{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## PbSO4 tutorial: indexing, spacegroup determination & structure solution\n", "In this notebook, you can:\n", "* Load the powder diffraction data and create the PowderPattern object, for two diffrection patterns (X-ray and neutron)\n", "* Find the diffraction peaks and index them (determine the unit cell)\n", "* Perform a profile fit to optimise the background and reflection profiles\n", "* Determine the spacegroup\n", "* Add a molecule to describe the contents of the Crystal structure\n", "* Solve the Crystal structure using a Monte-Carlo/Parallel tempering algorithm, using both X-ray and neutron diffraction patterns\n", "* Save the best result to a CIF file and to Fox .xmlgz format\n", "\n", "Notes:\n", "* This is a simple case, which illustrates the possibility of joint X-ray/neutron optimisation.\n", "* It is important to follow the steps relatively linearly and avoid going back to previous cells until you know better. For example to avoid adding multiple times Scatterer/Molecule objects in the crystal structure, or multiple crystalline phases to the powder pattern with the same crystal, etc..." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Imports" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# 'widget' allows live update and works in both classical notebooks and jupyter-lab.\n", "# Otherwise 'notebook', 'ipympl', 'inline' can be used\n", "%matplotlib widget\n", "\n", "import os\n", "import pyobjcryst\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from pyobjcryst.crystal import *\n", "from pyobjcryst.scatteringpower import ScatteringPowerAtom\n", "from pyobjcryst.atom import Atom\n", "from pyobjcryst.polyhedron import MakeTetrahedron\n", "from pyobjcryst.powderpattern import *\n", "from pyobjcryst.radiation import RadiationType\n", "from pyobjcryst.indexing import *\n", "from pyobjcryst.molecule import *\n", "from pyobjcryst.globaloptim import MonteCarlo\n", "from pyobjcryst.io import xml_cryst_file_save_global\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create powder pattern object, download data if necessary\n", "We start with the X-ray data which will be used to determine the unit cell and spacegroup." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ " % Total % Received % Xferd Average Speed Time Time Time Current\n", " Dload Upload Total Spent Left Speed\n", " 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Radiation: X-Ray,Wavelength= tube: Cu, Alpha1/Alpha2= 0.5Imported powder pattern: 6001 points, 2theta= 10.000 -> 160.000, step= 0.025\n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100 48688 100 48688 0 0 163k 0 --:--:-- --:--:-- --:--:-- 163k\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "64f3e219741847358162b2cc58b8d956", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAch9JREFUeJzt3Xl4FFXePvy7sy8knc0kRMM2IkSCwqCyPoIDskiIir9BjEZ9RRYVMBJAGVxQBxBkHXhUwAVkGZwZARXGCIigyB6ILAYQDRAkISxJZ6XT6T7vHzxVdvWSdCed7k7q/lxXXyRdp6qrTiek7v6eOqURQggQERERERGR6vh4egeIiIiIiIjIMxgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFTKz9M7QA1jMplw8eJFhIWFQaPReHp3iIiIiIgaTAiBsrIyJCQkwMeHNazGxEDYxF28eBGJiYme3g0iIiIiIpfLz8/HLbfc4undaNYYCJu4sLAwADd+WcLDwz28N0REREREDVdaWorExET5XJcaDwNhEycNEw0PD2cgJCIiIqJmhZdENT4OyCUiIiIiIlIp1QXC77//HsOGDUNCQgI0Gg02bdpk1SY3NxepqanQarUICwtDjx49cP78eXm5Xq/HhAkTEBMTg9DQUKSmpuLChQuKbRQXFyM9PR1arRZarRbp6ekoKSlRtDl//jyGDRuG0NBQxMTEYOLEiaiurm6MwyYiIiIiIrKiukBYUVGBO++8E0uXLrW5/Ndff0WfPn3QsWNH7Ny5Ez/99BNee+01BAUFyW0yMjKwceNGrF+/Hrt370Z5eTlSUlJgNBrlNmlpacjJyUFWVhaysrKQk5OD9PR0ebnRaMTQoUNRUVGB3bt3Y/369fj888+RmZnZeAdPRERERERkRiOEEJ7eCU/RaDTYuHEjHnroIfm5kSNHwt/fH6tXr7a5jk6nw0033YTVq1fj0UcfBfDHTJ///e9/MWjQIOTm5uL222/Hvn370L17dwDAvn370LNnT5w8eRIdOnTA119/jZSUFOTn5yMhIQEAsH79ejz99NMoKipy+HrA0tJSaLVa6HQ6XkNIRERE5GFGoxEGg8HTu+H1/P394evra3c5z3Hdh5PKmDGZTNiyZQumTp2KQYMG4ciRI2jbti2mTZsmh8bs7GwYDAYMHDhQXi8hIQHJycnYs2cPBg0ahL1790Kr1cphEAB69OgBrVaLPXv2oEOHDti7dy+Sk5PlMAgAgwYNgl6vR3Z2Nu677z63HTcRERERNYwQAoWFhVaXCJF9ERERiI+P58QxHsZAaKaoqAjl5eV455138Pe//x1z5sxBVlYWhg8fju+++w59+/ZFYWEhAgICEBkZqVg3Li4OhYWFAIDCwkLExsZabT82NlbRJi4uTrE8MjISAQEBchtb9Ho99Hq9/H1paWm9j5eIiIiIXEMKg7GxsQgJCWHIqYUQApWVlSgqKgIAtGzZ0sN7pG4MhGZMJhMA4MEHH8RLL70EAOjSpQv27NmDDz74AH379rW7rhBC8Ytv6z+B+rSxNHv2bLz55pt1HwwRERERuYXRaJTDYHR0tKd3p0kIDg4GcKMgExsbW+vwUWpcqptUpjYxMTHw8/PD7bffrng+KSlJnmU0Pj4e1dXVKC4uVrQpKiqSK37x8fG4dOmS1fYvX76saGNZCSwuLobBYLCqHJqbNm0adDqd/MjPz3f+QImIiIjIZaRrBkNCQjy8J02L1F+85tKzGAjNBAQE4O6778apU6cUz58+fRqtW7cGAHTr1g3+/v7Ytm2bvLygoADHjx9Hr169AAA9e/aETqfDgQMH5Db79++HTqdTtDl+/DgKCgrkNlu3bkVgYCC6detmdx8DAwPlm9DzZvRERERE3oPDRJ3D/vIOqhsyWl5ejjNnzsjf5+XlIScnB1FRUWjVqhWmTJmCRx99FPfeey/uu+8+ZGVl4auvvsLOnTsBAFqtFqNGjUJmZiaio6MRFRWFyZMno3PnzhgwYACAGxXFwYMHY/To0Vi2bBkAYMyYMUhJSUGHDh0AAAMHDsTtt9+O9PR0vPvuu7h27RomT56M0aNHM+QREREREZFbqK5CeOjQIXTt2hVdu3YFAEyaNAldu3bF66+/DgB4+OGH8cEHH2Du3Lno3LkzPvzwQ3z++efo06ePvI2FCxfioYcewogRI9C7d2+EhITgq6++Uox9Xrt2LTp37oyBAwdi4MCBuOOOOxS3svD19cWWLVsQFBSE3r17Y8SIEXjooYcwb948N/UEeZNTp05h1qxZnt4NIiIiItnOnTuh0Wg4c2ozp+r7EDYHvEdL89C+fXucOXMG/HUkIiJqeq5fv468vDy0bdsWQUFBnt4dl9m5cyfuu+8+FBcXIyIiwuXbr63feI7rPqqrEBIREREREdENDIREXoAXVRMREZEn6PV6TJw4EbGxsQgKCkKfPn1w8OBBRZsff/wRd955J4KCgtC9e3ccO3ZMXnbu3DkMGzYMkZGRCA0NRadOnfDf//7X3YdBDcBASERERESkUlOnTsXnn3+OVatW4fDhw7j11lsxaNAgXLt2TW4zZcoUzJs3DwcPHkRsbCxSU1PlW0W88MIL0Ov1+P7773Hs2DHMmTMHLVq08NThUD2obpZRIm/ECiEREVHzU1lZiZMnT7r9dTt27OjQPRErKirw/vvvY+XKlRgyZAgAYMWKFdi2bRs++ugj3H333QCAN954A/fffz8AYNWqVbjllluwceNGjBgxAufPn8cjjzyCzp07AwDatWvXSEdFjYWBkIiIiIioEZw8ebLW+0s3luzsbPz5z3+us92vv/4Kg8GA3r17y8/5+/vjnnvuQW5urhwIe/bsKS+PiopChw4dkJubCwCYOHEinnvuOWzduhUDBgzAI488gjvuuMPFR0SNiYGQyAuwQkhERNT8dOzYEdnZ2R55XUdIs5tbnocIIeo8N5GWP/vssxg0aBC2bNmCrVu3Yvbs2Zg/fz4mTJhQjz0nT2AgJCIiIiJqBCEhIQ5V6jzl1ltvRUBAAHbv3o20tDQAgMFgwKFDh5CRkSG327dvH1q1agUAKC4uxunTpxWhMzExEePGjcO4ceMwbdo0rFixgoGwCWEgJCIiIiJSodDQUDz33HOYMmUKoqKi0KpVK8ydOxeVlZUYNWoUfvrpJwDAW2+9hejoaMTFxWH69OmIiYnBQw89BADIyMjAkCFDcNttt6G4uBg7duxAUlKSB4+KnMVASOQFOGSUiIiIPOGdd96ByWRCeno6ysrKcNddd+Gbb75BZGSkos2LL76IX375BXfeeSe+/PJLBAQEAACMRiNeeOEFXLhwAeHh4Rg8eDAWLlzoqcOhetAIafAwNUmlpaXQarXQ6XQIDw/39O5QPSUlJeHkyZPgryMREVHTc/36deTl5aFt27YICgry9O40GbX1G89x3Yf3ISTyAlKFkIGQiIiIiNyJgZDIC3DIKBERERF5AgMhkRdhhZCIiIiI3ImBkMiLMBASERERkTsxEBJ5EQZCIiIiInInBkIiL8BJZYiIiIjIExgIibwAAyEREREReQIDIRERERERkUoxEBJ5EVYIiYiIqKmYMWMGunTp4undoAZiICTyIgyERERERORODIREXoDXEBIRERGRJzAQEnkBBkIiIiLyBJPJhDlz5uDWW29FYGAgWrVqhZkzZwIAXn75Zdx2220ICQlBu3bt8Nprr8FgMNS6vY8//hidOnVCYGAgWrZsifHjx7vjMKgB/Dy9A0T0BwZCIiIicqdp06ZhxYoVWLhwIfr06YOCggKcPHkSABAWFoaVK1ciISEBx44dw+jRoxEWFoapU6fa3Nb777+PSZMm4Z133sGQIUOg0+nw448/uvNwqB4YCIm8gFQhJCIiInKXsrIyLF68GEuXLsVTTz0FAPjTn/6EPn36AABeffVVuW2bNm2QmZmJzz77zG4g/Pvf/47MzEy8+OKL8nN33313Ix4BuQIDIZEXYYWQiIioGamsBP6v2