqGwaEtdi6deswf/58TJs2DQUFBbC2tkanTp2wfv16c3fNJKRad1pGzu7fvy+tm9SXbVBJ3+iA2ihaZdUhFEItyAIAS2OnxxX3VXfy/adBTCiAJ7GxsFM5V0IIpKSkGHQooTJCqFp2wpBRzcqetmxIchVVqiUdLAoK8AhFAaFymqw0gljOgNCo0fri6cS5mZlqWT0ti4uZjxgxAunFNQKVPv/8c3h6eiI0NFTKIKpvWmmuQgEhhNQWKAoylGUPlixZgjVLl2IggAePHklt8lU+C897eCAqLs7g6ZhKxpwL1dE1JSEELly4UOpxSurevTs+/vhjNG/eXLphUBrrkmt9y2Du3LlQKBRwcnSEJYAexUmaQoFS/zY0SoHA+Om0QgjMnz8fffv2hUwmg7OzMx4/foz8/Hx4eXkhNTUVGzZsgK2tLZo0aQJra2tYW1urBX9Xr15Vq6NoyDTx8pRCISIiwzEgrMXc3Nzw6aefmrsbFaf4okE1INy3bx9mzJgBFxcXad1kRkYGZs+ejZ49e5bpMJU5QqgaEBaWCAgtjC1Mb0AtQGWwmwRg49ixcO/U6enri4MLQyinjP4F9RFCfcGoUlWftqwMakVhISwKC6EcC8tXGRUDKjfLqHJ96ZOsLLWAUJn51MLCQiP5R2pqKjZu3IjNmzcjNDRU67TSxQBiUDRVMTw2Fg4LFiA3NxeLFy9Gjx494OPjoza6GgHAE8AYlYBQbW1v8b913XC5tnkz7Js1QwNfX83pqMOLJqT269cPO3bs0Hku1EbXVPTu3VvHK4DQ0FDp30eKy6JcvHgRKSkpiI+Px2+//QZ/f3989NFHOvehtHv37lLbaKM6XXfQoEEAgIcZGagDwEYI3EBRkp9HKucWKEoU9tJLL2Hv3r2oX78+1q5dqzEaWNp02kWLFmHSpEk4c+YM3nnnHWRlZeHKlSt44YUX0KxZM9y9exePHz/GnDlz8NVXX2Hq1Kl4+PChVMO2YcOGuH79urS/WbNmoWXLlnj77bfVjqPvRgtg/Gg9ERGVkaBqLSsrSwAQWVlZ5d9Zbq4Qt24Z1LR3797lP14F+2XwYCEA8YednbTN399fZGdnq7XLysoS/v7+ZT7OqfnzhSiazCnOHzlS5v0Y4lijRkIA4pSzs0gofn/Kn8NNmxq1r4ShQ4UAxB2ZTGebtI0bhQDE54D4bds2jec3bdpk0LEODhsmHgPitIeHSGjQQCzq1El0AYQvIDZu3Ci1e/XVV416D1VBhkwmBCAOhISIE40bi7Tix3+tWVPUoPj3c+yDDyqtT8c9PIQAxNn/+z+R9/Ch1IczBvzdFhQUiLXjxol+rq6ic+fOas8FFu8nCBDfz5wphBDi1q1buv9+itunrF4tbUo/dUrafvC99/R3Rvn5FkL4+fmJjIwM8fDhQ/HBBx+IcePGiYKCAtGjRw/x7bffCh8fHzFixAixZs0a0apVK9GpUyfx448/iu+//17cv39fY9cHDhzQedjmzZuLv/76S1y+fFl069ZNXL58WXTt2lV069ZNavPSSy/p77tSaqoQZ8/qfLp3797i888/V/tZsWKFaNeunfj888/V2vbr00cIQHwKiABATAXEq8HB4l//+pcQQoi1a9cKPz8/ER0dLaZNmybGjRsn/P39xbp16/R2cdGiRUIIIX777TfRtWtX4eTkJF588UXRqVMnkZaWJvz9/cXFixfVfs+lfW/m5eWVemqU9P3+iKj2Muk1LunFEUJ66r33gK++UitfoHqnXEkYMVXQrIpHZFSnJVpYWODOnTtwdHSUtt25c0ctsY4hVNfOmWOEEFqmjBo9Qqg8P3raKEdzogBc0TJ1cNiwYQYdS5abi1wAwsICssJCrL5wAYeKn/v4+HEcPnwYy5Yt0xjtqA5Us4zK8vORa2kJ5OdrjBAWmng6sSgxXVOVclS84PFj9WQ2JfqgLbGKhYUFwv7zH4zIz0d6crLacw8BnAWgANC0OFupq6trqX8/BSqf1bImKtKYjrpmDQYOHIj79+9j5syZ+P7771G/fn34+PggLS0NdnZ26NWrl0a20rS0NLRp0wYBAQE6jxUbGwtHR0e4uLjA29sbKSkpePnllyGEgEKhQHJystp3iF7e3gCA0Ndfx6NHj3D06FEEBATAyspK+i69fv26QdN1szIyAABbACSg+G9361a83KsXPvroI4MShWmzY8cOxMTEIDY2FmvWrMGoUaOwaNEi9OvXD61bt5b2p7rf0r439a3fLGnx4sU4fPgwFAqFxu9vwIABBu+HiIjKhgEhPfXTT0X/FUJag5SUlIT9+/er/Y9fGDFV0Ky0rCH88ssvERMTg/T0dOmC2t3dHV9++aXWXRgSEFfmGkIL1cL0qpk7YXxAKJWw0NNE9f2Ua8pjbi7yAKA4ILQAUA9AAdQv7h88eGDQ7nRlvzSF7777DvPmzUO7du3Qu3dvzJ07F05OTpg+fbrWi1PlCjFRWAiLggKdAaG+rLeGWLx4MWJiYqRpfADUpmuqUgsI9WTB1ZVYpTA/H9aAxrTStgAWAmgDIKM4KY1CoSh1Ha5qqQnVmyZJf/+NWF9fg6aBqk5HHTx4ML7//nukpKRg3759aNiwISZNmgR/f3/07NlTSn6iGpQIIbBnzx7Mnz9fb5IXAGpJdD777DMsX74cycnJuHr1Kg4dOoRu3bphzZo1evdRUlJSEvr164fkHTswZMgQvPTSS9J36cGDB0udrgsAzRo1wk8AfABsB/AKgHkTJ8LW1hZA2ROFPXz4EGfPnoVCoUDr1q3Rtm1b/Pe//4W9vT0yMjLw5ZdfIioqCr///ju6du1a6vemsezt7eHg4AAHBwedvz9Sl5GRgc8++wxTpkypMYngiMh8+G1LTykv1HJzgeILDNU75arGjRtX2b0zmtCSuMTLywtbt241eB+GBMRCNY1+Za0hBEyWVMZS5fyUZLKSGrm5yJXJikYIhUBLR0dczspC8+KnIyIi4OnpibFjx6q9LO/2bXw2bx7sn3tO2ibKWFTdUMaOVkhfosUB4RMrKyAnBwXFiT+kfpczICw5itO6dWvcvn0bgwYNwuHDh9XaqgaEBXl5UKZVeXTqFByKk6wIPYlVpJsE+fmAykX5apU2h4s/b46Ojvjxxx/19v3WnTvSv1U/U6tPnsSh8+efZiXVM1K8fPly6d/Z2dkAgFOnTuHBgweYOHGiFBgrRwRzc3PRoEED6TXxX32Flu+8g6ziETtD2djYICYmBjExMUa9rqTY2Fg47NmDFQB+ycqCp6cngKLvUplMhrCwMAwfPhxxcXFas8ACwNTRo7F7+3akANgDoBBA5sqVaOLoiG+++QZ//fUXhg8fjvr160Mul8Pa2hoNGzbE/fv3pdIP2oLutm3bYuHChWjTpg0yMjKwevVqKBQK3L9/H87OznB2dsbBgwfh7++PoUOHYvDgwRqJbJRUZ08YkrwrKCgIPj4+UuIbZVKz3Nxcw0dha6EdO3Zg1qxZeO655xAWFmbu7hBRNceAkCSPHzyAPQA8fiwFhLouuA2dKmhWxRfg+gKe0hgSEKtm0KysEUIIAVl5RwiL+2qrp0mhjql+SgbXcsvNRZ5MBlhaQlZYiAktW6J5cdIJUVAAmaUlAgMDpaQUSn95e+O/d+7AMzjY4OyX5WXUaIUQT79ECwpgUViI/OKskgVPnqhNvy5vQFhyFAfQPV1TeeNAOUKoAJAC4Ey7dngxMVFqpyuxivI9FSgUuJOTo/V3LIyY3jtzwwYEf/wxAPVkOxaA1mmgDx48QEFurs6yJC1btsRPP/2Ezp07Y/v27ZgzZw4OHz6sFkDY2NioZYyt/9NPeBbAAj1TRStSVFQUDhbfjLJXSbii+l1qYWGhMwssAMgeP0YMgPEAbAD4AjgN4FReHl7/8EOtU2X9/f2xf/9+vUH36tWrNY5VMtD39fXFmjVrsGXLFgwdOhR//PEHmjRpAplMhosXL8LJyQmurq5ITk6Wppm2atVKSt519OhRtGvXDo0aNZL2qZxtoW2U2sbGBnv37kWvXr1KDUJro4cPHwIAnpS48UREVBYMCEkijWg8fgwUX6RVZzIjShvoYkhArBY0VXAmSbUpoyUCNKMDX9WAUGWasKpClYsNbcGu2pTDAQMAd3fgiy802smKA0JhYVH0+ygxFVWmoyaa2507SAWwMSwMm//3P73T6UxF12iF6mhTUccFRF7e09G0wkJYFhQgz8Gh6GFODkRu7tMMn+W8WVByFMfZ2VnndE3lCGHhkycofPIEc1G07q9kUDpt2jS9x3xy7x5GRUVpvWAv0BIQdunSBXjypGhUsTiAFgDSrl2T2qgGhM/Wq6eelVRlpPjR3bvQNT6kOo1z27ZtcHZ2Ln0aZ/H5f1JYaHRReiWFQlGuUav84s95ydHjkrRlgQWAvOKRUZvix/YAHAA0kMm03rzIT06GRWIiHG/cgGXbtmWanq0kk8nQpEkTTJgwARMmTECzZs3Qr18/LFmyBCdOnMCDBw/w6quvonPnztJrVANKT09PPHjwAGvXrpW2lbb8oGQQam1tjaFDh2LIkCG1PjhU3hwzpnwIEZEuDAhJolwLla9QwMrd3ax9MQXlVE5D0sWU9QIRUJ+6WdEBoaVKQFjuEUKV9gWPH8OyOJBRpbxw7YLiOoTz5knPaUw53L696L/aAsK8PORZWBStIRQCFirBUUFuLixstY9TFqJo+uKgwEAMDwvTO53OVLSVYik52oS8PMDGBoWLFj0dxSoogF1+PnKKyycUPHmC/EePnq4xLOdnw5BRHCUpIMzJQd7Dhxikow+qiVW01evLGzAAl27cgBACQgi1vyWhEtgp/34UCgVS0tJg5eaGgitXYGlTFLp0UvnbUg0Io318NOr5KUeKb50+rTMgVJ3GaWiQJoovoNesWoX+q1ZB6LmBsnbtWixcuBDW1tYIDQ3Fhx9+CAAYOHCgtP7Q6O8MIaSbVHklpnsbKl+hUHvsg6J1uEIm03rz4syKFeggBHYsXIgBxZ8fXdOzS9OqVSvEx8fDwsIC9evXx6RJkxAWFoaDBw+iTZs2AIqmf/bv3x8rVqxAXokbVm+99RZ+/vlnaaqskr7lByWD0OvXr2PLli14/fXXkZCQYFT/a5rc4u//xyXXKhMRlYFxqRWpRlNeuD6+f19te05ODk6dOoW9e/fi1KlT0v+IqrzifhoyQlie0aZKHSEsfi+WQkBW4oLLytiAUKWvOcUjDyUp35sCwMZZs3D8+HHpJykpSW00QB9ZXh7yVQPC3FzkADgFYI+ez5Uy2Hp07540nW7btm344f/bu+84Ker78eOv2X79OO7gOIp06aiAghIEBRVLEEuMJZGvMVHQiBLEyO8bBQsSjV9FMFgwKlhQrEQBQZQiHU567xxc4+rebd/5/P7Y3XH3CnAIHMr7+Xjcg2V2duazM5+ZnfenfvHFiX/P0yE82iMzZxqLNF3HHgwSDAcnuteLL7oW5jQ3J45miqoh9IeblsFPtZRbtmxh0KBBRrMzCNV+LV++PHR+gdXAVy++SNeuXTGZTCyp8gAeHRBGrp8JEybgBMjLwxe17buigk096nPHCpI9Ve5D06dPp2vXrlx00UVMnDjRWD5kyJBatxHd7DJy9O8A/lXrJ0KmTp1KdnY22dnZxMfHc8stt+ByuWKCyLreM1TUAD/BqHzhrBLkRav6nr/KdfoyoWukICpd0YUXlRUVTAYa2Gwxn6upefax9j9jxgw2btzIvffey+LFi3n77bf56KOPmDdvnlGjDvDee+9x2223MWXKFA4dOkSfPn3o3bs3ffr0YcOGDTUWahyr+0HV4LFp06aMHDnynA8G4acmo8fKP6fb/v370TSt1r7IQohfDqkhFIZI6YCrqMgomZ8xYwZTp06lV69eRl+Q7Oxshg8ffsxhzM8GkRq06FKPmmpBjjW4Rm2iawdiJog/yZL/E2WNNPMMBKoFhHVtGmuK+ryvvJz4Gmo7Ik1GJwDOGpqYHa/JYYQWCIQCQrMZk64zLz+f0UAvIG7pUiq/+67GfBW5QXlLS39Kdy3N6c4kz+HDOAC/328ErcrtxhEMYgo3t1bh2rmIMzkxvSWcT3Sv16iR08EoBJj05JNc9+237N62je49ewLhYM7ppEGDBsZ2fKWl3HzVVYz74QfWvPYaY6L2Ub5oEckXXxxz/QyNCs78LhcHCI1I2i0jw1geM/rqMY6JNxJ0h0WCNKvVyiuvvMItt9zC9OnTq9X07duwgaz27bHHxcU0aY40cb0pkj6fD2uVQCnCZDJhDfcFfe+99ygvLyczM5NAIMDFVb7ziUpMSKChzUY6cOG6dVwZXj5kyBCGDRt23BpJiA0koz3u9bKipjfCx1c/Ti1S1RrRzz77DPhpio5t27Zx/vnnU15eztNPPx3edGg6ix9++KHa9rp37x4zMf3JOtltzJ8/n86dO9O0adOfnYazVSQgrGvT31Np1apVAHz++eeMGTPmOGuL+nbw4EGGDx/O9OnTq3eBEOc8CQhFNZ6oB7GTndfqbKDVUEPodDrZtGlTtQFCahtcozbRD5rRg8oQFQCcDrbwg74jEMAUXcPHSYwyGhW8+mopZdbD320osLWGoc07dux4zPnwftqBj6DZHAoIleLLoiJ+JBSsV4waRWKzZjXmq0itdXRAeCZ4vV62bNlijJDYpUsXbFHBw57Vq+kM5B46RKvwMnNZGam6jtaoEeWAVlGBP6qf3akYcOh46YqwhvNGdFDqiUrD0J07GQys/eEHCAeEQ4cOjdnGdoDiYnqZTFwG2DZt4j+EBqexAIu6d6f/kiVA1PUTdZ78lZWMAL4DtKjjEIwKTgK1FKA4nU78ZWUxy6KDtIceeog2bdrQt29fSkpK6NKlC3FxcaF8uGYN5VYrSd27xwZtVR6cnYWFpNUSMFx33XVG30an08nmzZvZsWMHf/vb35g3b17sdz6WqEKXOGCkz8ffgOG6HhPQnmiw++cPPqjWjFYB22u49vO2b+c34cAueJzrp+r+t2/fTk5ODkOuvZbv33iDQSNHMnbsWCZMmBDa5wlOZ3GiTlVBXcTVV19Nu3bt2Llz589N2llHKYWu68agQPVVQ/jiiy8ydepUIPRMIM5+s2fPZs6cOcydO/esf34TZ54EhKKa6JL5k53X6mxgCgcz0cOV1FQLArXXdJ3Qg0rUQ63pNPfnsOk6LsCh6zE1fBWEauHqQotKt7+WUmYVNfiFXmUQEdeqVbTp3Ztx//oXo0aMOOZ8hprPR9BiAZuNRF3HbjazGBhAKOisLV9FAkJnYSHZ2dnHDYROhROpFfceORJaOZzHfID10CFMQINOncj/7DOsRUUxx7Vqje7pSFdEpCYZr5dAOCB0g9Fs1RYOINzHeJgcAbxcWoovPGWEKRAwBqdpAKHBY8Ii1483N9cYtTbgdhvnT4sqKIkejGbBvn38rWvXGmvG/u+GG2LSEx2kRY5Fp06dWLFiBUeOHKFDhw785d57GbZmTSgQW7MmJmjTqhTWVB45UmtAOHbsWON15J7RuXNnIxiM/s7H4i8vN47B+cAj4ddDGjXCfN99DB48mOLiYpKTk2OC3U6dOhnvRXN5vUZAnm+z0Tic/3pXGWnW6XRy8MsvidT56zU0Cc/bu5fGV12F9v771YLtoqIirrnmGkpXroTOnZmRm8vEiRPJy8ujd+/eWK1WevbsyVtvvRXTr/Bkrkun03nKCurgp1E3f63NGO+77z5WrFhB3759gRMLCJ1OJ36//7jzhdbF6NGjjdfBM9gcXlSnlKKgoCBmBN+aRLpl/GK6/YgzSgJCAYQm1Y480EfXxsyYMYOJEyfyv//7vwSDQeNBIDKAwdksEjBZokrZq9aCRFxey1D0J/SgUlGBn3DwcpprCB1KUWw2kx4MYot6IC82mYxmgifK5PWiE6qlq62GMPr7+KMHclGK+N69cQJ/mjMH7803c6wiAs3vR1ks+OPjSdZ1xqem8qnbzf8CviFDcKSm1pqvZgAvPvMMl//2t2ek2fKJ1IpHAsJILW2R2UyrcIDd8Yor2P7CC1jz8wlEFa6Yf2bTrrrU1kcCQuXxEAhfz06TyaghjOSVYEFBrfuzEmoyaqzjdhN99Wg+n9GkMHL9lOzfbwQhfpeLb8KvzVEFJb7wMSkwm/n68GE2lJbWWDMWU0Po98cEaa+//jrTpk2jU6dOAHw+aRJ9P/qIGyZNYlhUGqODNlPVAo1IUH8cQ4cODQXSn38ON95ojMZb2z0jZh9FRaSEX18HHITQ3JsuF4MGDSIrK4u//e1v9OvXL2a01YEDB9KkSZNqcx/+qX17nOvW0QAoi4/nG5+PF4ByXWfixIkxAfWzUf17VQ3X9x2//z3f7dnD4Qce4LqbborZ//jx4/nd737H38JzNpaWllYbbGnGjBncfvvt5OTkcPfdd1e7LqsOujN9+nT++c9/YrfbqwX/xyqoO9Fa8Yj8/Pxa3/u5IqMPA+zYsYPi4mL69Olz2vZXkzfffBOACy+8EAg1j41ch7XJysqiTZs2rF+/vs77O5EWICVVmncfj9frZfjw4TzxxBPVBpUSdffll18ydOhQtmzZYtwTaxI5T4VR88IKESEBoQCg7MgRUsOvfVEPYpmZmdUeBNxuN3HhkRTPZpbwQ2gS4VE0a0qzxwOTJ8PIkVDDQ8YJ1ShWVJAPNKP6Q+eppIJBEpXisN1OM5cLe1RAWB4XR6M6zkdl8XopARqCUYtUVaC0FDeh5m6+6B+RqOBw2I4dVOTkGAGhHghgqhJAm71efDYbvvh4kpWimd/PcKAzkDdhAplVaoOivQ68ec899PrHP35K12lstnwiteKB8ENnariktTIlhbbFxShNI7lnT8qTkmheWIgrvF4lxDSnPF3piojUAGoVFXjCAV2F1WrUEEZGxlU1PBgEw/0ivwFWlJaiiooASAjfFx7r14+blyzB5PUyYsSImD5uzpwcIyCsjAo2o6+LYPihpCguDlMgUGvNWDAqiPGVlmKL6ocYFxfHnXfeyY8//gjAlbt3s2bFCqzhQUi2E+q7GB20matcH54a5vmrjf7WW5juuw8WLsTZqxeFhYW0bt36uJ/zFBcbAeHYqOWax8P27dur1TpGq+m9vsnJRO5E5Q0aMLW0lGxgn9nMvPDgN0ZAHe5/dzFQvmULyVGtHZRS7NiyBYBDOTkxwTbwU9rC/x8xfDgV0bW8wSBbt26lc+fONfYr1HWdBx54gHbt2hnB39SpU8nIyGDRokXVgv9qzZXDAc7Bgwd5/PHH69SH/UQCQrfbjcPhMAKdOXPmkJaWRu/evWv9zIYNG7jgggtYt24dF110kRGAKaV4+OGHUUoxadKk4+578uTJ+Hy+asF+XR08eBCA3Nxco+k+hPoWOhwOI3CFUD/DDRs21HkfixYtYsCAARw4cIAWLVrUul5R+B5xorZs2cLbb7+N2+3mww8/rHW9t956C4A//elPx9ze3r17ueSSS1i/fv0vvt/o559/zk033URJSYkxR2u0H3/8kUWLFvHII48YyyLnduvWrccMCCPXhgSEoiYyyqgAoCRqxLmqI9lFq6yspEN8PC9GTT9wtrK73UTKLcv27q15pbfegjFj4Ouva3x76NCh1YJBiH3QtDidFIQfamsqiT9VyvfvxwKUhpv9pEXVuuxt3pzGwWCdRrK0V1ZSGA7cam0yWlZGscmEFwhE/egHo45nwGTCnZtr/L8s6nWEw+0mkJyMKS2NRKWIr6ykMDwaZ9m+faGVPvsM5s6N2nnoAScOWLN1a9Ti09tsecaMGXz55Zdcdtll9O7dm379+vHVV1/F1F6qcECcEg68ml1zDQBat26QlERRq1a0KCzEH55/75DZjOkY19XJpmv69Om88cYb1da1h9NlKi7GHw58yuPjsYUDQUf4fJtreJCrjHpY6DBrFi03bwagYTiou+ehh7AlJ2Py+Yxgzvhs1CAgnqjXwajvHiwqwgm4HA4us1rZv3+/8d7AgQP597//TdOmTWMCQleVaUZmzJhBcXGxcSz6vvMOXwHjwtdqTbOHWqsEhN5j1I5WtfmrrwAo2rePFzt3ZlWbNkAocDnWsP/eKk0+I8weT61znAJQUYGvdWtUlYd4LXpfmZmYCNXkxuk6Dz30EPfffz+DBw/m6NGj6Hl5eIAiTWNyejqrb7mF1V98YYwQ3DESYJuqPwZUTZspGIwZhXbAgAF4PB4jELr44ou5+OKL6dKlC5s2bWLEiBGYTKaYUVrhp7nzqqa1tv1HasUnTZrE008/zeTJk1m8eDGvvfZarYcu+mG3pnMTDAaJj4/nuajfsOuuu65aTV/V/ptr1qwBYOnSpTHLdV1n0qRJvPLKK7WmKdpDDz3E6NGjq03LUVc7duyotszj8ZCYmMg///lPY1n09/DWcdCzSD/5tWvXxiyvemzqGhBGgtma0qPrunEO7733Xu69995at7N//37y8/OZPXs2R48epW3btsZ5OtNO1XyQH3/8MQCbw/fdqoYNG8aoUaMoiyq4jxzHQ4cO1fiZ7777js8+++yUBISrV6+ucbTgupo5cyZbwoVS4uwgAeFZ4N///jetWrXC4XDQo0ePaj84J2JTRgbrk5NZHh/PN2YzX2oa3zVsyPdNmzIrMZGPGzTgneRk3kpNZXn//iwbNIh5/fqxbOhQFt98MwujmkAmzZ/PsgkT2Pjuu+z88kt2f/sth7OzObJ+PXPHj+cA0ODpp485j1d903WdtMpK9icnA1C+Z0/NK4Z/mDhw4MQ2vG4d/P73EH7QUEqRnJ+PMyODCsAZ9XB7KimlmP/CCwBoV18NQBOlmN2zJ/f37Yu1Xz9sxAZqx9PA6eRg+AFaRU0cHs2Sn09xXBzlmoYe1SzoyPLlxmufxxPT/K68ysiAuq6T7PFAejqNO3TABLRxuylu1w4AV+TY33wzXHvtT58L10jMABZt3nzMAO1UitSKL1u2jJUrV7J06VJeeumlmOZvpqgH/WKLBcdjj0G7djBuHAAZt95KnFIEn36aSuBogwZYf2aT0arpWrBgARunT+eZKrU7yuMhKXxtWsvL8WzcyBFNo/K888gI11ImhIM7cw1NvZxR569BWRntwue2ebiwIem88wiYzZj8fr755puYz7qjat3c27YBUGg2G4OaVFRUkLdmDUUOB764OO6zWKo1GTNqxqIeeKpOhZOZmcmBAweMY/F68+a8BDQPX8+xYWqIvUq/GX8d5rLMDReYfTR+POMOHeJ2oODwYQZ27MjwY9RSu2q5rhIqKqoF09HyZs/Gtm8f20eOjH0julAhKYkLzGY2AolKEQwGYwJqS0EB++x2HkxNJa2oCB57jPJwoLXtsst4PnKsaghMrFYrFVEP+e88+aTRWgJCNREQenj1er1omobdbmfw4MHs2LGD7t2707RpU7Kzs43gLy8vjyNR94notNa0f/ipVjxCKcX3339PaWkp5VHHQinF+vXrUUrFBJg1/ZZG+hbOmDEDqHlAlFmzZpGenk5BVKFBJIip2jwyemqTSJ/P0tJSLrzwQubOnRvzOxkdBEYHbScqet95VWq4lVLs3r0bgGeffZZJkyYxfPjwmON0oIbfucrKSrKzs2vcXyToqPq5qgFFJCCMFNYdLziKbK+mEVKfffZZGjVqFBNk1tbnrVWrVrRt25bS8P3F4/Hw17/+9Zj7rs3SpUtrDcJqEpmbFULH0Gaz0aVLl5g8czIix27Tpk017nPjxo1AqFY0OzubDz74wAgEI3k0WmlpKVdeeSU333wzOeH7UU0BYaSg6Hj69evHPffcEzNlUV0VFBRw++23H7fmV5xhStSrmTNnKqvVqt588021detWNXLkSJWQkKAOHDhwQp8vKytTgPqmQwe1tG1btbBxY/Wlzaa+BLXAYlFLLBb1A6jVoNaD2gpqN6iDoPJAFYOqBFUEamG3bmrWJZeoQKhu5rh/TlAFoI5omjpgNqudJpPapGlqk92u1trtaoXDob4BtcBuVwtTUtSHoL7JzFQ/dOyo5rdrp77p3FnNat1azenRQy254gr1/RVXqG+vvFLNu/JK9dlvfqO+GzpUfX3ddWrxnXeqr266Sa0cMUJ9fsstau2jj6p1Y8eqVWPHqqV//7t6/w9/UD+MG6e+efhh9dU996hpAwaoV81mpUAtuO025Qf1TZMmauHjj6udH32kDs2bp44uXaqO/vCDKurUSSlQRf36Kc/hw6ryyBFVfOCA8hQVKW9pqQq4XCovJ0cFPR5VuX+/OtqqlVKgVv/5z2r6yJHqxays0H7uvFMtT05W++Lj1cZp05TzwAGlPB6ldP2k84bf71c7t21TD95yi3qka1e1FlROQoLS/X61r2FD5dU0VbxkiVJKqXXffqtcoDZddJE6vGqV0oPBGrfpdDrV3P/+Vz3ZubNSoBaNHKkOgspu21YVHjqklFJK13W1ceNG9eT//I/K0zS1sHNnlW23q02ZmUr3+ZRSSq297TZVDuq7rCy13m5Xax580MgX26ZNU0opFQgE1NKlS9Wo3r1Dy594QgVyc5XbbFYeUFvnzFE7NU2tb9VKFa1a9VPeCh+zwtWrjWWL+/eP+R6+cDqqmj9/vpo7d+5JH/PavPvuu2rRokVK13W1fv16tTouzkhb3vXX1/iZDe3aKQVq7QUXqDkXXKCKQTn37j1laVo1aZIKgPpPamrM8pyFC5UClaNp6nD4Wl/Zvr1a8D//oxSo/V98oXLC18eqNm2UUkr997//Vc8//7xSSqkfX3ut1mu+ElTQ51OLsrLU1pQU5Vy9Wu2/+GLlfOklVZGZqZYPGGCs+xooD6gVzZqpDfHxKjc3V91w1VVqh6apomuvVd/266dKNU35SkuNtOvr1yvPsGFKud1qad++xrb2fPJJzQdh0iSlVqxQ6xs3Viq8v8hngl5vzKpHwt858rfkzjtP+FivbdSo2rGY+49/KAVq9jF+Rtf9/e81HsfNKSnH3t9dd4XyfadOMcuXZmSorSkpat355yvnrl3K4/GoZeFrr+zgwZh11zRpolY0bKhWtW9v7HdNy5Yq4PHEpGVrXFyNadgXzkcK1MqnnlL71q413uvfv78C1MSJE9Vnn32miouLla7ryhs+5k899ZQCVPQjxubNm9XVV199zO8dEQwGVTAYVLm5uWrkyJHq0ksvVZdcconq27evuvXWWxWgxowZY6z/7bffKkB9/PHH6oUXXlCJiYkqKSlJTZw4sdq2P/zwQwWoli1bqptuuklNmzbNSKvL5VJKKWMf7733ngoEAjHL/vjHPyqXy2V85pNPPjFeLwnfj7/++mtj2bPPPmvse8uWLQpQ6enpqk2bNkqv4+9Ddna2sV1AZWRkGK8LCwvVzJkzY94H1MKFC43X8+bNU0optXXrVrVnzx6llFL33HOPAtTWrVur7W/AgAEKUA8++GDM8jVr1sTso3379koppb7//nsFqDfeeOOY32PkyJEKUK1btzaOwQMPPKCef/551a1bNyNvRba/du1aVVJSosrLy9WsWbNUMBhUHo/HeD9ybgDVrFkzVV5eHrO/UaNGqfbt26uLLrpIeTyeaukJBAIKUMnJySd8Tq655hp1ww03KKVCvzuR/d9Zh/tKtJycHHXBBRcY27n//vurrbN582bj/VmzZim73a4A43M33XSTsa7X61UPPPCAGj16dLU80aNHj5jt6rpe7XpVSqmDBw+qo0ePqrZt26pHHnlEKaWq5fW6fkdd12OumZp+y/Pz843lBQUFClBlZWV13p+oG02ps7ia5xxwySWXcNFFFxnDN0NoKP8bb7wxpklLbcrLy0lJSaGsrIzkcG3YsahwB3EVLlEOBAKYzWajRFYpxaaVKzm0fDktMzIozc0lWFGBr6wMi9lMQmIinW67jR8mTsSdk0PDhASU14u7tBS/y4XJ78dGaJJ0T3k5yuPBFAiQYLXiq6wk0WLBouvYNQ1TMIhdKawmEyZdx0JoiggLxPzVXo5euxKbjQPXXMMFX3zBV1ddRf9vvyWxlnUrgYST2AeEJrve1rs3nZcs4dtJk+jy6KM0iXo/EP5TmkZQKXRA1zSUphHQdZSmgcmEItScyqzrmJTCrBRWwM5P1fjORo1I+PprTD17hvo+ulwQbj6qlOK1iy/mnrVrsROahqLUZMJvsYRGWdV10HU0XScNsAEHO3em+Y8/MmPwYO5auJAgUBz+bBKhkSRLHQ6CS5aw+OWXuemDDygjVOPTJBhki8OB/7e/5bKPP6YMKNA0mipFqclEflwcZrebdF0nCyht25bUTZvA4YB9+0LpadOGd6+5hrur1DJlZ2TgNZtJLSmhndfLXquVFF1nX8eO6A4HHpeLw9u306BtWzKystBMJjweDzqwbPlyFND3ssuID/cZ9Xu92CwWzGYzejAISnEkJwerxUJaWlqoz5zJhEaoOZkeCKAHg8Zrv8/H4f37sQFpZjPdg0GaAntGjaJN9+6hms2EGnJQMAhbtkDnzmz46iua3ngj8cDeuDhciYl4ExNx2e0oTSMhKQmlFI64OCoqKwkEgyQmJaHrOnaHA5PZHMo/SuF1u3EEArRYt45GgQBB4MeLLkKVl+MpLKR9WRkOYP/YsXSbOBFPaiq2ZcsojYujqE0bOoZr+krDydzSpQsrN2/GAmSmptKxtJQ2wNYLL6RXuI/ezrQ02hcXs7F3b7qtWMHc3/2OwbNmUQxUHbfwoN1OlteLBVjTvj2u3/yGy996izVAE6CJxYJ5xQq25+fT4vrrOexwkNutG8EGDWizbBktKipY1aQJWbm5HHI46OnxsK11ayoGDSIuIwNMJsxKoeXm0m3aNADKNI2UKj9lW9q2pej66/G7XBRv2MCtq1axxuGgjceDGdiRkkLy+PEkNm6MKS4OLBb8Xi8J8fFUVlTgqqzErGn4nU4a//WvpFfZfq7FQpNw7dLBzz9Hi4sj6PPhd7