uZWHTsCISF1NsvNzYVer0f//v1tLv/Pf/6DRYsW4cyZMygvL0dNTQ3Cw8Ntti0qKsLFixftbou8l+quIfz+++8xbNgwJCQkQKPRYNOmTXbbjh07FhqNBosWLVI8r9frMWHCBMTExCA0NBSpqam4cOGCok1xcTHS09Oh1Wqh1WqRnp6OkpISRZvz589j2LBhCA0NRUxMDCZOnIjq6moXHSk1JbyGkIiIqBk6eRLo1s39DwdDaHBwsN1l+/btw8iRIzFkyBBs3rwZR44cwfTp0+2eq9a2LfJuqqsQVlRU4M4778T/9//9f3jkkUfsttu0aRP279+PhIQEq2UZGRn46quvsH79ekRHRyMzMxMpKSnIzs6Gr68vACAtLQ0XLlxAVlYWAGDMmDFIT0/HV199BQAwGo0YOnQobrrpJuzevRtXr17FU089BSEElixZ0ghHTk0BAyEREVEz0rEjkJ3tmdd1QPv27REcHIxvv/0Wzz77rGLZjz/+iNatW2P69Onyc+fOnbO7rbCwMLRp0wbffvst7rvvvvrtN3mE6gLhkCFDMGTIkFrb/P777xg/fjy++eYbDB06VLFMp9Pho48+wurVqzFgwAAAwJo1a5CYmIjt27dj0KBByM3NRVZWFvbt24fu3bsDAFasWIGePXvi1KlT6NChA7Zu3Yqff/4Z+fn5cuicP38+nn76acycOdNuOZ6aNwZCIiKiZiQkBPjznz29F3YFBQXh5ZdfxtSpUxEQEIDevXvj8uXLOHHiBG699VacP38e69evx913340tW7Zg48aNtW5vxowZGDduHGJjYzFkyBCUlZXhxx9/xIQJE9x0RFQfqhsyWheTyYT09HRMmTIFnTp1slqenZ0Ng8GAgQMHys8lJCQgOTkZe/bsAQDs3bsXWq1WDoMA0KNHD2i1WkWb5ORkRQVy0KBB0Ov1yK7lkyS9Xo/S0lLFg5o+DhklIiIiT3jttdeQmZmJ119/HUlJSXj00UdRVFSEBx98EC+99BLGjx+PLl26YM+ePXjttddq3dZTTz2FRYsW4b333kOnTp2QkpKCX375xU1HQvWlugphXebMmQM/Pz9MnDjR5vLCwkIEBAQgMjJS8XxcXBwKCwvlNrGxsVbrxsbGKtrExcUplkdGRiIgIEBuY8vs2bPx5ptvOnVMRERERES2+Pj4YPr06YqhoZK5c+di7ty5iucyMjLkr2fMmIEZM2Yolo8dOxZjx45tjF2lRsIKoZns7GwsXrwYK1eudPo2AEIIxTq21q9PG0vTpk2DTqeTH/n5+U7tJ3knVgiJiIiIyBMYCM388MMPKCoqQqtWreDn5wc/Pz+cO3cOmZmZaNOmDQAgPj4e1dXVKC4uVqxbVFQkV/zi4+Nx6dIlq+1fvnxZ0cayElhcXAyDwWBVOTQXGBiI8PBwxYOaPgZCIiIiIvIEBkIz6enpOHr0KHJycuRHQkICpkyZgm+++QYA0K1bN/j7+2Pbtm3yegUFBTh+/Dh69eoFAOjZsyd0Oh0OHDggt9m/fz90Op2izfHjx1FQUCC32bp1KwIDA9GtWzd3HC55IQZCIiIiInIn1V1DWF5ejjNnzsjf5+XlIScnB1FRUWjVqhWio6MV7f39/REfH48OHToAALRaLUaNGoXMzExER0cjKioKkydPRufOneVZR5OSkjB48GCMHj0ay5YtA3DjthMpKSnydgYOHIjbb78d6enpePfdd3Ht2jVMnjwZo0ePZtVPxRgIiYiIiMidVFchPHToELp27YquXbsCACZNmoSuXbvi9ddfd3gbCxcuxEMPPYQRI0agd+/eCAkJwVdffSXfgxAA1q5di86dO2PgwIEYOHAg7rjjDqxevVpe7uvriy1btiAoKAi9e/fGiBEj8NBDD2HevHmuO1hqchgIiYiIiMidNIJnoE1aaWkptFotdDodK4tN2N13341Dhw6hqKgIN910k6d3h4iIiJxw/fp15OXloU2bNggODvb07jQZVVVVOHv2LNq2bYugoCDFMp7juo/qKoRE3oiTyhARETVd/v7+AIDKykoP70nTIvWX1H/kGaq7hpDIHU6cOIFbb70VgYGBTq3HQEhERNT0+Pr6IiIiAkVFRQCAkJAQp29hpiZCCFRWVqKoqAgRERGKy67I/RgIiVxMCIHk5GSMGTNGnlTImXWJiIio6YmPjwcAORRS3SIiIuR+I89hICRqJIcPH3Z6HQZCIiKipkmj0aBly5aIjY2FwWDw9O54PX9/f1YGvQQDIZGLSaGupqbG4XV4DSEREVHz4Ovry6BDTQonlSFqJEaj0eG2vM6AiIiIiDyBgZDIxepTIbRcl4iIiIjIHRgIiRpJfSqEDIRERERE5E4MhEQuJoU6ZwKh5bpERERERO7AQEjUSFghJCIiIiJvx0BI5GINCXUMhERERETkTgyEpDqlpaX1Gs5JRERERNTcMBCS6mi1WowfP77Rtl+fKh+HjBIRERGRJzAQkipt3Lix0V+jPuGOgZCIiIiI3ImBkFSpMYeMskJIRERERE0FAyGpkrddQ8hASERERESewEBIquRtFUJXrEtERERE5CwGQlIlb6sQEhERERF5AgMhqRIrhEREREREDISkUjU1NY3+Gs6EO15DSERERESewEBIqtSYwYuzjNZt7dq10Ol0nt4NIiIiItVjICTyImoIhOXl5XjiiScwZswYT+8KERERkeoxEBJ5ETUEQh+fG//tFBUVeXhPiIiIiIiBkMjF1BDqXKG6utrTu0BERESkegyEpEreFtrUdA2hdIwGg8HDe0JEREREqguE33//PYYNG4aEhARoNBps2rRJXmYwGPDyyy+jc+fOCA0NRUJCAp588klcvHhRsQ29Xo8JEyYgJiYGoaGhSE1NxYULFxRtiouLkZ6eDq1WC61Wi/T0dJSUlCjanD9/HsOGDUNoaChiYmIwceJEVk2aAU4q4xgGQiIiIiLPU10grKiowJ133omlS5daLausrMThw4fx2muv4fDhw9iwYQNOnz6N1NRURbuMjAxs3LgR69evx+7du1FeXo6UlBTFve3S0tKQk5ODrKwsZGVlIScnB+np6fJyo9GIoUOHoqKiArt378b69evx+eefIzMzs/EOnmTeGry8db9cSTpGNRwrERERkbfz8/QOuNuQIUMwZMgQm8u0Wi22bdumeG7JkiW45557cP78ebRq1Qo6nQ4fffQRVq9ejQEDBgAA1qxZg8TERGzfvh2DBg1Cbm4usrKysG/fPnTv3h0AsGLFCvTs2ROnTp1Chw4dsHXrVvz888/Iz89HQkICAGD+/Pl4+umnMXPmTISHhzdiL1Bjqk/gUWOFkIiIiIg8T3UVQmfpdDpoNBpEREQAALKzs2EwGDBw4EC5TUJCApKTk7Fnzx4AwN69e6HVauUwCAA9evSAVqtVtElOTpbDIAAMGjQIer0e2dnZdvdHr9ejtLRU8SBqShh6iYiIiLwHA2Etrl+/jldeeQVpaWlyxa6wsBABAQGIjIxUtI2Li0NhYaHcJjY21mp7sbGxijZxcXGK5ZGRkQgICJDb2DJ79mz5ukStVovExMQGHaNaeduN6V2xblOjpmMlIiIi8lYMhHYYDAaMHDkSJpMJ7733Xp3thRDysD8Aiq8b0sbStGnToNPp5Ed+fn6d+0beT01DRtVwjERERERNBQOhDQaDASNGjEBeXh62bdumuJ4vPj4e1dXVKC4uVqxTVFQkV/zi4+Nx6dIlq+1evnxZ0cayElhcXAyDwWBVOTQXGBiI8PBwxYO8CwMPERERETUVDIQWpDD4yy+/YPv27YiOjlYs79atG/z9/RWTzxQUFOD48ePo1asXAKBnz57Q6XQ4cOCA3Gb//v3Q6XSKNsePH0dBQYHcZuvWrQgMDES3bt0a8xDJi6khTKrhGImIiIiaCtXNMlpeXo4zZ87I3+fl5SEnJwdRUVFISEjA//t//w+HDx/G5s2bYTQa5SpeVFQUAgICoNVqMWrUKGRmZiI6OhpRUVGYPHkyOnfuLM86mpSUhMGDB2P06NFYtmwZAGDMmDFISUlBhw4dAAADBw7E7bffjvT0dLz77ru4du0aJk+ejNGjR7Pq18Q15LYKagpLajpWIiIiIm+lukB46NAh3HffffL3kyZNAgA89dRTmDFjBr788ksAQJcuXRTrfffdd+jXrx8AYOHChfDz88OIESNQVVWF/v37Y+XKlfD19ZXbr127FhMnTpRnI01NTVXc+9DX1xdbtmzB888/j969eyM4OBhpaWmYN29eYxw2eTleQ0hEREREnqC6QNivX79aT0gdOVkNCgrCkiVLsGTJErttoqKisGbNmlq306pVK2zevLnO16OmhYGndlL/1DZ5EhERERG5B68hJPIiagqTajpWIiIiIm/FQEiq4o4QUp/X4JBRIiIiIvIEBkJSFYYRIiIiIqI/MBASuRhnGa2dGo6RiIiIqKlgICRV8dYwoqYhoxI1HSsRERGRt2IgJHKxhgQdNYQkNRwjERERUVPBQEiq4s4wwuBDRERERN6OgZBUxVtnGXXFuk2FGo6RiIiIqKlgICTyAryGkIiIiIg8gYGQVMXbK4RqwP4hIiIi8h4MhERehGGJiIiIiNyJgZBUxVsrhGoaMqqGYyQiIiJqKhgISVU4y6jnsV+IiIiIvAcDIZGLcZZRIiIiImoqGAhJVbw1cHHIKBERERF5AgMhqYq3hxFv3z9XUtOxEhEREXkrBkIiF2PQqR37h4iIiMh7MBCSqnh7GPH2/SMiIiKi5oWBkMjFpFDnTLjjNYRERERE5AkMhKQqDCPeg+8FERERkecxEJKqeOuN6V2xblOhhmMkIiIiaioYCIncoKCgAFVVVXaXq2nIKBERERF5DwZCUhVPVQgTEhLwwAMP1Gvd5kYNx0hERETUVDAQErnJzp077S6TKoRqwEBIRERE5D1UFwi///57DBs2DAkJCdBoNNi0aZNiuRACM2bMQEJCAoKDg9GvXz+cOHFC0Uav12PChAmIiYlBaGgoUlNTceHCBUWb4uJipKenQ6vVQqvVIj09HSUlJYo258+fx7BhwxAaGoqYmBhMnDgR1dXVjXHY9H94DSERERER0R9UFwgrKipw5513YunSpTaXz507FwsWLMDSpUtx8OBBxMfH4/7770dZWZncJiMjAxs3bsT69euxe/dulJeXIyUlBUajUW6TlpaGnJwcZGVlISsrCzk5OUhPT5eXG41GDB06FBUVFdi9ezfWr1+Pzz//HJmZmY138OT1gcvb988V1HCMRERERE2Fn6d3wN2GDBmCIUOG2FwmhMCiRYswffp0DB8+HACwatUqxMXFYd26dRg7dix0Oh0++ugjrF69GgMGDAAArFmzBomJidi+fTsGDRqE3NxcZGVlYd++fejevTsAYMWKFejZsydOnTqFDh06YOvWrfj555+Rn5+PhIQEAMD8+fPx9NNPY+bMmQgPD3dDb1BjqM99CNWI/UNERETkeaqrENYmLy8PhYWFGDhwoPxcYGAg+vbtiz179gAAsrOzYTAYFG0SEhKQnJwst9m7dy+0Wq0cBgGgR48e0Gq1ijbJyclyGASAQYMGQa/XIzs7u1GPU828PYR4+/65ghqOkYiIiKipUF2FsDaFhYUAgLi4OMXzcXFxOHfunNwmICAAkZGRVm2k9QsLCxEbG2u1/djYWEUby9eJjIxEQECA3MYWvV4PvV4vf19aWuro4ZGb1Cfw8LYTREREROQJrBDaYDnjoxCizlkgLdvYal+fNpZmz54tT1Sj1WqRmJhY636REgOX5/E9ICIiIvIeDIRm4uPjAcCqQldUVCRX8+Lj41FdXY3i4uJa21y6dMlq+5cvX1a0sXyd4uJiGAwGq8qhuWnTpkGn08mP/Px8J49S3TjLKBERERHRHxgIzbRt2xbx8fHYtm2b/Fx1dTV27dqFXr16AQC6desGf39/RZuCggIcP35cbtOzZ0/odDocOHBAbrN//37odDpFm+PHj6OgoEBus3XrVgQGBqJbt2529zEwMBDh4eGKBzV9ahoyqoZjJCIiImoqVHcNYXl5Oc6cOSN/n5eXh5ycHERFRaFVq1bIyMjArFmz0L59e7Rv3x6zZs1CSEgI0tLSAABarRajRo1CZmYmoqOjERUVhcmTJ6Nz587yrKNJSUkYPHgwRo8ejWXLlgEAxowZg5SUFHTo0AEAMHDgQNx+++1IT0/Hu+++i2vXrmHy5MkYPXo0Q14jcmeFsD6vpaawpKZjJSIiIvJWqguEhw4dwn333Sd/P2nSJADAU089hZUrV2Lq1KmoqqrC888/j+LiYnTv3h1bt25FWFiYvM7ChQvh5+eHESNGoKqqCv3798fKlSvh6+srt1m7di0mTpwoz0aampqquPehr68vtmzZgueffx69e/dGcHAw0tLSMG/evMbuAlXz1hBS1zWqzYm3vgdEREREaqQRPDtr0kpLS6HVaqHT6VhZdMDly5flGWAb60f/t99+w5/+9CfExsbK15LWNST0wQcfxJdffonNmzdj6NChjbJf3uLXX3/Frbfeig4dOuDkyZOe3h0iIiLyQjzHdR9eQ0iq4u2ff3j7/rmCGo6RiIiIqKlgICRyMQae2rF/iIiIiLwHAyGpireHEW/fP1dS07ESEREReSsGQlIVb51llLedICIiIiJPYCAk8gJqCoRERERE5D0YCElV3FkhJNvYP0RERETeg