koKywkf9cuEv7zHzpWVrL6zjvJXLuWXtu3szMhgYzKSvZOmIA7KYmkRo3Yc/gwXbp2Rek6rrIyPPffT5/iYvbZ7ex+4gk2rFqFf+tWHti9m91XX81FUX0Lt77/Pp3uuot5vXpR2bMne1eupHG7dlwxaxb7unbFn5XFFeH1D5pMrLv6aoZGNc0uB0rnzYP0dJSuU1ZWhsnrJXjvvXSPrvEFdnz8MaamTbns6qupqKhg4MCBTJkyhZycHKZMmcLChQv54osvqKioYEh4Tsry8nISExM5cuQIwWAQm82G3W7H6/XyxhtvcOedd9KmTRt0XUfTNDweD3/5y19YsmQJa9euxWazsXDhQgYMGEBlZSWPP/640TqgUaNGTJs2jdmzZzNt2jSGDBnCgQMHQi1E0tLIy8ujcePG3H///SQlJZGQkMCMGTP4z3/+U/16JTRgS6NGjRg7dqzRnK1hw4Y89dRT/OMf/6C4uJi2bdvy4IMP8vDDDwPQrFkzo+Zl9OjRDBo0iOnTp/P+++8D4HA4WLt2LV6vlzfffJPXX3+dTz/9lJtuuol33nmHK664gsWLF/Pqq6/SoUMHXnjhBfx+P7qu4/V6cbvdHDp0iEWLFvH666/j8/lITU2lqKiI/Px8srOzueKKK7j77rtZunQpe6u0EunQoQPbwzXcbdu25Q9/+AMTJ04kGAzyzTffMHToUEpLS+nSpQujRo2iVatWxMfHs2HDBu677z6UUrRp04YpU6Zw5MgRXnnlFRo3bsx3333HBx98wOrVq5k8eTLvv/8+kyZNYunSpVx66aW89tprpKam0rBhQ1wuF/v27ePw4cPEx8fz2GOPGQPc3HLLLdx0003ccccdxvHy1NIfvmPHjmzbto1nnnmGhg0bMnz4cOO9oUOHcs011zB69Gji4uJ4+OGHGTp0KIWFhfTr189Yb8qUKQwZMoTCwkL+/Oc/061bN3bs2MHycKuXF198kZYtWzJgwABjECG3283LL7+M1Wrltttuo6SkhP79+wOwePFipkyZwqxZswBo2bIl3333Ha+//jrZ2dk8+OCDdOzYEV3XWblyJbNmzWLgwIGUl5czb948Dh8+jNlsJiUlJWbQn3bt2jFz5kw0TcPlchEfH8/48eNZvHgxwWCQ5OTkavN0tmrVivfeew9N0/jwww+ZPHkyEJoXdN++fZSXl3PxxRezevVq3n//fbKysvD7/TzxxBOsXLkSCE1NkZWVxcyZM/nXv/4Vs/1nnnnGGD9h7Nix3HbbbWRlZeH1ejGZTBQWFvLyyy/TrVs3hg0bRmVlJRUVFSxbtoxNmzbx8ssvc99993Hw4EHmhu9BGRkZ/O1vf6N3795kZWWxc+dOrr/+ei688EJeeOEFnn/+eebPn3/Cz7ji5ElAWI98Ph/x8fHMmjUrplP9yJEjWb9+fUxTmdrUNSA82+m6bsyzZDabKSoqIi4ujvLSUky6jt/tRgsGYwLHwtxcEux20ho3Jj49HeLiQoFH1MhoFcXFlG7eTMnu3XgrKvC43QT8fhyZmTS45BJyP/kESkrIzcnBYjKBUvg8HpplZpK9di2tW7dGJSdz3mWX0fqqq8j56ivO69KFxAsugKiO37n793Ng9mzy1qzB7PVi9fvRfT70YBBnaSl+j4f0hg3RlKIwLw9NKRLi4rCYzVhMJjzBIJ5AgBKnk07dupGamUnmBRfQ+LLLMHXqVGN/n2h5mzax8513yFuzhkSfD5PPh9vnw2y1YouLI6NxY+Kysmh/661YLr8cwoUDS15/ncqvv8bmdJJks2FNS6Np7940HjYMUlNRSrFs8mScn36KuaQEPT6ejNGj6TxwIAuHDMHh95P52GOUbtqEZ8YM4gB7aioNO3Sg6fXXY/3tb8Fur5ZepRSLX34Z79dfY77oIgKLFpG+b1/o3CUlUXzNNTTs2RPno4/SoLISRzBIgFDQmqoUWji/mDQNDbCYzaE8pOsoQpOxR4oidaVC3zf8WgGayYQWDsgVgKaF+jmZTDH/muLiMNtsaA4HgR49aHnnnVhuuCEmjx3Ptu+/59A//4llxw7iKiuJ93iwuVyoYBCb1YrSdVAqZsRfrcqfKby/cqUojYsjMGoUKZMnY3O78VmtmFJSCLRuTZNx42g6cCA4naFrIVzgU3rwID+OHYtut9P89ts5dPvtNHI6STaZ0M1mXIEAFQ0bkvT443QcMQJ0nb3vvcd5t96KpagImjUDTcPjcvHFVVeRuWcPppQUHCUllDVoQIrPR6PJk0n2enFt2EDTMWMgLo5tY8ZgW72azI4dSRw+HC64AIDsf/8b7zPP0LiggFRdx6VpFGkajZRit9VK4rvvsv+11+i7aBEZVBcgNA1GucXCqquuotX8+eTdcQf58+czNC+PyNTLPmB906Z0zM6m0udjzV//yqAvvjjmyLjRnMCyQYNIPHQId2YmaevW0cPpZF5GBgMKC6mes0PKNY0Nf/kLv3ntNZTPx+GZMwk2b45l0CCaHqe/74akJLpH9aPUgbzzz6fxkiWYGzUylqtgkBVdutB7+/aYPiDFVive2bPRMjLYP2gQKiODi3fuDAXDqakUpqRgufRSun34IfE17N8PvD94MC2zs+kfNVCLH+hktdL/7ruZFg7If65IEGCz2U5oSPxIoabFYjGafJpMJqO53UsvvYRSilGjRtX4+R49erBu3Trat29Py5YtsdvtbNy4MaZpZCT4iEhISODvf/8748aNIxgM0q5dO/74xz8ydepU/vSnPxnNuCNuvfVWWrRowYsvvhiz7/vvv59XX32Viy++mHXr1p34QQKuvfZa/vGPf3DhhRfi8XhISUlB13WGDh3KnDlzMJvNvPTSS0ydOtUY+G316tXcfPPNaJrGJ598Um2biYmJvPTSSzz00EPV+lymp6fz1FNPMXLkyJjmrk2aNOHRRx/lkUceYdeuXfTr189owtqyZUsOHTp0zKkoLBYL06ZNY+7cuXz00UfGvnw+H16vlz59+rBo0SLGjx9Pbm5urX1GO3XqRIMGDfB4PHz44YfG3JNjx47l008/NdZLTU3l2muv5bvvvqvW1DZiwIABlJSUnPBIrJFm0pHg9dlnn6VXr15cddVVJ/R5u92OzWYjEAgYx/22224jPj6eO+64g6FDh1ZrUmu1Wnn//fepqKjg6aefJiUlBaUUubm5PPPMMzz00EMxwXT//v0pKCjgueeeIzU1lR07dvCb3/yGbt26xZxPm83GPffcw8cff2w0e7ZarWiaRvfu3XniiScYPnw4OTk5tGjRgs6dOxsB3cmwWCy89dZbPPfcc0ZhRW3i4uJwu92/mmfcs5kEhPXoyJEjNG3alGXLlnHppZcayydMmMC7775bY6dxr9cb0xG7vLyc5s2by8UixHFEaservj5bRd+aI7UnpuMUCPxaVVZUcPTwYdwFBbjdbpLT0jDbbDRp3x5/IEBCQkK181lRWopWVoYjORlzUhJUGfl2/86dVO7ahbOwEOXx4He5sNhs+AIBEhMTMVutKMCRlESTSy+lQVQfUq/bTfGBAzTp0IHtixZRunkzVl1Hs1pRViu62UyXiy8mrkMHiBrtMSLg9ZKzdCm2ykpKcnPJSEricE4OaBrJaWmkdu1Kw0suoWLXLpy7dpGUmUli27ZwjHt8sKwM38GDxGVloZxOtBYtqhUgVezZgycnh4aXXooWLiQo2LyZA3PmYHI6MVssmMxmAppGi2uvJf3CC3G7