4GQyIswLBERERGROzEQkqp4e4VQDYFQDcdIRERE1FQwEJKqeGsYka4hVBNvfS+IiIiI1ISBkMjF6jPLqOW6zZkajpGIiIioqWAgJFXx9jDi7ftHRERERM0LAyERuRVDLxEREZH3YCAkVeGkMp6nhmMkIiIiaioYCElVvDWM8Mb0REREROQJDIRELlafUKemQKiGYyQiIiJqKhgISVXcGUYYfGrH/iEiIiLyPAZCIhfjNYS1U8MxEhERETUVDISkKt4eRrx9/4iIiIioeWEgJFXx1llGpWsI1YChl4iIiMh7MBASeRE1hSU1HSsRERGRt2IgJFXx1gqhK9ZtKtRwjERERERNBQMhqYq3hhE13XaCiIiIiLwHAyGRizHU1Y79Q0REROQ9GAhJVbz9PoRqCktqOlYiIiIib8VASORiDZllVA0hSQ3HSERERNRUMBBaqKmpwauvvoq2bdsiODgY7dq1w1tvvQWTySS3EUJgxowZSEhIQHBwMPr164cTJ04otqPX6zFhwgTExMQgNDQUqampuHDhgqJNcXEx0tPTodVqodVqkZ6ejpKSEnccpmo5E0ZKSkqwcePGRtwbdZLeAzXdaoOIiIjIWzEQWpgzZw4++OADLF26FLm5uZg7dy7effddLFmyRG4zd+5cLFiwAEuXLsXBgwcRHx+P+++/H2VlZXKbjIwMbNy4EevXr8fu3btRXl6OlJQUGI1GuU1aWhpycnKQlZWFrKws5OTkID093a3HqzbOBMIpU6Zg+PDhTod0zjLqGDUdKxEREZG38vP0DnibvXv34sEHH8TQoUMBAG3atME///lPHDp0CMCNk9hFixZh+vTpGD58OABg1apViIuLw7p16zB27FjodDp89NFHWL16NQYMGAAAWLNmDRITE7F9+3YMGjQIubm5yMrKwr59+9C9e3cAwIoVK9CzZ0+cOnUKHTp08MDRk7mKigoAwLVr1xAREeGW11RDSFLDMRIRERE1FawQWujTpw++/fZbnD59GgDw008/Yffu3XjggQcAAHl5eSgsLMTAgQPldQIDA9G3b1/s2bMHAJCdnQ2DwaBok5CQgOTkZLnN3r17odVq5TAIAD169IBWq5Xb2KLX61FaWqp4kOOcCSP1HdLIwENERERETQUrhBZefvll6HQ6dOzYEb6+vjAajZg5cyYee+wxAEBhYSEAIC4uTrFeXFwczp07J7cJCAhAZGSkVRtp/cLCQsTGxlq9fmxsrNzGltmzZ+PNN9+s/wGSwxp6jRtnGbVNOkbz63KJiIiIyDNYIbTw2WefYc2aNVi3bh0OHz6MVatWYd68eVi1apWinWVYEELUGSAs29hqX9d2pk2bBp1OJz/y8/MdOSz6P+4IabyG0DEGg8HTu0BERESkeqwQWpgyZQpeeeUVjBw5EgDQuXNnnDt3DrNnz8ZTTz2F+Ph4ADcqfC1btpTXKyoqkquG8fHxqK6uRnFxsaJKWFRUhF69esltLl26ZPX6ly9ftqo+mgsMDERgYGDDD1SlvLVq15DbTuTn58Pf31/+2fR20jHW1NR4eE+IiIiIiBVCC5WVlfDxUXaLr6+vPLytbdu2iI+Px7Zt2+Tl1dXV2LVrlxz2unXrBn9/f0WbgoICHD9+XG7Ts2dP6HQ6HDhwQG6zf/9+6HQ6uQ15B3dWCOujVatWig8nmgpWCImIiIg8jxVCC8OGDcPMmTPRqlUrdOrUCUeOHMGCBQvwzDPPALhRycnIyMCsWbPQvn17tG/fHrNmzUJISAjS0tIAAFqtFqNGjUJmZiaio6MRFRWFyZMno3PnzvKso0lJSRg8eDBGjx6NZcuWAQDGjBmDlJQUzjDaiOozqYw7r3VTw5BR6RilQFhZWYlhw4Zh5cqVSExM9OSuEREREakOA6GFJUuW4LXXXsPzzz+PoqIiJCQkYOzYsXj99dflNlOnTkVVVRWef/55FBcXo3v37ti6dSvCwsLkNgsXLoSfnx9GjBiBqqoq9O/fHytXroSvr6/cZu3atZg4caI8G2lqaiqWLl3qvoMlh7ijQiito4ZAKJEC4cGDB7Fjxw4sXboUc+bM8fBeEREREakLA6GFsLAwLFq0CIsWLbLbRqPRYMaMGZgxY4bdNkFBQViyZInihvaWoqKisGbNmgbsLTnLndcQqincOcPyGkL2ExEREZHn8BpCUhVPzDLqyPpqrBBaTirT0Nt8EBEREZHzGAiJ7HDVNYQMhEr1CcxERERE1DgYCElV6jOpTH0rhAw6ttnrF1YIiYiIiNyPgZCoDg0NdqwQ1k6Nx0xERETkLRgISVU8cWN6BkIle0NGWSEkIiIicj8GQlIVT0wq4651mzoGQiIiIiL3YyAkssMTk8qoASeVISIiIvIeDISkKu6sEDqznpqGjNrDCiERERGR+zEQkqq4MxDWZ5ZSNQRCNRwjERERUVPBQEhUB3femJ6IiIiIyJ0YCElV6nMfwoZeQ+gMNQRDXkNIRERE5D0YCInq4M4KoZrDEa8hJCIiInI/BkJSFU/cdoKBUIkVQiIiIiLvwUBIquKJSWVIiTemJyIiIvIeDIREdajvNYTOVP3UVCG0h4GQiIiIyP0YCElV6jOpDIeMuhaHjBIRERF5DwZCojpwyKh7sL+IiIiI3I+BkFTFHRXC+rwmK4RERERE5AkMhKQqnphl1Jl11ByOWCEkIiIicj8GQiI76ntjelbAasf+ISIiIvIeDISkKrwPIRERERHRHxgIiergjpCmpkCohmMkIiIiaioYCElVvLVCWN/Xag44KysRERGR5zAQkqrUJ3C54xpCNQVBe8fKQEhERETkfgyERHY09Mb0zgQcNQ0ZtaTGYyYiIiLyFgyENvz+++944oknEB0djZCQEHTp0gXZ2dnyciEEZsyYgYSEBAQHB6Nfv344ceKEYht6vR4TJkxATEwMQkNDkZqaigsXLijaFBcXIz09HVqtFlqtFunp6SgpKXHHIaqWO4aMWq7HIaNKrBASEREReQ8GQgvFxcXo3bs3/P398fXXX+Pnn3/G/PnzERERIbeZO3cuFixYgKVLl+LgwYOIj4/H/fffj7KyMrlNRkYGNm7ciPXr12P37t0oLy9HSkoKjEaj3CYtLQ05OTnIyspCVlYWcnJykJ6e7s7DJQe48z6EasDbThARERF5Dz9P74C3mTNnDhITE/HJJ5/Iz7Vp00b+WgiBRYsWYfr06Rg+fDgAYNWqVYiLi8O6deswduxY6HQ6fPTRR1i9ejUGDBgAAFizZg0SExOxfft2DBo0CLm5ucjKysK+ffvQvXt3AMCKFSvQs2dPnDp1Ch06dHDfQauIOyeVqc+QUzWGI04qQ0REROQ5rBBa+PLLL3HXXXfhr3/9K2JjY9G1a1esWLFCXp6Xl4fCwkIMHDhQfi4wMBB9+/bFnj17AADZ2dkwGAyKNgkJCUhOTpbb7N27F1qtVg6DANCjRw9otVq5jS16vR6lpaWKBznOmcDlzhvTq+kaQvNjFEKo4piJiIiIvBUDoYXffvsN77//Ptq3b49vvvkG48aNw8SJE/Hpp58CAAoLCwEAcXFxivXi4uLkZYWFhQgICEBkZGStbWJjY61ePzY2Vm5jy+zZs+VrDrVaLRITE+t/sOQQ3oew8Qgh5MDNCiERERGR+zEQWjCZTPjzn/+MWbNmoWvXrhg7dixGjx6N999/X9HO8uRVCFHnCa1lG1vt69rOtGnToNPp5Ed+fr4jh0X/x9vvQ6gGlhVCBkIiIiIiz2EgtNCyZUvcfvvtiueSkpJw/vx5AEB8fDwAWFXxioqK5KphfHw8qqurUVxcXGubS5cuWb3+5cuXraqP5gIDAxEeHq54kOPqM2TUHYFQzRVCtR0zERERkTdhILTQu3dvnDp1SvHc6dOn0bp1awBA27ZtER8fj23btsnLq6ursWvXLvTq1QsA0K1bN/j7+yvaFBQU4Pjx43Kbnj17QqfT4cCBA3Kb/fv3Q6fTyW3Is+p7DWF9qCkQ2qsQEhEREZH7cZZRCy+99BJ69eqFWbNmYcSIEThw4ACWL1+O5cuXA7gREjIyMjBr1iy0b98e7du3x6xZsxASEoK0tDQAgFarxahRo5CZmYno6GhERUVh8uTJ6Ny5szzraFJSEgYPHozRo0dj2bJlAIAxY8YgJSWFM4w2Ig4Z9S4mk0m+FYuPDz+fIiIiInI3BkILd999NzZu3Ihp06bhrbfeQtu2bbFo0SI8/vjjcpupU6eiqqoKzz//PIqLi9G9e3ds3boVYWFhcpuFCxfCz88PI0aMQFVVFfr374+VK1fC19dXbrN27VpMnDhRno00NTUVS5cudd/Bqpwj131K7ZzdrrPrq7lCOG7cOABQ/G4QERERkXswENqQkpKClJQUu8s1Gg1mzJiBGTNm2G0TFBSEJUuWYMmSJXbbREVFYc2aNQ3ZVXKSZRhxRyB0Zh01BEJzQgj51imsEBIRERG5H8/ASFXMA5ej1641NKQ1Rsj77LPPUF1d7fLtuoNlKJcwEBIRERG5H8/ASLXqCmquujG9M+s4sm52djZGjhyJefPmOf063sBeICQiIiIi92MgJFVxR4Wwsa8hrKysBACr25o0RebvAcMhERERkfsxEJKquDMQ1uc+ho3V1pvYqxA21eMhIiIiasoYCElV3HkNYWOFO0cmwmkqGAiJiIiIPIuBkFTFmQDiqmsI1VD1c4ble/Dwww9bPU9ERERE7sFASKrirUNG1XzbCbUeOxEREZE3YCAkVfHEpDKNtU5TZfkeMBASEREReQ4DIamKt9+HUG2hiBVCIiIiIs9iICRV8dZrCOsTippqgLJ8D6Tvne1nIiIiImo4BkJSFWcqhPW5bUR92puv48i69d0vb8QKIREREZFnMRCSqpiHwLoCoauCiquDTlO/7YS9CiEDIREREZH7MRCSqjgzZLS+QaWxK4TNCSeVISIiIvIsBkJSFWeGjLoqEPK2E0qsEBIRERF5DwZCUpX6BML6TirTnK71cyUGQiIiIiLvwUBIquKOCqGt13K0rRpmGTXHQEhERETkWQyEpCqNcQ1hVlYW9u3bZ3e7rh4y2tRvz8AKIREREZH38PP0DhC5U2NUCIcMGWKzfWMNGW3qgdAcJ5UhIiIi8ixWCElV3HkNYX3WaUiFsKkEKssKoXQ8TWX/iYiIiJoTBkJSFXfcdqK213RFW3uBsClWDjlklIiIiMizGAhJVZrDbSeaW4WQgZCIiIjIcxgISVU8EQhdvY69IZZNvULYFPefiIiIqKljICRV8dYKoTNtWSEkIiIiIldhICRVceYaQok7KleuGDLaFCtsnGWUiIiIyLMYCOswe/ZsaDQaZGRkyM8JITBjxgwkJCQgODgY/fr1w4kTJxTr6fV6TJgwATExMQgNDUVqaiouXLigaFNcXIz09HRotVpotVqkp6ejpKTEDUelXt5aIazPkNGGbMOTWCEkIiIi8h4MhLU4ePAgli9fjjvuuEPx/Ny5c7FgwQIsXboUBw8eRHx8PO6//36UlZXJbTIyMrBx40asX78eu3fvRnl5OVJSUmA0GuU2aWlpyMnJQVZWFrKyspCTk4P09HS3HZ8aeWsgdKatt19DePHiRfz88892lzMQEhEREXkPBkI7ysvL8fjjj2PFihWIjIyUnxdCYNGiRZg+fTqGDx+O5ORkrFq1CpWVlVi3bh0AQKfT4aOPPsL8+fMxYMAAdO3aFWvWrMGxY8ewfft2AEBubi6ysrLw4YcfomfPnujZsydWrFiBzZs349SpUx45ZjUwD03uuu2EI5rTLKNt2rRBp06dHGrLQEhERETkWQyEdrzwwgsYOnQoBgwYoHg+Ly8PhYWFGDhwoPxcYGAg+vbtiz179gAAsrOzYTAYFG0SEhKQnJwst9m7dy+0Wi26d+8ut+nRowe0Wq3chlzPEzemd/VtJ+y19ZYKocFgqHU5K4RERERE3sPP0zvgjdavX4/Dhw/j4MGDVssKCwsBAHFxcYrn4+LicO7cOblNQECAorIotZHWLywsRGxsrNX2Y2Nj5Ta26PV66PV6+fvS0lIHj4oA7x8y6ghvrxDWxfI9YCAkIiIi8hxWCC3k5+fjxRdfxJo1axAUFGS3nUajUXwvhLB6zpJlG1vt69rO7Nmz5UlotFotEhMTa31NUnJnIKzr56G+r+Xt1xDWhRVCIiIiIu/BQGghOzsbRUVF6NatG/z8/ODn54ddu3bhH//4B/z8/OTKoGUVr6ioSF4WHx+P6upqFBcX19rm0qVLVq9/+fJlq+qjuWnTpkGn08mP/Pz8Bh2v2jhz24mGBhVXDAO1pTlVCBkIiYiIiDyLgdBC//79cezYMeTk5MiPu+66C48//jhycnLQrl07xMfHY9u2bfI61dXV2LVrF3r16gUA6NatG/z9/RVtCgoKcPz4cblNz549odPpcODAAbnN/v37odPp5Da2BAYGIjw8XPEgxzWHIaPefg1hXSwn9mEgJCIiIvIcXkNoISwsDMnJyYrnQkNDER0dLT+fkZGBWbNmoX379mjfvj1mzZqFkJAQpKWlAQC0Wi1GjRqFzMxMREdHIyoqCpMnT0bnzp3lSWqSkpIwePBgjB49GsuWLQMAjBkzBikpKejQoYMbj1hdPDGpjDPrNOSehU0lEFpWCO0NgSUiIiKixsdAWA9Tp05FVVUVnn/+eRQXF6N79+7YunUrwsLC5DYLFy6En58fRowYgaqqKvTv3x8rV66Er6+v3Gbt2rWYOHGiPBtpamoqli5d6vbjURN3DBm1XM9d9yFsKoHK3qQyTSXQEhERETUnDIQO2Llzp+J7jUaDGTNmYMaMGXbXCQoKwpIlS7BkyRK7baKiorBmzRoX7SU5wh1DRuujPqHRPExJ3zcFHDJKRERE5D14DSGpijuvIWysSWXsVTmbSqDipDJERERE3oOBkFTFndcQunvIaFOpENoLhE1l/4mIiIiaEwZCUpX6VNQaOsuoM+s4W01sihVCe0NGKysrPbVLRERERKrFQEiq4s5rCG2tb29b9akiWgbCplJhszepTGlpqad2iYiIiEi1GAhJVTx9DWFdgdDZIaNNsUJob8iowWDw1C4RERERqRYDIamKp+9DWNc9BBsyZLSpVAjtDRk1Go2e2iUiIiIi1WIgJFVxx30Ia1u/MYeMeluF0JFjZSAkIiIi8iwGQlIV8+pUfYaMVldX4/7778epU6ccXs+R0FafCqG334fQ3v44GghPnTqFvLy8xttBIiIiImIgJHVxJkDZCmkXL17E9u3bMX36dIdew9b3ta3jzDWEloHQ2yqENTU1Np+3DOX2AmHHjh3Rrl27xttBIiIiImIgJHVp6JBRf39/AIBer3d4PWcqhI5oKhVCe0NAOWSUiIiIyHswEJKq1KdC6MwwU8vXsFzHlUNGjUZjk6wQMhASEREReQ8GQlKVhg4ZdSS4WbZxJBC6YsioOyqEOp0OJSUlDrW1F/As+0P63l6AJCIiIqLG4+fpHSByJ3cEQndOKmNrG40pIiJCsQ+14ZBRIiIiIu/HCiGpihACPj4+8td1tbVs50glr7agpqZrCNU4ZLSsrAwajQbfffedp3eFiIiIyCEMhKQqQgj4+voCaNg1hN44ZNTbriF0ZMhobbOMNkUXLlwAAHz66ace3hMiIiIixzAQkqqYVwgbMmTUmfUaa1IZk8nk9IQ37qTGCiERERFRU8NASKpiXiGsK3w1dFIZ89e09bW9NnUxD1COhE1PcfQaQukY3BEI8/PzUVVV1eiv423vBREREZE9DISkKs4MGbU1jNOZ207Ym/zFFmcqhOZDRl1VIRRC4Ouvv3ZpkHHkxvTuDoStWrXCX//610bbvkajabRtExERETUGBkJSFVcNGXX1NYSeHjL61Vdf4YEHHsCGDRvqvQ1L3lghBIBt27a55XWIiIiImgIGQlIVo9EIf39/AI13Y/qGDBl1NhC6alKZ4uJiAMClS5fqvQ1LjgRC81DrrkBYXV3tltchIiIiagoYCElVzAOhK64htLWNhlQIHdEYQ0alqqkrQ1ltQ0bNb/1hMpng7+/PSWXqsGbNGnTq1MnTu0FERETNDG9MT6piMplceg2hqwOhp4aM+vnd+K/AlaGstgqhr6+vXOGUAqG9ANmUNOZMry+++CKuXbvWaNsnIiIidWKFkFTFaDTC19cXGo3GJdcQ2gpwls815pBRVwVCKSS7o0Jofh1nc6sQOhPsncUJa4iIiKgxMBCSqkgVQh8fH4eHjNZ2Y3pbIayxh4w2xm0nGiMQ1nZj+uYaCBvzGBgIiYiIqDEwEJKqGI1G+Pj4wMfHxyU3pnfVkFFnKoSNcQ2hJ4aMAn8cAwOh43iPQyIiInIlBkILs2fPxt13342wsDDExsbioYcewqlTpxRthBCYMWMGEhISEBwcjH79+uHEiROKNnq9HhMmTEBMTAxCQ0ORmpqKCxcuKNoUFxcjPT0dWq0WWq0W6enpKCkpaexDVDWpQuiqIaO1VQhtfe+t1xC6e8io9HrNrULYmNcQShXC5tBPRERE5D0YCC3s2rULL7zwAvbt24dt27ahpqYGAwcOREVFhdxm7ty5WLBgAZYuXYqDBw8iPj4e999/P8rKyuQ2GRkZ2LhxI9avX4/du3ejvLwcKSkpipO5tLQ05OTkICsrC1lZWcjJyUF6erpbj1dtnKkQOjKpjK1tWK7nTNXPEfZuO+GKWUZdMbFLXcHFcsioEKLZBEJ3DBk1GAyN9hpERESkPpxl1EJWVpbi+08++QSxsbHIzs7GvffeCyEEFi1ahOnTp2P48OEAgFWrViEuLg7r1q3D2LFjodPp8NFHH2H16tUYMGAAgBtTxicmJmL79u0YNGgQcnNzkZWVhX379qF79+4AgBUrVqBnz544deoUOnTo4N4DV4n6XENY39tO2Pq+rkloGjJk1BVDCV1R4dJoNBBCuKxCKIRoMtfPuSMQNofZWImIiMh7sEJYB51OBwCIiooCAOTl5aGwsBADBw6U2wQGBqJv377Ys2cPACA7OxsGg0HRJiEhAcnJyXKbvXv3QqvVymEQAHr06AGtViu3sUWv16O0tFTxIMdJFUJnhozWNizTFUNGnQ2EjTFkVAoyjgYavV5vd1ld9zR0dpbRr7/+2qF9agxHjx7FjBkzHG7fmLOMSlghJCIiIldiIKyFEAKTJk1Cnz59kJycDAAoLCwEAMTFxSnaxsXFycsKCwsREBCAyMjIWtvExsZavWZsbKzcxpbZs2fL1xxqtVokJibW/wBVyLxC6OprCO09V1fgq28gtJxl1BWB0NHqU23t6qpkWd4LUgqEUji0dPXqVYf2qTHceeedePPNN3H9+nWH2nPIKBERETU1DIS1GD9+PI4ePYp//vOfVsssh7A5MqzNso2t9nVtZ9q0adDpdPIjPz+/rsMgM+bXENYVvmq7hrC2ZZaBsK4KobNBrjFmGZXWdTTQ1BYIHakQ2hoyam8daXsN1ZCqXXl5uUPtOGSUiIiImhoGQjsmTJiAL7/8Et999x1uueUW+fn4+HgAsKriFRUVyVXD+Ph4VFdXo7i4uNY2ly5dsnrdy5cvW1UfzQUGBiI8PFzxIMc1ZoXQ3nBBZwJhQ4aMNiTwODtktLYqVV2TytgbMmpvHVddP9iQwFzbEFlzrBASERFRU8NAaEEIgfHjx2PDhg3YsWMH2rZtq1jetm1bxMfHY9u2bfJz1dXV2LVrF3r16gUA6NatG/z9/RVtCgoKcPz4cblNz549odPpcODAAbnN/v37odPp5Dbkeg29htAyCDoyZLQpXUPoiiGjdc1Yaj5k1JFA2KJFC4f2qS4NCcyODhk1/1DA1ZU8BkIiIiJqDJxl1MILL7yAdevW4YsvvkBYWJhcCdRqtQgODoZGo0FGRgZmzZqF9u3bo3379pg1axZCQkKQlpYmtx01ahQyMzMRHR2NqKgoTJ48GZ07d5ZnHU1KSsLgwYMxevRoLFu2DAAwZswYpKSkcIbRRuTqCqF5gLEXEusKfA0ZMuqq2064csioMxVC6XVrC4RSeGyohlTvnK0QrlmzBmvWrHHp5DIcMkpERESNgYHQwvvvvw8A6Nevn+L5Tz75BE8//TQAYOrUqaiqqsLzzz+P4uJidO/eHVu3bkVYWJjcfuHChfDz88OIESNQVVWF/v37Y+XKlYqT27Vr12LixInybKSpqalYunRp4x6gyrn6GsK6AqHl9405ZNSds4w6EkrstampqUFAQICijfS9rdd3VUWsIYHQGyaVkbBCSERERK7EQGjBkRNyjUaDGTNm1DodfVBQEJYsWYIlS5bYbRMVFYU1a9bUZzepnhpaIZRO+J2pENb1OvW9D6HlLKPuvIawIRXCmpoaq4qgrQqhr68vjEajywKQO64hdMV9HO3hkFEiIiJqDLyGkFSlodcQSoHFVuixFSCdHTLqSKiTXtNbZxmtq43BYLCqCNoLhFJ7V3DnkNHGwCGjRERE1BgYCElVXFUhtPW9vZlHXX3biboCYW5uLrp06YKqqiqnt+mKSWXqCpfOVAgB1wVC87765ZdfnFq3qQ0ZtfzZICIiIrKHgZBUxZlrCG0FQikI1VYhtKwo1hUIzU/wHakQSvtgLxAuWrQIP/30E06dOlXntsz3E7gxY64j3BEIpYlnHN2nuphv29H7CkrqO2TUlQHRmSGj/v7+8gRWthw6dAh/+tOfHD4uIiIiar4YCElVTCaTw0NGpRPv2gKheTCyFQhramrqDITSNvz8/JweMmprOKq0b85cUyjtoysDoSOTylgGQvN1pP1vjAqh9PqOqm+F0JXX+0nvqyPXHZtMJnz33Xd2ly9evBi//fYbzp07Z3P5uXPnsHnz5vrtKBERETUpDISkKgaDAf7+/g4NGbUVCGsbMmqrMmY0Gm0OKzUnhSApFNWlMa4hdKRCaCsY2+JMhdDy2C37Dmicawidvdl9fa8hbIwJYD7++OMGbyM0NBQAUFFRYXP5pEmTMGzYMLcMgSUiIiLPYiAkVTEPhHVV0MyHZlo+Z2vIqK2KVk1NTZ1DQs1vveDICbjU3nI4amMHQvN9qy3oOFIh9PPzU2zTViCUttMYFUJb/bxs2TJcvXpV/t78varvkFFXDXcF/hhCa/l6H374odPBTep/e+/R0aNHAQDXrl1zci/dR6/XY8OGDZ7eDSIioiaPgZBUxVUVQltVMFtByGg02hwGaU5aHhoa6lDwcLRCWJ8ho7VV/iyPq65t2WtjMBjg5+cHjUYjt7F1H0JXB0LzbVseZ1lZGcaNG4f09HSb7es7ZNSVgdDW+/nFF19g9OjRWL16tVPbkgKhvf3TarUAgKKiIif30n3+/ve/45FHHnHqWlkiIiKyxkBIqlJdXY2AgIA6ryEUQljdcxBQVufM/wWUAcb8xut1zdzZkEBoq0JZn/vVOTI80/w47B2TI8NKpQqhRqORjzc4OFixH4B7A6EU+AoLC+XnzMNSfYeMujIQ2upPaXKcyspKp7YlzeBqbybaiIgIAMDly5ed2q47SWHVmdl0iYiIyBoDIamKoxVCe1U9yyBoL8CYB5y6gpT0XEhIiEMBwnwoq+XwVOCPQOhMGHEkfDkSCOsalimtK70H9gKh+f0b6zoOk8nk0NDG2vZN2g97w2JtVQjvu+8+dO3aVfGcZf+58hpCqY/uuOMO+TnLDwEcJQVCe5XP6OhoAEB+fr7Vsv/85z/Ytm2bU69HRERE3ouBkFTF0WsIbc0eav68rfv2SdurqalBUFCQ3M68ja2AID3XokULpyuE5tuzXNeZQOjIfQhrC4SlpaW4/fbbFcP3aguEUoVQCiSWgdC8z+sKVe+88w6io6PrbFdbhVDqK3uB0Nb7snPnTuTk5NjcjuT333+vdZ+cIW1b6ivAuWHB5qQho1VVVZg8eTI++OADxXKpwm1+TaXkr3/9KwYOHFiv13Wl+symS0RERNYYCElVHK0Q2psIxtEKoRQILYeM2gotDRkyaiu0eGLI6MGDB5Gbm6sIFvbCpXQNYWBgIMrKygA0LBDu3LkTAORt2WMr2EukvjN/3vy9cHTIqGW7v/zlLw6t5wipH8xfw5EKoa1gbl4hnD9/Pp577jnFcil8lpaWNmyn3YAzoRIRETUMAyGpihQI67qG0N69AR29htCZCqGzgdB8H2xVF6WTfWduvt7QIaO21rd3ol5VVYXg4GAEBwdDp9MBsA6Ejs5oCvwxQ2ldgbC2CqHUd+YVTvP3wtFJZSwrhLZ+xj744AP87W9/c2h7trZt/hp1BcLffvsNfn5+cmiWSDOW2rv+Ljc3F4AyEF68eNHufQs9QTpmR8M6ERER2cZASKri6JBRKYQEBAQ4HQjNh4xKt52orWrXkAqhFA7CwsLkdaUZIi9evFjntiy36cwso5s3b5avJbM1S2lNTQ3effddnDhxQrGd69ev1xkInakQ1hVuJLVVCG0Nr61PhdCyovbEE09YtXnuuecwe/Zsh7Znrrq6Gj4+PjYD4bhx4+TnzI/zrbfeAgCrm9RLfWor6B4/fhzHjh0DoDyem2++GW3atHF6vxsbAyFQUFDg1TPCEhGRd2MgJFWRZhl1dFIZy0Do7JBRqUIoBZ7aAmFISEi9h4yah0npOXs3HbdFWseZCuGwYcPka8nsVQinTp2Ke++9V7GdqqoqBAUF2QyEtu79WFcglMJ2XVU8RyqEwB8hS3ouKCjI4QrhlStXcPPNN9t9nYaorq5WBH/Adsg1X75q1Sqb+yH1qa2Kn/l1g8XFxS7Y88Z18uRJl2znypUr2Lx5s0u21VieeuopTJkyxer5O+64A3FxcR7YIyIiag4YCElVHL3thHRSHRgYWOukMraqNZYVwpqaGoSEhFi1t3yt8PBwhyaCsQyE0vV4loHQmSGj9QmE5qT9tnVNoxT6JLaGjEr9Y6tf6+oTV1QIzUOUtB3ziqujVSidToebbrrJaluuYDAY0KJFC7u3w5D60pHXlNZbsGCB1TLz4afefGN66X1/4YUXUFJS0uDtPfDAAxg2bFi9J6k5deqUS28zYsunn36KefPmWT1/5cqVRn1dIiJq3hgISVUqKysRHBxcZ4VQOqkODQ1VnCBa3p7AvHJkPjGLMxVC6R5ykZGRTl1DKAVCf39/BAUFyetKJ6XOVAildeo7y6jUX4cOHZKfk67ps+zn69evyxVCqRrVokULAH/0oXk/2OoznU6HTz75BEIIl1QIzU/kpSBtHtRre18+/vhj+evS0lJFIHT2/oD2SD9Hlvti/rVUzbPVD1J4kthqc+TIEQDKQGkeNMyPq76uXLmCLVu2ONz+mWeewahRo2wuMz8mVwSiX3/9FUD9hqDW1NSgY8eOmDx5coP3g4iIyN0YCElVqqqqEBISUuc1hNJJcVhYmCKQSM/bCoRSO51Oh6ioKAA3gobBYJArYHUFQoPBUGtQlfZB2v/q6mr4+/s3uEJoq8JnqbZAKPXD6dOnAdwYZildf2bez0IIRYVQOpGXwoZlIPTz87O5TzNnzsQzzzyDM2fOyIHwySefrPUYHR0yaisQ1hY2N2zYIH/dWBVC6fW1Wq3dCqEUwM1fU/q5M6/66fV6rFixwuo1hg8fDuCPDxKefPJJFBYWysulW1FI/v3vfzt9HGlpaUhJSanzZ1zyySefKAK3OfNjciQQCiHw2Wef2f3QQ7oVR6dOnawmKBJC4KOPPrJbAZQqlOYfiBARETUVDISkGgaDQa7W+fj41DpdvXRSHRsbqwhWloHQ1kyUxcXFaNu2LYAbAaGkpEQOCfYCoa+vrzwZTF0hoqqqCmFhYfLX7gqEtc0gallVCQkJsXnLgsrKStTU1ECr1cpVU61Wq6iomm+vRYsWNvdJWn716lU5GFy4cKGWI3R8yKhlIKxryKh5paq0tBSxsbHy97W9l5cvX651f82ZB0J7s59K+23+nBTG3377bfl5ywlmJFIgkgJh9+7dUVRUJP9sWFYZR4wYgZqaGtx77704fPiwQ8chvUeWw4jrw7wfHOnLnTt3YuTIkfjwww9tLpdmq/3tt9+wd+9exbIff/wRzz77LP7xj3/YXFeqzkoz/Nbl119/xR133OGSfjDnyiHK1PxUVFRgx44dnt4NIvJCDISkGtLJUnBwMFq0aFFrYJLaxsXFKYJNbRXCqqoqVFVVQa/X409/+hOAG4Hl6tWraNmypVV7SWVlJUJCQhAeHg6g7tsnVFVVITo6GgBQWFiIsLAwRSCUXqM+k8rUNmTU/GTTvN2FCxdsBkJbJ7vSiXNkZCRCQ0MB3KgOSifSjgZCqfJVXFwsb2fo0KG1HaKiumOvwgn80W91VQilAP/VV1/J+63T6RAdHY0LFy5g4sSJtZ6gP/LII7XurzlpO+Hh4TAajTY/kJB+nqW2Wq1W8fpStc9eaDEPhD4+PkhKSgJwIyABtoe/Xr58GT/88ANeeeUVh45Dem0pwGVlZUGj0dRr8hrz98SRQCi9r/baSscPWN/s3vwDCFukay0dDYSrVq3CsWPH8OOPP9pcvnHjRrzwwgvy9zU1NTZvLbJnzx7Fz3XLli2duv8oqcuUKVPQv39/xe11iIgABkJSEfNAGB0dXeswM3uBUDoJtRUIr1+/Lp/YxsXFoUWLFrh27RquXbuGli1bIjg42ObkF1IglKp+jgRCqeL4+++/Q6vVIjAwUN4Xad9dXSE0D5jm7UpLS60CYVRUFAoKCqzamwdCKTSfP39ePhm3nCnTXiCUqotXr161uv+iPeb7aBkIzfuqvLwc3333HebOnQsAiIiIsBnszLdnft++8PBw3HzzzQgJCak1EDo6bBJQVggB2zept6wQRkZGKrYh/VzZ+7mQfqYrKysRGhoq32IiPz9fXs/yOkLpd+PcuXMOXS8p7XdOTg4A4J///KfiNczVNbmLs4FQam+v36UKIWDdR9K69j4wkX6ud+3a5dCsp4GBgQDsV/SGDx+O9957D6+88gpMJpPid0la7+TJk+jduzfefvtt+XmdTqcY5ttYhBB4+OGH5Z97ahwLFy7Erl277C6vqKjA+PHjYTKZcO7cOeTl5dW6vePHjwMAvv/+e4def8eOHdBoNI12/9FBgwbh9ddfb9A2rl+/3uiTOdlTXl6OHj161NnvRE0BAyE1CcXFxXj11Vcb9B+/dJ+umJgYxMTEOBUIpZNTW0NGpaF05oEwMjISUVFRcoUwOjoaUVFRNmdtdDYQVlZWWgXCiIgI+bWlE/P6TCpjNBrtnohL2wsMDFRsW6fTWQVCy/6V+l66v11kZCRuueUW+bW1Wi0CAgLkE9+6AqFk2bJl8sl6Xf1mvo+WQ14tA+Ff/vIXHDhwAAAQHR1t85oy8+1VVlbCYDCgqqpKrvQGBwdbnfCbH0u7du1q3V9z5lU/82PR6/W44447FMcgtZWuY5VIxyCFOPMKFHAjmAM3rofTarXyz2N5eTmMRiP0er18bBLpA47Tp09j0KBB8vPV1dVYvny5VfiSfm4effRRAMCXX34JwHblzTxYSe3NORsIpeO39/NtXiG0HO4sHefatWtthjjz3+ukpKRaZz3NycnBq6++CgB13jtwzpw5+PTTT62O7/Lly1i8eDEA4O9//7tiWW3bLCoqcsmtUM6ePYtNmzbh9ttvr9f6Op2uzg9EfvnlF/z88892l3vz/SeLiorkDz3qq6KiApMmTUK/fv1w/fp1mx+4PPbYY/jf//1fJCUloU2bNmjXrl2tl0JI21i3bh0OHz5ssw8rKyuxbt061NTUoH///gDQKPcf3bVrF7Zu3Yq3334b3333HTQaDVavXu3UNubPn4/g4GD5AxZ3GzNmDPbv34927dpBCIGdO3dCo9HI12h/8803GD16tMteb8KECVa3caqvf/7zn/jqq69qbaPT6XDu3Dmv/l0j12EgpCZh7ty5mDlzZoP+yEqfcrZu3RoxMTG1nkSaB8Kamhr55FM68auoqIAQQnHfOctA2LZtW5w5cwbXrl1DVFSUHBAtSYFQqujYG5YG3DiZraiokO85duHCBWi1Wtx0003y8dRVCbLFPKjU1NSgtLQUly5dUrSRTubj4+MVw0FtBULz6+iAP07YpYpQXFwcxowZg4cffhi7du2Cj48PWrdubTU8MSwszOaHANL7c/HiRfk9sXXNornaKoRlZWWIj48HYN1vERERVs+VlJQogsXZs2fl15dCm61AaD400pnrx6RtSyFP+nksLy9HeHg4goKC5PdHWmYvEF6+fBlhYWGYM2eOvKxNmzbQ6/VYtmwZrly5gpiYGEUglLb9t7/9Da1bt5bXMz+h2L17t/z1mjVrMHbsWKsTDvN+LykpkYOTZTu9Xq8IG//6179gNBoRGhqKN954A4ByCGtdgfDy5ct45plnAABffPGFzTBivm+WP0vS+1ZQUIC33nrLal3LIa9Hjx61uy/SBw0AMH78eJsn+ubhtKKiwur/hNatW+ODDz6wuX3L31uJTqdDXFwc0tPTYTQasXjx4npfc+jIh00ZGRnYv3+/1fNGoxERERF47rnn0LlzZ+Tm5uL333+3CrK33XYbOnXqZHPbJSUlCAoKwpo1a+q1/7ZUV1cjPDzcqVlw7YmLi0PXrl2dWsdkMmHFihV49NFHcerUKZw5c0ZeFhwcLA+NN2f+/6DkX//6F77++musWLECGo1GMemV9Huyc+dOdOvWDUFBQZgzZ46iqvzKK6/g8ccfV1TMAWDfvn0YNWqUUyMbavP555/LX//lL38BcGMiK0dGBnz99dcQQihm9XX19biWLl68aDWRlvn3TzzxBO677z4AN4Li1atXMXjwYHz44YfIzMysddtXrlzBpEmTav3w8+rVq1i6dCl++OEHeUZk4MalAGVlZU69L6tWrUJaWhpSU1Ot/haWlJTIQ4ojIiLQpk0bBAUF1fpBAzUPDITUJEjVJmeqXpbOnTsHf39/tGzZEq1bt8bFixftfpIvTdYiVeKkE7LCwkK0bdsW1dXVqKysREFBgVzpKS8vl7cnBcIvvvgC1dXV0Gg0dgNhYWEhoqOj5esMLYeHmbt27RoMBgOSk5PldSMiIhSBUPrD6EwgND8pra6uxt133y0HJEl5eTn8/PwQFRWF33//XX6+pKREEbaioqIUN2cH/nj/br75ZiQlJSEiIgJ+fn7YsGGD/Ilnu3bt8MsvvwC4UXHy9/dHu3bt7N52ArjxB8vyuO0pLi6Gj48PIiIirE74y8vLER0dDX9/f5SWlqJVq1bysrCwMKsKoXTSLQXfRx99VH59qYoWGRmJ0tJSxf5LFY/bbrtNsQ/ffPON4gTJkvRhRvfu3QEA7733HkwmE4qLi+WJZqRqm3RiLX2qn5iYCOCPQHjp0iXExcXJ12ECwGeffQYAGDduHC5duoTo6GgEBATAz88PZWVlcuC5+eabFfs5c+ZM+Wvzk3cpxJv/vAshFMFJ+nAAuDE0rlWrVpg1axbWrl2Lnj17WvXBrbfeisrKSjmQXbt2Db1790bLli0VJ73S67/33nty3589e1ZelpOTY7MSYX6SZfnzYf47WVeFELhRbb1+/TrGjx9v9Ttv/nNqMpkQGhqKO++8U37Oskp/5swZeRv33HOP1WtbunTpEvbs2YNTp04p+lu6XnH9+vUYN24cMjIyEBISUufsvBLzfTKfwEmj0WDBggX4xz/+ge+//x5GoxHXrl3D4sWLkZ6ebrUd6UOf5cuX4/jx4xg5ciRuueUWJCQkoH379njxxRcVfTZx4kRFdXfZsmXykEdb27fn4sWLWLZsGd577z3897//tVp+7NgxlJWVYerUqXjmmWdqDctXrlyR96miosJqEiLJyZMnMWvWLIdO1nfv3o0xY8bgX//6Fzp27IguXbpYtbHcJ+mDQfP/69PS0vDAAw9gzJgxAG5cq/zGG2/g559/lkcBmHvllVfQsmVL/P7777h06RKWLFlitV8A0LNnT3z88cfw9fXFvn37bB7DtWvX0LVrV6shlG+++SZycnJQUVGBixcvwmAwWL2OZNGiRVi6dCk0Gg00Gg1++uknZGdny9tcuHAhHnjgAXlkjvR3c/jw4fI6toagW+6n9PN89uxZVFdX48KFCzhy5Ai++eYbADeCp/TBL3Dj/74RI0bI/zfMnTtXnlQLuFF1NRcTEyN/vWDBAnnfNBoN+vbti5qaGnnm4qSkJCxcuBABAQEoKiqSP9Q7deoUlixZAiEEnn76aXl7t956K0pLS2E0GtGyZUuEh4fD19e3zvvG/vTTT+jatatiW/7+/tizZ498qUBkZCQ6duxodc1yfe/PSk2IoCZNp9MJAEKn03l6VxrVyJEjBQCxYcOGem9jypQpol27dkIIIfbs2SMAiP79+9ts+8orr4jExERx9OhRAUD8+OOPwmQyicDAQDF06FABQJw7d0706dNHPPHEEyIqKkq89dZbYtKkSQKAuH79upg5c6YAIACIqVOninHjxon27dtbvVaHDh3Ec889J4QQcnt7jh07JgCI3bt3y21feuklsXLlSgFAlJaWisTERBEQECCioqIc7pvk5GRx2223CQAiLy/P5n68+uqrIiEhQdx7772iR48ecpv33ntPjBs3Tv4egPjPf/6j+F46voCAAPHAAw/Y3IcZM2YIAGL16tUCgIiKihKjRo0SAITJZFK0feSRRwQAccstt4ioqCjRokULcdNNN9V6jDNnzhQ33XST6NSpk5gwYYJi2TPPPCN69OghEhISxGuvvSYAiH79+okdO3aIVatWCQCivLxcbr9z504BQJw8eVI+xsOHDwsA4uDBg0IIIbZs2SIAiPPnz8vrSW0ffvhh0aVLF6vnS0tLhclkEtXV1Yr9+/vf/y6ioqLElStX5Lbvv/++6Natm3j22WdFZGSkACAMBoOYOHGiaN++vRgzZowAIOLi4gQA8fHHH4vdu3eLwMBA0bdvX6vXNX+/Ro4cKS/v37+/2L59uwAgcnNzhRBCvP3224r20uPcuXNCCCHee+89+bmKigohhJBfIz4+3ua69h6333671XPl5eXyz1VSUpLVz8iaNWsEADF79mwhhBAbNmxQrD9nzhxF/+7bt8/qNaRjFUKIxx9/XPH7ZjKZxIwZM0R2draoqakRL730ktX68+bNEwBETEyM+OWXX4QQQkyfPl0AEJ06dRIJCQmK9pLz588LAIrlixcvFgEBAcJkMonu3bvLz+/cuVOMGDFCsZ2uXbvKX997773ydpcuXWq3j7Ozs61+x4qKiuSvjUajiIuLE/PnzxelpaXi/ffft7utTz/9VOzYsUP+PiYmRt5ObeuZPyZMmKD4vl+/fkIIIQoKCqzabtmyRZSWloq63HHHHTb7WzJgwADF8qVLl9rdlvk2/va3vwkAYtmyZfJ7YrmPLVu2FDU1NbXu36BBg2z2hZ+fn2jVqpX8/Y4dO4QQQpSVlTn1e1Sfh9QHtpb98MMP4uOPPxaXLl2Sj8HW77b0/4+th4+Pj/z1+PHj69yfN954w6HnpMf8+fPlr0eNGiX++c9/yt8nJiaKwMDABvfRiRMnxOeffy5/X11drVi+YsWKRn+f6nrYel+eeeYZh9Z96623xDPPPFPn71djUcs5rjdgIGzi1PLLkpKSIgCITz75pN7buPfee8V9990nhBDCZDIp/gO3NGzYMDF48GBRUVEhAgMDxcKFC0VRUZHiD9DatWsFAJGZmSmSkpIUIUkIIb799lv5e51OJ5+ULl++XH6dH3/8UQAQc+fOFUL88Yd38+bNNo9h8+bNArhx4i213bRpkzhy5IgAIJ588kkBQHTo0EEEBAQ41C81NTUiMDBQPPvsswJQhjkp3AghxP/8z/+I++67T6Snpyv+YDz++OPiwQcfVDx36dIlu39gnn32WZv7UVhYaNVWOsmSToIkffr0UbS75557hK+vr7h+/brd4xw9erTo3LmzGDBggEhMTFQs8/PzE126dFGcTE+dOlUIIcSBAwcEAHHgwAG5/fr16wUAUVxcLPz8/AQAsWjRIgFAXLhwQQghxNmzZ+VjMH8d4EZQASCfyJofy/Lly+X3QSItM/+5lR6vv/66+Ne//iUAiHXr1gkA4q9//ascCGNiYqzWkUL5n//8ZxERESGEEOKDDz6Ql/fq1ctqvwAIo9EohBBiyZIlNt/bFi1aCKPRqAhIWVlZQgghTp06pTg+6WErjJk/PvvsM6vnbr31VgFATJo0Sbz44ouKfRbij+AFQHz11Vfy9/3795ef37Ztm3w80j5Jv0cAxF133SVKSkrEzp07Rffu3UXnzp0FANG3b1/x22+/ye1Gjx4tf52TkyN/Lb3XAERkZKQwGAzy9wEBAYrQJD2qqqrE3LlzBXAjkFoGbyGU/3dVVVXJx7x3716b/Xfo0CEhhBBPPPGESEpKkj9ksXxs27ZN3lZ2drYAIJ544gmxbt06+YMxRx6jRo2yCgEFBQU2f54cfdx2222K/bL1eP3118WxY8fE5cuXhRBCGAwGsWvXLiGEkD9AMH/07t1bDB8+3G5QTk5OFjfddJPo3r27KCoqErm5ufKHRdLDPKg5+tixY4cwGAzCaDQKnU4ndu3apdiHTp06yV/r9Xr5PXn66adtbm/BggUCuPH3qF+/foplV65cUXygEh0dLf8dy87Otgre0kP6P0xSXl4u5s6dKw4dOlTv99DWo6SkRNTU1MgfRjj7YZH0OzBx4kSX7pejjz//+c9yH5WWlsofGkp/nw8dOiRMJpP8/1VmZqb84Zqth/kHT7YeR48etfr/E7jxu+vMfnft2lUIIcTXX39tc/m1a9fE+fPnRX5+vvA0tZzjegMGQi/wv//7v6JNmzYiMDBQ/PnPfxbff/+9w+t68pfF/KTL19dXLF68WLz22mti+/btIi8vT/6jYjQaRWVlZYNeS3qdhQsX1mt9qer15JNPys+1adNG3u7ly5flk0PpU+hp06YJIYQIDw9X/Ge5detWxffTp08XDz30kOI5yZEjR4TBYBBCCKsqjPlj9+7dQgihONGU/qOX1jcajfLzJpNJ/Oc//5GPp6KiQrGe9Ideqs7U5uDBgwKA+Pe//221X2PHjhXnzp2TT1JHjhxp949vZmamuP/+++WTv4yMDLFr1y6r8Cb1sy2LFy9W9IllsGzRooX8dZcuXeSvp02bJn995swZcfjwYVFUVCR27twpXnjhBbmimJmZKZ9YJSUlifHjx8snIf/zP/+jCLvSz69l35o/TCaTHMKAGyHAXGxsrNU6q1evVvT1Y489Znf7UnA0/7k6ffq0iIqKkp+bM2eOVZju37+/MBqNYv78+fIJoPkjLy/PZv8HBATIvw9CCDF48GCbP9fmvwNGo9FmVUR6xMXFiXvuuUfRr9LXHTp0EEIIcfz4cav1WrVqJfr37y9KS0vl971jx46KNkePHhWVlZV2X9v8IYUKy+fT0tIUx2dv/bffflt89NFHtb6GEEKuDNb2kD4UOnPmjHyyaPmQTpRt9f/GjRvFZ599ZvX+1VXxGDNmjBBCiFtuucWhPqvrYTkSwJlHfHy8OHPmjDh9+rSoqakRgLLaM3v2bHH27FmRmppqdxvm/4e74tGyZUuXbUsatXH16lWH19myZYvd/xuFEDZ//upiMpmE0WgUhYWFdtu89957YtGiReLq1atWYdBSTU2N/P+Ercfvv/8ufy39bUlISBARERHi6aefFocPHxa7du1y6JwlNzdX/lmRPuACbgTlI0eOyFVsk8kkNm/eLGpqaoTBYBAFBQXyqAnLR//+/RX/X129elVs375dZGZmip9++kkYjUaxbNkyMW/ePFFcXCwmTJggnnjiCZGTkyOqq6vF888/LwYOHCh/0FIfRqNR8XfQvDpfUlIiLl68KM6ePSuEEKKqqsrqQ2uDwSDmzJkj/v3vfyuel/4ujB49Wq44Dx06VMTExIi2bduKkydP2qxUnzx5UkyfPl18++239T6mxsJA6D4MhB62fv164e/vL1asWCF+/vln8eKLL4rQ0FB56FVdPPnLUtfJkSse0jBGew/p08/27ds7tL0jR45Y9Z29h/QeWFZDrl+/rhgiWV1drfgEvbYqlWVwlB7mfxDM//DZegwePNjmts1P/M0rFY4+SkpKFN+HhoZatTl79qzIz88XAMTEiRPFXXfdJS/76aefbO6XyWQSTzzxhFi8eLFDQ7sMBoMckIUQdk8If/jhB/lr86GUtT1OnjwpLl++bHPZb7/9Jn799VcRFBQkPv30U8U+Pfroo1btx44dK4QQiiFClsPMpOqi+ePSpUuKapGjj1OnTsnbNRqN4u677xbPP/+8/Km0eVvLT3Z/+eUXeZn50Fdb75X0AYT0XrRu3drmegsXLhTZ2dny99IJsPTo2LGj1e9vfHy8EEKIl156SUyaNEnxu1JZWSm++eabWj8wEEIofral35v9+/db9VdERITi+7vuuksIoRzOavmQSD/j5g+9Xi+Ki4utjkf6+vjx4/L63333nQBuhEjzCiIAuWplTqpySo/Ro0fLy/R6vcjPz7ca0mlLTU2N6NChg9i5c6fNIYXSSWZNTY0oKysTq1evFps2bbJbNbR8SB+OPfjgg/JrlpaWipqaGnH48GGxcOFCuW1ubq7NDyPOnj1b6/+RRqNRcdJqOUxUqvJKAUev1zv8O3Tp0iVx7do14efnJzp27Cj/3Xj11VfFxo0bhdFoFCaTSZSVlcmjHhITExXbePbZZ8WHH34o5s6dKyIjI8Xq1auFXq8XK1asEEePHhUpKSlyP0uys7PF/fffL490sfUwH4FQmz179gh/f3/RqVOnOoehNrbS0lKxY8cOce7cOZGXl6f4v4PIFRgI3YeB0MPuueceMW7cOMVzHTt2FK+88opD63v6l6WgoEDs3btXfPHFF+K2224TSUlJNq/58YbH+PHjrfbf3qe3U6ZMsTpOvV6vOJG5cOFCvf4gFxUVibVr14p58+aJkpISm21+/fVXu8dha4irOenEUbru0pHHmjVrhBA3ToQ1Go1YsWKFfJ2l9Pjiiy9svt6VK1ccqkQ2RFVVlZg9e7Z8TB9//LEQ4kaIkKrPdX0Sb15RuXjxokhLSxM+Pj7iySefrPXTc0leXp7o06eP6Nu3r9izZ4/D+15aWip++uknMWvWLPH555/LzxcWFgpfX18BQPz3v/8VlZWVIioqSnTv3l0UFhaKv/zlL2LKlCnis88+Uwwds8doNIpr167ZPSnT6/WN/j5dunRJzJw5U+h0OmEymcT169fF3/72N/H000+LnJycRn3t77//XgA3hvquXLlSVFdXi4qKCvHFF1+In3/+2SqEmEwm+bqxdevWiWvXrimWl5eXi4sXL4qqqipFGNuxY4d47bXX5OcuXLigGLppi8FgEPn5+bV+0Gc0GsXZs2dFWVmZs4deK51OJ44dO1bn/xtC3BjWu2DBAnHlyhVRU1MjLl++LM6dOyeefvppUVxcXO99+Pe//y3efvvtWj+MqE1VVZXIz8+vcx+uX78uzp07J86ePSt+++23er9eY9Lr9Q6FeyLy/DmummiE4NRBnlJdXY2QkBD8+9//xsMPPyw//+KLLyInJ8fmDWn1er1iRsfS0lIkJiZCp9NZ3SOs0X32GbB2rcPNTULcmLlKCBQUFKBFWBgM1dUICg5GdXU1TEYjysrLERYWhkuFhYiPj0fhpUu4KSYGN910E0wmE3Q6HSoqKnBTbCyuXrkCXWkp/Hx9cfnyZbT7058QHBQEHx8fhISGosZguHGzco0Gvr6+0NS9i16pxmhEjcGAwKCgeh9DSUkJBAD//5vOXqPRQOPjg8DAQPj6cLJhIiIissHHB9i0ySMvXVpaCq1W65lzXJXxq7sJNZYrV67AaDTKU0dL4uLiFPcFMjd79my8+eab7tg9l/ORpjHWaJCQkKBYFvp/U+BHR0ff+Pf/7qFmfi81Hx8fREZGyvfrS0hIkLfTvn17q9fz9dDNal3Nz9cXfr6+DdpGRESEa3aGiIiIiJoVBkIvYOt+L5bPSaZNm4ZJkybJ30sVQo949NEbDyIiIiIiapIYCD0oJiYGvr6+VtXAoqIiq6qhJDAwEIHNpPJFRERERESexYuHPCggIADdunXDtm3bFM9v27YNvXr18tBeERERERGRWrBC6GGTJk1Ceno67rrrLvTs2RPLly/H+fPnMW7cOE/vGhERERERNXMMhB726KOP4urVq3jrrbdQUFCA5ORk/Pe//0Xr1q09vWtERERERNTM8bYTTRyn5CUiIiKi5obnuO7DawiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEileB/CJk66a0hpaamH94SIiIiIyDWkc1veIa/xMRA2cWVlZQCAxMRED+8JEREREZFrlZWVQavVeno3mjXemL6JM5lMuHjxIsLCwqDRaDy9O16ptLQUiYmJyM/P541NXYR96nrsU9dif7oe+9S12J+uxz51LU/3pxACZWVlSEhIgI8Pr3JrTKwQNnE+Pj645ZZbPL0bTUJ4eDj/QLgY+9T12Keuxf50Pfapa7E/XY996lqe7E9WBt2DcZuIiIiIiEilGAiJiIiIiIhUioGQmr3AwEC88cYbCAwM9PSuNBvsU9djn7oW+9P12Keuxf50Pfapa7E/1YOTyhAREREREakUK4REREREREQqxUBIRERERESkUgyEREREREREKsVASEREREREpFIMhNRszJ49G3fffTfCwsIQGxuLhx56CKdOnVK0EUJgxowZSEhIQHBwMPr164cTJ054aI+bltmzZ0Oj0SAjI0N+jv3pvN9//x1PPPEEoqOjERISgi5duiA7O1tezj51XE1NDV599VW0bdsWwcHBaNeuHd566y2YTCa5Dfuzdt9//z2GDRuGhIQEaDQabNq0SbHckf7T6/WYMGECYmJiEBoaitTUVFy4cMGNR+E9autPg8GAl19+GZ07d0ZoaCgSEhLw5JNP4uLFi4ptsD+V6voZNTd27FhoNBosWrRI8Tz7VMmRPs3NzUVqaiq0Wi3CwsLQo0cPnD9/Xl7OPm1eGAip2di1axdeeOEF7Nu3D9u2bUNNTQ0GDhyIiooKuc3cuXOxYMECLF26FAcPHkR8fDzuv/9+lJWVeXDPvd/BgwexfPly3HHHHYrn2Z/OKS4uRu/eveHv74+vv/4aP//8M+bPn4+IiAi5DfvUcXPmzMEHH3yApUuXIjc3F3PnzsW7776LJUuWyG3Yn7WrqKjAnXfeiaVLl9pc7kj/ZWRkYOPGjVi/fj12796N8vJypKSkwGg0uuswvEZt/VlZWYnDhw/jtddew+HDh7FhwwacPn0aqampinbsT6W6fkYlmzZtwv79+5GQkGC1jH2qVFef/vrrr+jTpw86duyInTt34qeffsJrr72GoKAguQ37tJkRRM1UUVGRACB27dolhBDCZDKJ+Ph48c4778htrl+/LrRarfjggw88tZter6ysTLRv315s27ZN9O3bV7z44otCCPZnfbz88suiT58+dpezT50zdOhQ8cwzzyieGz58uHjiiSeEEOxPZwEQGzdulL93pP9KSkqEv7+/WL9+vdzm999/Fz4+PiIrK8tt++6NLPvTlgMHDggA4ty5c0II9mdd7PXphQsXxM033yyOHz8uWrduLRYuXCgvY5/WzlafPvroo/L/o7awT5sfVgip2dLpdACAqKgoAEBeXh4KCwsxcOBAuU1gYCD69u2LPXv2eGQfm4IXXngBQ4cOxYABAxTPsz+d9+WXX+Kuu+7CX//6V8TGxqJr165YsWKFvJx96pw+ffrg22+/xenTpwEAP/30E3bv3o0HHngAAPuzoRzpv+zsbBgMBkWbhIQEJCcns48doNPpoNFo5FEC7E/nmUwmpKenY8qUKejUqZPVcvapc0wmE7Zs2YLbbrsNgwYNQmxsLLp3764YVso+bX4YCKlZEkJg0qRJ6NOnD5KTkwEAhYWFAIC4uDhF27i4OHkZKa1fvx6HDx/G7NmzrZaxP53322+/4f3330f79u3xzTffYNy4cZg4cSI+/fRTAOxTZ7388st47LHH0LFjR/j7+6Nr167IyMjAY489BoD92VCO9F9hYSECAgIQGRlptw3Zdv36dbzyyitIS0tDeHg4APZnfcyZMwd+fn6YOHGizeXsU+cUFRWhvLwc77zzDgYPHoytW7fi4YcfxvDhw7Fr1y4A7NPmyM/TO0DUGMaPH4+jR49i9+7dVss0Go3ieyGE1XME5Ofn48UXX8TWrVsV1w1YYn86zmQy4a677sKsWbMAAF27dsWJEyfw/vvv48knn5TbsU8d89lnn2HNmjVYt24dOnXqhJycHGRkZCAhIQFPPfWU3I792TD16T/2ce0MBgNGjhwJk8mE9957r8727E/bsrOzsXjxYhw+fNjp/mGf2iZNyvXggw/ipZdeAgB06dIFe/bswQcffIC+ffvaXZd92nSxQkjNzoQJE/Dll1/iu+++wy233CI/Hx8fDwBWn14VFRVZfQJON/7QFhUVoVu3bvDz84Ofnx927dqFf/zjH/Dz85P7jP3puJYtW+L2229XPJeUlCTP3MafUedMmTIFr7zyCkaOHInOnTsjPT0dL730klzRZn82jCP9Fx8fj+rqahQXF9ttQ0oGgwEjRoxAXl4etm3bJlcHAfans3744QcUFRWhVatW8t+pc+fOITMzE23atAHAPnVWTEwM/Pz86vxbxT5tXhgIqdkQQmD8+PHYsGEDduzYgbZt2yqWt23bFvHx8di2bZv8XHV1NXbt2oVevXq5e3e9Xv/+/XHs2DHk5OTIj7vuuguPP/44cnJy0K5dO/ank3r37m11K5TTp0+jdevWAPgz6qzKykr4+Cj/jPn6+sqfcLM/G8aR