XFQWFuLOyaH4yy/p/sILBNPTMcfH4wvXZAGYzWbMZjMetxs0zXjY9fv9RvAWCeQiedtisRi1YZFlkTkRdV3H6/Fgtdkwm82h2hqTCZPZjM1mM64Jt9uNyWTC4XAQCATQNA2L2Ywi1GfPYjbjDy+P7CPyeVO4ZQCErjG/348WPmZWq5VAIBAz5ZAGBHUdXdexmM0xeU4RKuSN7Mdms6EB/kAAr9eL1WrFYrFgDm9fETvoTZzDgdvjiU1XePsmkynmszWJ3C20Kssi24uItArSdT00lZTFgslkIhgukAoGg6ECMl0PHfvwe9HfoeqdUwG+8HOJzW5HKYXP50PpOoFgEJPJhFIKq9VKMBjEYbcbaQoEg0b+MPJA+Bga92sApQgEg6E84/OBpoWCllqORyAYNNZz2O1omhbKU+ECWi2cZyK1gCZNQ1fKyK+RvBQ6DZqRD/Tw8bHZbMZ6ZrMZa2SAtkDAWGaxWIyWWJqmGcvcLhc2ux1L+N6ghwvBLVH3imAwiDcyl3J4eeRcVT3nkfOuh483gNlkihlpNpquFF6PBy28TuScBnWdQCBg5F9TVP6OvBcJFL0eD/5AIFQYq2lGXo1c95HvbDKZsNvtxmcD4c9E0ha5Tr1ebyh/axo2qxXC58ttNpOakyPPuGeABIT1KBIQLl++PGaEs2effZYZM2bUWHIybtw4xo8fX225XCxCCCFOK6Vg6lSow5QdQghxssq9XlKef16ecc8AmYewHqWnp2M2m6s1YSgoKKBx48Y1fubxxx+PaQYTqSEUQpwdth/dTsvUljgsp2daDCHqjabBsabLEEKIU6m8HJ5/vr5TcU44N9sfnSVsNhs9evSI6XcAsGDBgpgmpNHsdjvJyckxf0KIs0fHVzvy9c6a57UUQgghhDjbSA1hPRs1ahR/+MMf6NmzJ3369OGNN97g4MGD3H///fWdNCHESVJIS3whhBBC/DJIQFjPbrvtNoqKinjqqafIzc2lS5cuzJkzh/POO6++kyaEOEnSNVsIIYQQvxQSEJ4FRowYwQjplyHEr4bUEAohhBDil0L6EApxDvv3mn8zd9fJzyckahZdQ6iUwhOoeaJlIYQQQoj6JgGhEL8wLyx7odqyFi+1OKltTV49mQV7Fxx/RVEn+0v3G6+/3/89DZ9vWPvKQgghhBD1SAJCYThYdpBeb/aq72T8Iv2Y+yObCzafkX2N+XZMtT5qh8oPndS2PAGPTI/wMyml+GTrJzHL/r7w78brCl8FLr/rTCfrrFDuLWfMgjHVludX5DNv97x6SNGvx8Gyg3y69dP6ToYQQohfAQkIhWFP8R7WHllb38k4o5RSPDjnwZ+9nQfnPsi/lv/rFKToxAT0AMDPnt7g5wSEbr875v8FlQWUecp+Vnp+SSYsnYAn4GFf6T5unXUrQI2FAqWe0jOcsrPH9qPbeWF59Rrtz7Z9xvUfXF8PKfr1mLd7HrfMuqW+kyGEEOJXQAJCYdhdvLu+k3DKPbbgMQ6UHqj1/T0le3h1zasUu4tPeJu60qstK6wsJD0+/aTSeDJ8QR8A1394PcO/Gg6c3Pk7kYDQ6XWSV5FXbfnvPvkd646sM/7/6upXeX3d67Vu5+r3rjZqoLcWbmXUN6P4YNMHdU7z2UApxeTVk9ldvJtZW2YZy99Y94bxushVBMDqw6uJs8Sd0fSVekrp+UbPammpi0ihQ11N3zCdLQVbAGotIHD6nCTZk05q+7VZsOf0NX0O6kHeWf/OSX32651fx+SLU8VqstZpfRn5VgghRG1klNFfiQpfBT6XD4vJglIKd8CNy+8izhJHmbcMb8BLsj2ZoAoS1INYzVaUUgRVkBR7CrrSWZGzgu6NuzN7x2zS49Np06BNaBvWOJxeJ3HWOBJtiaQ6UnH73XiDXvxBP5qmUeYpQ6FIsafgDXpJtCVS7i0noAfQ0EiyJ1HkKsJqtmIz29DQ0DTN+LfUU0qyPZmAHiCgB3B6nWQmZlLuLcdhceAOuI3vZjaZMWkmLCYLVpOVoAqioZHqSMVusRvHxBPw8Pzy5zlUfoi/9/07TZOa4vQ5CepBnD4ncZY43l7/Npefdzn/XvNvbuxwI0E9SIItwVincUJj/LofCAVhWwu3cvcXd5PzSA4pjhQAthVuY1fxLl5c8SIDWw+kc0ZnCl2FKKVigi2/7scT8NAooREBPcBR11GUUtjMttAx0TR8QR++oI8EawKZiZk0jG+IWTOjaRoAG/M3ArDkwBJ+c95vAHht3WsAtJvcjsXDFtMksQkQeqDXNI0SdwkpjhRSHalkJmZi0kLlQHN3zaXUU8pj3z5G54zO9GraC7NmJsGWYKS7yFVE+guhQHf272dzUZOL8Aa95FXksSl/E9/v/570+HT8up/FBxZjNpm5vcvtpDhSiLfGYzGFbjErc1Yyf898I13vb3yfl1a+BECqI5UeTXrw1OKnaJHSgj92/yNWsxWn18mra17ls22f8cnvPiHFnmIEKW3T2nKo/JCRD+Ot8Zg0k3G+8ivy8et+dKVj1szoSscX9GEz21AoXH4XutJJi0sj2Z6MP+hHobCb7djMNuwWu/E6cuyj7S3ZizfgZWfRTqN5qD/oZ0vhFmOdfy77J08PeJrPt3+OO+Dm2SXPckfXOzCbzCilaJTQiPzKfLwBLzazDV3puANuKn2VxFnjqPBVYNJM6EpHQ8NisuCwODBpJip8FXgCHlqmtjTyjd1sJyMhA4vJQvOXmlPhqyDXmUtaXJpxDt+84U2uaXsN5d5y2jRow9bCrcRb42mW3Ix4a7xxTf+Y9yPXvHcNEwdOpHez3vTKCgXymwo2MXLeSEb3GU2Fr4JOGZ3YVLCJzMRMlh1cxpjLxjDsi2FMuHICnRt15qjrKBBq3tgi5ad+ruXecuxmO9/u/ZZOGZ3wBDzYzDb2l+7nw00fMvrS0Th9TpYeWEqSPYlWqa1IcYTOvz/oD/2r+3l84eMM6z6MFEcK986+lw9v/pA2aW3YW7IXu9lOt8bdMJvMmDUznoCHFEcKR11HMWtmNhds5rzU89DQjGMfZwkdd7vFjoZGoi0RT8DD17u+5tEFj9IurR2tGrTCYrKwu3g3ibZEku3JuPwu7GY7Js2EQpFkSyIjIYMKXwVPLnqSIncRf77oz0b+P1h2EIUiMzETf9BPqiOVgsoCI294Ah7GfDuGsX3H0iG9g3HPi1BKGTXP2bnZxFniaJTQiERbonEPrPRVsrdkL9M3TGd4r+H0fKMnc+6cQ8+snmzI24DZZObGmTcy76552M127BY7DRwNCOgBgirIwbKDLNy7kJlbZjJj6AwyEzPRlY7dbCfOemYLOIQQQpxempJiw1+08vJyUlJSGPruUFJTUjniPEJeRR6HnYe5/LzLUSj8wVAgEgnQemX1IqiCVPgqSLIl4dN97CzaScf0jozoNYKvd37N9qLt2M12zJrZCMYigd/Oop0k2hJpmdoSh8WBpmnYzXbcATeFlYU0jG9Ipa+SoAriDXgJqiCNEhqxrXAb56efT6o9FYVCKWX8m2RPwul14tN9WLRQEKFQoeDSmog36CXBmsCRiiNkJWahaZrxYHik4ghpcWm4/W4joDziPEKlv9KoNbu+/fWk2FNIi0vDpJmwmqzoSic9Pp3butzGh5s+pMJXQYmnhBJPCQnWBNwBNw0cDVhzZA0d0jvgMDvISsqiQ3oHZmycgS/ow+V30SCuAb/r9DuGfTmMJy9/kgNlB0hzpOGwOGJqE0s9pUbQYTVbKXGXkJGQgVkzG8FKJGDPceZg0ky4/W6+2P4FV7S6ghYpLZi9YzZF7lBtT8+snjze93Hcfjd3fX4Xbw95m435Gyn3luPX/aQ50rCarSTZkkLNOb1llHhKKPOU4df9pMen89XOr7i/x/00jG/Ij3k/YtJMmDUzu4p3EdADtEtrx9e7Qs1Sx10+ji2FW0i2J5NkS+KeC+/hxo9upF1aO1qmtuT3XX5PYWUh8/fMp9JfyRHnEeKt8TSIa8DBsoPsKtpFfmU+vZv1Jispi4V7F3J/z/tx+V3sL93PH7v/kX0l+9hdvBtP0BN6qI7PYNqP0/hjtz/i8rvQNI1ybzlLDy7lsuaXkR6fjt1sp8wbqolambOSCl8F17W7zgjm3H43DosDm9lmBPeHnYdJtiVjMVmo9FdiN9vRNA1vwIs3GP4LePEFfSgUQT2Iy+/CarbisDhwep1c2+5aXlzxIjeefyPLc5bz4lUvMm7ROFbkrMCkmbiy1ZVk52bz6rWv0jatLfN2z2NPyR4jz1f6K2kY15AybxkZ8RnoSifJloRf9+P0Okl1pALgsDiwmCz49VB+r/RVkmwPpf3jrR/TIqUFndI74Q64ya3IxRvw8rvOv+PCzAsZOW8kAT3AipwV6ErnlWteYUXOCorcRZR6SkmPT6d9WnuWHVqGzWwDINmezL7SfRxxHmF0n9FsKdzCpoJNbCvchs1swxv04rA4uLnjzTRwNKBtWlsOOw+TmZjJkgNLuCDzAn44+AM/5v1IvDWemzveTE55DpX+Slokt+Cubnfx6IJHWXV4Fde2u5amSU2xmW34gj6aJDahdYPWfLvvW8yamYLKAhrGN6RjekcqfZWhQiCzFavJitVspXvj7mTnZuP0Obmz653M3T2XDzZ9QNu0tnRv3J1dxbsIqiC60jnqOsqcXXNIsiWR4kjh5o43h+5r4UIpk2bCH/ST4kjBG/AaecphcdAqtRWD2w3m8ncuB+Co6yiP9H6E//z4HzITMxnUehAuvwtPwINJM1HkLsKv+9HQuK/Hfaw6vApd6Ty79Flu7ngzAT1A8+Tm5FfmY7fYOeo6SgNHAzRNI84Sh9Vk5ZJmlzBv9zxcfheHyg+RHp+O1WRl7u7QqMAPX/IwDeMb8o/v/0GyPZnr2l2HO+BmS8EW2qa1xWwyszJnJUddR7mp400MbjuYL7Z/QVAF6dqoK3kVeSgUeRV5dGjYAU/AQ4mnJFS4YLGT5kgjqIIUuYtItifjC/oI6kHyK/NZPGzxaftNE0KIiMgzbllZGcnJyfWdnF83JX7RysrKFKDKysrO2D7n7ZqnSt2lZ2x/J0vXdcU41Mi5I0/rPnRdV8sOLlOMO32Xk8vnUtlHslX2kWzFONQrK18x3ttXsk8xDrXuyLoT2pau66rCW6GUUjHbqc0DXz9Q63cbOH2g2l+y/5ifz3PmKbffrZRSyvGMQz3/w/MqEAwoxqFmbZl1Qmk+UQv2LFAL9y48pdtUSql1R9apA6UHYpYFggE1ff105fK51PKDy9Udn96hhs4cqhiHsj5lVRXeihM+Jydr7q65x7wW3X63OlB6oNo5PFR2SDEO5Q14lVJKLd6/WE1eNbnGbQT1oOozrY8qchWppxc/rRiHavRCoxNKn67rMf//4cAPqsOUDkae3VW064S2cypUeCvUkA+HqLey31L93+l/Uttw+90qEAwY18+0ddPUnuI9x/1ckatIMQ713d7vFONQ/qC/zvuO3Gs+3/a5On/y+arH6z1UnjNP5ZTlqKAerPP2TtZ9/72v2nkVQojToT6ecc9VUkP4CyelJ8cW1IOYNFONzf5OpS0FW+gytQvqydN7OQX1IH3f7str171G98zuxvKnFz/Nw70fPuX9sgBW5ayi91u9a/xuAT1gNAs9ER1f7cjU66bSv2V/tPEam4ZvokujLqcyufVCKUWvN3vxSO9HuOvzu0LNnP+f+/gfPEPcfjfxE+JjzmFQD2I2meu0nSmrpzB+8XhyHsmJaZ59MrTxGr7/9WE1160v3KmglDrt94Sqyr3lJNuTKfWUGrW/J2vqmqk8/M3DVI6trNP1J4QQvyTyjHvmSED4CycXy9lBVzoHSg/QqkGr+k7KKacrncPlh2me0vxnbyv6QVwbr+F83EmiLfFnb/dsEPlu2vhQ3zPn4876TtIpV+4tN/rB/lzf7/ueAa0GnIJUnXu+3P4lN35042kvgBJCiPokz7hnjhQtCnEKmDTTrzIYhNB3OxXBIBBTK7PnoT2/mmAQYr+bWatbzdsvRbI9mWT7qflRlmDw5DVNblrfSRBCCPErItNOCCHqResGres7CadNw/iG9Z0E8SvWNq0tDeMkjwkhhDg1JCAUQohTbN1f1h1/JSFOUqojlaNjjtZ3MoQQQvxKSEAohBCn2M8dNEQIIYQQ4kyRgFAIIYQQQgghzlESEAohxCm0dcTW+k6CEEIIIcQJk4BQCCFOoY4ZHes7CUIIIYQQJ0wCQiGEEEIIIYQ4R0lAKIQQQgghhBDnKAkIhRBCCCGEEOIcJQGhEEIIIYQQQpyjJCAUQgghhBBCiHOUBIRCCCGEEEIIcY6SgFAIIYQQQgghzlESEAohhBBCCCHEOUoCQiGEEEIIIYQ4R0lAKIQQQgghhBDnKAkIhRBCCCGEEOIcZanvBIifRykFQHl5eT2nRAghhBBCiFMj8mwbedYVp48EhL9wTqcTgObNm9dzSoQQQgghhDi1nE4nKSkp9Z2MXzVNSdj9i6brOkeOHCEpKQlN087IPsvLy2nevDmHDh0iOTn5jOxT/PpJvhKng+QrcapJnhKng+Sr6pRSOJ1OsrKyMJmkl9vpJDWEv3Amk4lmzZrVy76Tk5PlpiVOOclX4nSQfCVONclT4nSQfBVLagbPDAm3hRBCCCGEEOIcJQGhEEIIIYQQQpyjJCAUdWa323nyySex2+31nRTxKyL5SpwOkq/EqSZ5SpwOkq9EfZJBZYQQQgghhBDiHCU1hEIIIYQQQghxjpKAUAghhBBCCCHOURIQCiGEEEIIIcQ5SgJCIYQQQgghhDhHSUAoarVkyRJuuOEGsrKy0DSNL774IuZ9pRTjxo0jKyuLuLg4+vfvz5YtW+onseIX4bnnnqNXr14kJSXRqFEjbrzxRnbs2BGzjuQrUVdTp06lW7duxoTOffr0Ye7cucb7kqfEz/Xcc8+haRoPP/ywsUzylaircePGoWlazF9mZqbxvuQpUV8kIBS1qqyspHv37kyZMqXG959//nn+7//+jylTprBmzRoyMzMZNGgQTqfzDKdU/FIsXryYBx54gJUrV7JgwQICgQBXXXUVlZWVxjqSr0RdNWvWjIkTJ7J27VrWrl3LFVdcwZAhQ4wHKclT4udYs2YNb7zxBt26dYtZLvlKnIzOnTuTm5tr/G3atMl4T/KUqDdKiBMAqM8//9z4v67rKjMzU02cONFY5vF4VEpKinrttdfqIYXil6igoEABavHixUopyVfi1GnQoIGaNm2a5CnxszidTtWuXTu1YMECdfnll6uRI0cqpeReJU7Ok08+qbp3717je5KnRH2SGkJxUvbt20deXh5XXXWVscxut3P55ZezfPnyekyZ+CUpKysDIC0tDZB8JX6+YDDIzJkzqayspE+fPpKnxM/ywAMPcN111zFw4MCY5ZKvxMnatWsXWVlZtGrVit///vfs3bsXkDwl6pelvhMgfpny8vIAaNy