/uvWrRv8/f0VbQoKCnD8+HH2sQ1SGPzll1+wfft2REdHK5azP52Tnp6Oo0ePKv5OJSQkYMqUKfjmm28AsE+dFRAQgLvvvrvWv1Xs02bIQ5PZELncc889J7Rardi5c6coKCiQH5WVlXKbd955R2i1WrFhwwZx7Ngx8dhjj4mWLVuK0tJSD+5502E+y6gQ7E9nHThwQPj5+YmZM2eKX375Raxdu1aEhISINWvWyG3Yp4576qmnxM033yw2b94s8vLyxIYNG0RMTIyYOnWq3Ib9WbuysjJx5MgRceTIEQFALFiwQBw5ckSe9dKR/hs3bpy45ZZbxPbt28Xhw4fFX/7yF3HnnXeKmpoaTx2Wx9TWnwaDQaSmpopbbrlF5OTkKP5O6fV6eRvsT6W6fkYtWc4yKgT71FJdfbphwwbh7+8vli9fLn755RexZMkS4evrK3744Qd5G+zT5oWBkJoNADYfn3zyidzGZDKJN954Q8THx4vAwEBx7733imPHjnlup5sYy0DI/nTeV199JZKTk0VgYKDo2LGjWL58uWI5+9RxpaWl4sUXXxStWrUSQUFBol27dmL69OmKk2v2Z+2+++47m/9vPvXUU0IIx/qvqqpKjB8/XkRFRYng4GCRkpIizp8/74Gj8bza+jMvL8/u36nvvvtO3gb7U6mun1FLtgIh+1TJkT796KOPxK233iqCgoLEnXfeKTZt2qTYBvu0edEIIUTj1iCJiIiIiIjIG/EaQiIiIiIiIpViICQiIiIiIlIpBkIiIiIiIiKVYiAkIiIiIiJSKQZCIiIiIiIilWIgJCIiIiIiUikGQiIiIiIiIpViICQiIiIiIlIpBkIiIiIiIiKVYiAkIiIiIiJSKQZCIiIiIiIilWIgJCIiIiIiUikGQiIiIiIiIpViICQiIiIiIlIpBkIiIiIiIiKVYiAkIiIiIiJSKQZCIiIiIiIilWIgJCIiIiIiUikGQiIiIiIiIpViICQiIiIiIlIpBkIiIiIiIiKVYiAkIiIiIiJSqf8fctMnLai9xXUAAAAASUVORK5CYII=", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "px = PowderPattern()\n", "\n", "data_dir = \"./data\"\n", "x_path = os.path.join(data_dir, \"pbso4-x.dat\")\n", "if not os.path.exists(x_path):\n", " os.system(\"curl -o {} https://raw.githubusercontent.com/vincefn/objcryst/master/Fox/example/tutorial-pbso4/xray.dat\".format(x_path))\n", "px.ImportPowderPatternFullprof(x_path)\n", "\n", "px.SetWavelength(\"Cu\") # Valid strings for X-ray tubes are \"Cu\", \"CuA1\",...\n", "print(px.GetRadiation()) # Better check the string was understood\n", "px.plot()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Find peaks & index the reflections\n", "In this case the peaks are automatically found without any parasitic phase.\n", "\n", "And the unit cell is also indexed without any ambiguity. This uses the dichotomy in volume approach (Louër & Boultif).\n", "\n", "... It is not always that easy !" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Peak dobs=0.23410+/-0.00049 iobs=5.631088e+04 (? ? ?))\n", "Peak dobs=0.26180+/-0.00049 iobs=3.661422e+04 (? ? ?))\n", "Peak dobs=0.27573+/-0.00048 iobs=1.369719e+04 (? ? ?))\n", "Peak dobs=0.28690+/-0.00041 iobs=2.120413e+04 (? ? ?))\n", "Peak dobs=0.29939+/-0.00048 iobs=5.965503e+04 (? ? ?))\n", "Peak dobs=0.31016+/-0.00048 iobs=4.475041e+04 (? ? ?))\n", "Peak dobs=0.33210+/-0.00048 iobs=6.886522e+04 (? ? ?))\n", "Peak dobs=0.36110+/-0.00048 iobs=2.483898e+04 (? ? ?))\n", "Peak dobs=0.36997+/-0.00047 iobs=3.424055e+04 (? ? ?))\n", "Peak dobs=0.38119+/-0.00047 iobs=6.008678e+03 (? ? ?))\n", "Peak dobs=0.41488+/-0.00047 iobs=1.116247e+04 (? ? ?))\n", "Peak dobs=0.43867+/-0.00047 iobs=1.291596e+04 (? ? ?))\n", "Peak dobs=0.44637+/-0.00047 iobs=3.054905e+03 (? ? ?))\n", "Peak dobs=0.45514+/-0.00046 iobs=3.965780e+03 (? ? ?))\n", "Peak dobs=0.46161+/-0.00046 iobs=1.755345e+04 (? ? ?))\n", "Peak dobs=0.46832+/-0.00046 iobs=3.017849e+03 (? ? ?))\n", "Peak dobs=0.48313+/-0.00053 iobs=5.114404e+04 (? ? ?))\n", "Peak dobs=0.49213+/-0.00052 iobs=3.115425e+04 (? ? ?))\n", "Peak dobs=0.50613+/-0.00046 iobs=1.278484e+04 (? ? ?))\n", "Peak dobs=0.53141+/-0.00045 iobs=3.895334e+03 (? ? ?))\n", "Predicting volumes from 20 peaks between d=42.716 and d= 1.882\n", "\n", "Starting indexing using 20 peaks\n", " CUBIC P : V= 407 -> 4545 A^3, max length= 49.70A\n", " -> 0 sols in 0.00s, best score= 0.0\n", "\n", " TETRAGONAL P : V= 151 -> 1089 A^3, max length= 30.86A\n", " -> 0 sols in 0.00s, best score= 0.0\n", "\n", "RHOMBOEDRAL P : V= 167 -> 1143 A^3, max length= 31.36A\n", " -> 0 sols in 0.00s, best score= 0.0\n", "\n", " HEXAGONAL P : V= 206 -> 1507 A^3, max length= 34.39A\n", " -> 0 sols in 0.01s, best score= 0.0\n", "\n", "ORTHOROMBIC P : V= 88 -> 565 A^3, max length= 25.00A\n", " -> 1 sols in 0.01s, best score= 57.5\n", "\n", " MONOCLINIC P : V= 65 -> 364 A^3, max length= 25.00A\n", " -> 3 sols in 0.06s, best score= 56.5\n", "\n", "Solutions:\n", "( 5.40 6.97 8.49 90.0 90.0 90.0 V= 320 ORTHOROMBIC P, 63.80767059326172)\n", "( 5.40 8.49 6.97 90.0 90.0 90.0 V= 320 MONOCLINIC P, 61.222660064697266)\n", "( 6.97 5.40 8.49 90.0 90.0 90.0 V= 320 MONOCLINIC P, 57.77278137207031)\n" ] } ], "source": [ "# Index\n", "pl = px.FindPeaks(1.5, -1, 1000)\n", "if len(pl) > 20:\n", " pl.resize(20) # Only keep 20 peaks\n", "for peak in pl:\n", " print(peak)\n", "\n", "ex = quick_index(pl)\n", "\n", "print(\"Solutions:\")\n", "for s in ex.GetSolutions():\n", " print(s)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a crystal phase using the indexed unit cell" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4da1ec408be44e57808539ecce14d1af", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAu31JREFUeJzs3XlYVGX/BvCbfRNGEAFRFE1TUkwzdxNNRQmUsMJeFbV81aQkc81SwyzcEjQtU3+mppLlVpmGuKKGCooWmprmviAUzACCrPP7g/ec5swCM2yjzP25rrninHnOOc8ZtGtuv895HjOlUqkEERERERERmRxzY3eAiIiIiIiIjIOBkIiIiIiIyEQxEBIREREREZkoBkIiIiIiIiITxUBIRERERERkohgIiYiIiIiITBQDIRERERERkYliICQiIiIiIjJRDIREREREREQmioGQiIiIiIjIRDEQEhERERERmSgGQiIiIiIiIhPFQEhERERERGSiGAiJiIiIiIhMFAMhERERERGRiWIgJCIiIiIiMlEMhERERERERCaKgZCIiIiIiMhEMRASERERERGZKAZCIiIiIiIiE8VASEREREREZKIYCImIiIiIiEwUAyEREREREZGJYiAkIiIiIiIyUQyEREREREREJoqBkIiIiIiIyEQxEBIREREREZkoBkIiIzh79iyCgoIQEhKCxMREcf/YsWON2CsiIiIiMjWWxu4AkSmKiIjA+vXrYWlpienTp+PkyZOYMmUKrl27ZuyuEREREZEJYYWQyAjMzMzQsmVLeHt7Y9u2bcjOzsa4ceNQXFxs7K4RERERkQlhICQyAjc3N9y4cUPcjoyMhJ+fH5KTk43XKSIiIiIyOWZKpVJp7E4QERERERFR7WOFkIiIiIiIyEQxEBIZAWcZJSIiIqLHAWcZJTICzjJKRERERI8DVgiJjEDXLKPnzp0zdteIiIiIyISwQkhkBNeuXUNgYCAcHBzEfTdu3IBcLjdep4iIiIjI5DAQEhmBlZUVVq5cCXPzf4v0SqUSYWFhRuwVEREREZkaBkIiI5g+fTocHR3h6uoq2f/OO+8YqUdEREREZIq4DiEREREREZGJ4qQyREREREREJoqBkOgx4u/vb+wuEBEREZEJ4TOEREYQGhqqsU+pVOK3334zQm+IiIiIyFTxGUIiI2jevDkOHTqkMctox44dkZWVZcSeEREREZEpYYWQyAiUSiWGDh0KKysryb6CggIj9oqIiIiITA0DIZER2NnZITk5GZaW0r+CAwYMMFKPiIiIiMgUccjoE660tBT37t2Do6MjzMzMjN0d0tPu3bvRq1cvODs7S/YfP34cvXr1MlKviIiIiB4PSqUSOTk58PT0lDxiQ9WPFcIn3L179+Dl5WXsbhARERERVbvbt2+jSZMmxu5GncZA+IRzdHQEUPaXxcnJyci9ocoKCgrCzz//jAcPHsDd3d3Y3SEiIiIyquzsbHh5eYnfdanmMBA+4YRhok5OTnBycsKRI0cQFhaGyMhIjB07Fn369EFJSQny8/Mxfvx4jB8/Xjw2JycH/fv3x4ULF3Dy5Em0a9cOQNlaeJmZmTh9+rRR7skU2dnZwcnJCa+++iri4+ON3R0iIiKixwIfiap5DIR10LBhwzB27Fhx+5dffoGFhQV8fHzwxhtviDNb2tnZ4eeff8b06dMlx8fHx+P555+v1T6bmi5dumjs69y5M65cuWKE3hARERGRqTK5JzSPHj2KwYMHw9PTE2ZmZvjhhx802ly8eBFDhgyBTCaDo6MjunXrhlu3bonvFxQUYNKkSXB1dYWDgwOGDBmCO3fuSM6RlZWFsLAwyGQyyGQyhIWFQS6XS9rcunULgwcPhoODA1xdXREREYHCwsKauG3Y2dmhUaNGyMzMFPdZWlqiYcOGNXI9Kl9OTg4SExORlJQkvpKTk9G5c2djd42IiIiITIjJBcKHDx/i2WefxcqVK7W+/9dff6FXr15o06YNjhw5gt9++w1z5syBra2t2Gby5MnYtWsXtm7diuPHjyM3NxdBQUEoKSkR2wwfPhznzp1DXFwc4uLicO7cOYSFhYnvl5SUIDAwEA8fPsTx48exdetW7NixA1OnTq2R+/7777/x4MEDBsDHRFRUFHJycjT2