4cczyxo0bc+DAgfpIkviFUUoxatQo+vbtS5cuXQDJV+Lkbdq0iT59+uDxeEhMTOTzzz+nU6dOxoOU5ClRVzNnziQ7O5s1a9ZUe0/uVeJkXHLJJUyfPp327duTn5/PM888w6WXXsqWLVskT4l6JQGh+Fk0TYv5v1Kq2jIhavLggw+yceNGfvjhh2rvSb4SdXX++eezfv16SktL+fTTT7n77rtZvHix8b7kKVEXhw4dYuTIkcyfPx+Hw1HrepKvRF0MHjzYeN21a1f69OlDmzZtePfdd+nduzcgeUrUD2kyKk5KZFSsSIlWREFBQbXSLSGq+utf/8rs2bP5/vvvadasmbFc8pU4WTabjbZt29KzZ0+ee+45unfvzqRJkyRPiZOybt06CgoK6NGjBxaLBYvFwuLFi3nllVewWCxG3pF8JX6OhIQEunbtyq5du+ReJeqVBITipLRq1YrMzEwWLFhgLPP5fCxevJhLL720HlMmzmZKKR588EE+++wzvvvuO1q1ahXzvuQrcaoopfB6vZKnxEm58sor2bRpE+vXrzf+evbsyZ133sn69etp3bq15Cvxs3m9XrZt20aTJk3kXiXqlTQZFbWqqKhg9+7dxv/37dvH+vXrSUtLo0WLFjz88MNMmDCBdu3a0a5dOyZMmEB8fDx33HFHPaZanM0eeOABPvjgA7788kuSkpKMktCUlBTi4uKMeb4kX4m6GDt2LIMHD6Z58+Y4nU5mzpzJokWLmDdvnuQpcVKSkpKMvs0RCQkJNGzY0Fgu+UrU1ejRo7nhhhto0aIFBQUFPPPMM5SXl3P33XfLvUrUKwkIRa3Wrl3LgAEDjP+PGjUKgLvvvpt33nmHMWPG4Ha7GTFiBCUlJVxyySXMnz+fpKSk+kqyOMtNnToVgP79+8csf/vttxk2bBiA5CtRZ/n5+fzhD38gNzeXlJQUunXrxrx58xg0aBAgeUqcHpKvRF3l5ORw++23c/ToUTIyMujduzcrV67kvPPOAyRPifqjKaVUfSdCCCGEEEIIIcSZJ30IhRBCCCGEEOIcJQGhEEIIIYQQQpyjJCAUQgghhBBCiHOUBIRCCCGEEEIIcY6SgFAIIYQQQgghzlESEAohhBBCCCHEOUoCQiGEEEIIIYQ4R0lAKIQQQgghhBDnKAkIhRBCCCGEEOIcJQGhEEIIIYQQQpyjJCAUQgghhBBCiHOUBIRCCCGEEEIIcY6SgFAIIYQQQgghzlESEAohhBBCCCHEOUoCQiGEEEIIIYQ4R0lAKIQQQgghhBDnKAkIhRBCCCGEEOIcJQGhEEIIIYQQQpyjJCAUQgghhBBCiHOUBIRCCCGEEEIIcY6SgFAIIYQQQgghzlESEAohhBBCCCHEOer/A9bPwoFqtdJTAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# restore the best solution (first in list)\n", "c.XMLInput(vsol[0]['xml'])\n", "\n", "# sort solutions as a function of the log-likelihood\n", "vsol = sorted(vsol, key=lambda sol: sol['llk'])\n", "\n", "if widgets is not None:\n", " v = []\n", " for i in range(len(vsol)):\n", " sol = vsol[i]\n", " v.append(\"#%2d %12s : %d mol LLK=%12.2f\"%(i, sol['spg'], sol['nb_mol'], sol['llk']))\n", " w = widgets.Dropdown(options=v, description='Solutions:', disabled=False,)\n", " def show_solution(solution):\n", " i = v.index(solution)\n", " # Crystal display is automatically updated when loaded\n", " c.XMLInput(vsol[i]['xml'])\n", " # Update powder pattern display manually\n", " p.FitScaleFactorForIntegratedRw()\n", " p.UpdateDisplay()\n", " widgets.interact(show_solution, solution=v)\n", "else:\n", " # print solutions\n", " for i in range(len(vsol)):\n", " sol = vsol[i]\n", " print(\"#%2d %12s : %d mol LLK=%12.2f\"%(i, sol['spg'], sol['nb_mol'], sol['llk']))\n", "\n", "# displays - requires ipywidgets for crystal 3D display\n", "display(c.widget_3d())\n", "p.plot(fig=None,diff=True,hkl=True)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Try some other solutions\n", "If ipywidgets is not shown in the previous cell, load solutions manually" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "XML: Loading Crystal:\n", "XML: Loading Crystal:(spg:P 1 21/c 1)\n", "Input ScatteringPowerAtom:C(C)\n", "Input ScatteringPowerAtom:N(N)\n", "Input ScatteringPowerAtom:S(S)\n" ] } ], "source": [ "# Crystal display is automatically updated when loaded\n", "c.XMLInput(vsol[2]['xml'])\n", "# Update powder pattern display manually\n", "p.UpdateDisplay()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Save the selected result to CIF and Fox (.xmlgz) formats\n", "All the solutions (or just the best ones) could be saved automatically that way by looping over the results" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [] }, "outputs": [], "source": [ "# Save result so it can be opened by Fox\n", "xml_cryst_file_save_global('result.xmlgz')\n", "# Also export to the CIF format\n", "c.CIFOutput(\"result.cif\")\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "objcryst", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.5" } }, "nbformat": 4, "nbformat_minor": 4 }