z5492wi9ISIiIiJTZXJDRgMCAhAQEKDz/Q8//BAvvfQSFi9eLO5r0aKF+LNCocC6deuwadMm9O/fHwCwefNmeHl54cCBAxg4cCAuXryIuLg4nDx5El27dgUArF27Ft27d8fly5fRunVrxMfH448//sDt27fh6ekJAFi6dCnGjBmDTz/9tFoniAkICIC5uTmWL1/OaXsfEyEhIVr3+/n51XJPiIiIqDqVlJSgqKjI2N147FlZWcHCwsLY3SCYYCAsT2lpKfbs2YMZM2Zg4MCBOHv2LJo3b45Zs2bh5ZdfBgCcOXMGRUVF8Pf3F4/z9PREu3btkJiYiIEDB+LEiROQyWRiGASAbt26QSaTITExEa1bt8aJEyfQrl07MQwCwMCBA1FQUIAzZ86gb9++1XZfv/zyC+rVq1dt5yMiIiIiKaVSibS0NI1HhEi3+vXrw8PDgxPHGBkDoYr09HTk5uZi4cKF+OSTT7Bo0SLExcVh6NChOHz4MPz8/JCWlgZra2uNBcXd3d2RlpYGAEhLS4Obm5vG+d3c3CRt1JcXcHZ2hrW1tdhGm4KCAhQUFIjb2dnZlb5fAHjppZdw7tw5XL58GRMmTMCYMWOqdD4iIiIiUySEQTc3N9jb2zPklEOpVCIvLw/p6ekAgEaNGhm5R6aNgVBFaWkpACA4OBjvvfceAKBDhw5ITEzEV199Ve5wPqVSKfmLr+1/ApVpo27BggWYN2+ezvdtbW2xf/9+rFu3DmPHjsWRI0d0tgWAvXv3auzz9/eXVC6p+p09exZz5syBlZUVpk+fjh49egAAxo4di3Xr1hm5d0RERGSIkpISMQw2aNDA2N15ItjZ2QEoK8i4ublx+KgR8YEyFa6urrC0tMQzzzwj2e/j4yPOMurh4YHCwkJkZWVJ2qSnp4sVPw8PDzx48EDj/BkZGZI26pXArKwsFBUVlbsw+axZs6BQKMTX7du3Je9369YNv/32m2TZCUPFx8fjp59+qvTxpubs2bMICgpCSEgIEhMTxf3l/Q4iIiKwbNkyxMTEICYmBtHR0QCAa9eu1Xh/iYiIqHoJzwza29sbuSdPFuHz4jOXxsVAqMLa2hqdO3fG5cuXJfv//PNPNGvWDADQqVMnWFlZYf/+/eL79+/fx/nz58UqT/fu3aFQKJCUlCS2OXXqFBQKhaTN+fPncf/+fbFNfHw8bGxs0KlTJ519tLGxERehF15kXJUJd2ZmZmjZsiW8vb2xbds2ZGdnY9y4cSguLq6tbhMREVE14zBRw/DzejyY3JDR3NxcXL16Vdy+fv06zp07BxcXFzRt2hTTp0/HsGHD0Lt3b/Tt2xdxcXHYvXu3OPRSJpNh7NixmDp1Kho0aAAXFxdMmzYNvr6+4qyjPj4+GDRoEMaNG4fVq1cDAMaPH4+goCC0bt0aQNmwzGeeeQZhYWFYsmQJMjMzMW3aNIwbN44h7wkjhDsA2LZtGyIjIysMd9bW1ujXrx+cnJwwffp0REZGYvPmzfj6669rq9tERERERKZXITx9+jQ6duyIjh07AgCmTJmCjh07Yu7cuQDKlgP46quvsHjxYvj6+uL//u//sGPHDvTq1Us8R0xMDF5++WWEhoaiZ8+esLe3x+7duyVjn7ds2QJfX1/4+/vD398f7du3x6ZNm8T3LSwssGfPHtja2qJnz54IDQ3Fyy+/jM8++6yWPgmqLm5ubrhx44a4HRkZCT8/PyQnJ+s8pqCgAKtXrxariu+//z5u3bqF3r1710KPiYiIiCp25MgRmJmZcebUOs5MqVQqjd0Jqrzs7GzIZDIoFApWFp8gvXv3xtGjR8VtFxcXZGVloVevXjh27JgRe0ZERESGevToEa5fv47mzZvD1tbW2N2pNkeOHEHfvn2RlZWF+vXrV/v5y/vc+B239phchZDocaBeVRRmJCuvqkhEREREVN0YCImMYPv27fD29ha3hYeqHz16ZKQeERERkSkqKChAREQE3NzcYGtri169emn8A/Wvv/6KZ599Fra2tujatStSU1PF927evInBgwfD2dkZDg4OaNu2rdZlzejxxUBIVE0yMzNx9epVZGZmVvoc/v7+1dgjIiIiovLNmDEDO3bswMaNG5GSkoKWLVti4MCBku8z06dPx2effYbk5GS4ublhyJAh4lIRb7/9NgoKCnD06FGkpqZi0aJFqFevnrFuhyrB5GYZJapuBw8exNy5c+Hq6gonJyfI5XJkZWVh3rx56Nevn9ZjQkNDJdvC8iOq/+JGRERET7a8vDxcunSp1q/bpk0bvdZEfPjwIVatWoUNGzYgICAAALB27Vrs378f69atQ+fOnQEAH330EQYMGAAA2LhxI5o0aYJdu3YhNDQUt27dwiuvvAJfX18AQIsWLWrorqimMBASVdHcuXMRFxcHR0dHcV92djYCAgJ0BsLk5GQcOnQI5uZlRfrTp08jNzdXXL6CiIiInnyXLl0qd33pmnLmzBk899xzFbb766+/UFRUhJ49e4r7rKys0KVLF1y8eFEMhN27dxffd3FxQevWrXHx4kUAZesxT5w4EfHx8ejfvz9eeeUVtG/fvprviGoSAyGZjOLiYlhaVv8feXNzc2RkZEgCYUZGhhj2tJk+fTocHR3h6uoKoGxdQgBQKBTV3r/H1YgRI7BlyxZjd4OIiKjGtGnTBmfOnDHKdfUhLDagvkC8UqmscNF44f3//ve/GDhwIPbs2YP4+HgsWLAAS5cuxaRJkyrRczIGBkKq01JTUzFz5kzI5XJYWlqiqKgIrq6uiIqKEoc2VNWaNWswdepUpKWlif8DbdSoEdasWaPzmCNHjuDIkSPi9t27dwGUBcm6ZsaMGRr7lEolEhMTjdAbIiKi2mNvb69Xpc5YWrZsCWtraxw/fhzDhw8HABQVFeH06dOYPHmy2O7kyZNo2rQpACArKwt//vmnJHR6eXnhrbfewltvvYVZs2Zh7dq1DIRPEAZCqtPCw8MRGxsLLy8vcd+tW7cwYsSIalvvz8fHB7t27TLoGPUho7t37waAOjlkdMuWLYiNjdXYf/jwYSP0hoiIiAQODg6YOHEipk+fDhcXFzRt2hSLFy9GXl4exo4di99++w0A8PHHH6NBgwZwd3fHhx9+CFdXV7z88ssAgMmTJyMgIABPP/00srKycOjQIfj4+BjxrshQDIRUp5WUlEAmk0n2OTk5oaSkxEg9KqM+ZFQIhu+8844xu1Uj3nzzTfj4+MDNzU2yf9SoUUbqEREREQkWLlyI0tJShIWFIScnB88//zz27dsHZ2dnSZt3330XV65cwbPPPouffvpJfNylpKQEb7/9Nu7cuQMnJycMGjQIMTExxrodqgQzpTB4mJ5I2dnZkMlkUCgUcHJyMnZ3HjtHjx7F7NmzYW1tDScnJygUChQXF+OTTz7BCy+8YOzuiZ566ilcu3YN/OtIRET05Hn06BGuX7+O5s2bw9bW1tjdeWKU97nxO27tYYWQ6rTevXvj6NGjyM/Ph1wuh7Ozc639jzotLQ0eHh56twX0e4ibiIiIiKi6cGF6Mgl2dnZo1KhRrf6rHYdElm/EiBHG7gIRERGRyWOFkKiKunTporFPqVTiypUrep/Dy8sLly9fxv379+Hp6Vmd3TM6zjJKRERE9PhiICSqopycHKSmpmqscThgwAC9z2FhYQEAGD16NPbv31+t/TO2r7/+Gg0bNoS5uTleeeUV9OvXDwDKXZaDiIiIiGoHh4ySSfL396+2c0VFRSEnJ0dj/+zZs3Ue06VLF8nr2rVrAMqWo6hrbG1t8dNPPyE5ORm5ubnYvn07XnjhBY1ZR4mIiIio9rFCSHVaaGioxj6lUonU1NRqu0ZISIjW/X5+fjqPUa8qtmvXDhcuXICvr2+19etx0bx5c7Rq1QoAEB0djQ0bNiA4OBj169c3bseIiIiIiIGQ6jb1BeCBskAYFhZmxF79W1UU1vgRZhbNy8szZrdqRIcOHXDjxg14e3sDAMaMGYNmzZph4sSJxu0YERERETEQUt2mvgC8wNgLwC9YsAALFiwQt4UJaP766y9jdanGrFixQrItl8vRt29fXLp0yUg9IiIiIiIBnyGkOi08PFwjDALAsGHDjNCbf+Xk5CAxMRFJSUlISkoSh4526tTJqP2qDUOHDjV2F4iIiKgaREZGokOHDsbuBlURAyGREahPRCMMGX3//feN1aUas3//fnTt2hU9evTA1q1boVQqAQCBgYFG7hkRERERMRASVdHZs2cRFBSEkJAQydp6Y8eO1XlMSEiI+PwgUDbxCgD06tWr5jpqJB999BH27duHAwcOICkpCa1atUJpaWmdfF6SiIiI6EnDQEgmKS0trdrOFRERgWXLliEmJgYxMTGIjo4GAHEpCX0IFUKhelaXWFhYoH79+rC3t0d0dDR69OiB4OBg5ObmGrtrREREJq+0tBSLFi1Cy5YtYWNjg6ZNm+LTTz8FAMycORNPP/007O3t0aJFC8yZMwdFRUXlnu/rr79G27ZtYWNjg0aNGhl93gaqGAMhmaRRo0ZV27nMzMzQsmVLeHt7Y9u2bcjOzsa4ceNQXFxs8LnqYiAUZhkVjBkzBlOmTNG6diMRERHVrlmzZmHRokWYM2cO/vjjD8TGxsLd3R0A4OjoiA0bNuCPP/7A8uXLsXbtWsTExOg816pVq/D2229j/PjxSE1NxU8//YSWLVvW1q1QJZkp6+I3UBOSnZ0NmUwGhUIBJycnY3fnsdOlSxeNfUqlEleuXIFcLq+Wa7z66qv47LPPxGUVAGDz5s3473//i0ePHul1jg4dOuC3335Dbm4uHBwcqqVfj7ucnBw4OjoauxtERERV9ujRI1y/fh3NmzeHra2tsbujt5ycHDRs2BArV67Ef//73wrbL1myBN999x1Onz4NoGxSmR9++AHnzp0DADRu3BhvvPEGPvnkE72uX97nxu+4tYfLTlCdpr4AvGDAgAHVdo3t27dr7Bs5ciRGjhxp8Lnq4r/PfPPNN1iyZAmsrKwQGhoqTpwTHByMQ4cOGbl3RERENSgvDzDGMktt2gD29hU2u3jxIgoKCtCvXz+t72/fvh3Lli3D1atXkZubi+LiYp3hLD09Hffu3dN5Lnp8mdyQ0aNHj2Lw4MHw9PSEmZkZfvjhB51tJ0yYADMzMyxbtkyyv6CgAJMmTYKrqyscHBwwZMgQ3LlzR9ImKysLYWFhkMlkkMlkCAsL06hI3bp1C4MHD4aDgwNcXV0RERGBwsLCarpTAjRn8xTMnj3bCL3RrS4/Q7hq1SqkpKQgJSUF9vb2ePXVV5GXl1cn75WIiEji0iWgU6faf+kZQu3s7HS+d/LkSbz++usICAjAzz//jLNnz+LDDz/U+V21vHPR483kKoQPHz7Es88+izfeeAOvvPKKznY//PADTp06BU9PT433Jk+ejN27d2Pr1q1o0KABpk6diqCgIJw5cwYWFhYAgOHDh+POnTuIi4sDAIwfPx5hYWHYvXs3AKCkpASBgYFo2LAhjh8/jn/++QejR4+GUqnUWMibKi8kJETrfj8/v1ruiX7qYkgyNzeHlZUVgLIJeJ555hkEBAQgIyPDyD0jIiKqYW3aAGfOGOe6emjVqhXs7Oxw8OBBjSGjv/76K5o1a4YPP/xQ3Hfz5k2d53J0dIS3tzcOHjyIvn37Vq7fZBQmFwgDAgIQEBBQbpu7d+/inXfewb59+zTWSlMoFFi3bh02bdqE/v37Ayh7XszLywsHDhzAwIEDcfHiRcTFxeHkyZPo2rUrAGDt2rXo3r07Ll++jNatWyM+Ph5//PEHbt++LYbOpUuXYsyYMfj00085VvoJlJmZiczMTLi4uMDFxaVS56iLgdDT0xNt2rSBvb29OGS0UaNG6N27t7G7RkREVLPs7YHnnjN2L3SytbXFzJkzMWPGDFhbW6Nnz57IyMjAhQsX0LJlS9y6dQtbt25F586dsWfPHuzatavc80VGRuKtt96Cm5sbAgICkJOTg19//RWTJk2qpTuiyjC5IaMVKS0tRVhYGKZPn462bdtqvH/mzBkUFRXB399f3Ofp6Yl27dqJa9CdOHECMplMDIMA0K1bN8hkMkmbdu3aSSqQAwcOREFBAc6U8y9JBQUFyM7OlrzIuA4ePIiePXvijTfewLx58zB69Gj06tULBw8e1PscdXnI6J07d5CamioZMtq8eXO0b9/e2F0jIiIyeXPmzMHUqVMxd+5c+Pj4YNiwYUhPT0dwcDDee+89vPPOO+jQoQMSExMxZ86ccs81evRoLFu2DF9++SXatm2LoKAgXLlypZbuhCrL5CqEFVm0aBEsLS0RERGh9f20tDRYW1tLFhUHAHd3d3Ftu7S0NLi5uWkc6+bmJmkjTOkrcHZ2hrW1dblr5C1YsADz5s0z6J6oZs2dOxdxcXGSGTOzs7MREBDAB6uhe8hoZmamkXtGRERE5ubm+PDDDyVDQwWLFy/G4sWLJfsmT54s/hwZGYnIyEjJ+xMmTMCECRNqoqtUQ1ghVHHmzBksX74cGzZsECs2+lIqlZJjtB1fmTbqZs2aBYVCIb5u375tUD9NWWXWBdSHubm5xvNwGRkZMDfX/69XXa4QBgYGStYh7N+/P7788ks0btzYeJ0iIiIiIgCsEEocO3YM6enpaNq0qbivpKQEU6dOxbJly3Djxg14eHigsLAQWVlZkipheno6evToAQDw8PDAgwcPNM6fkZEhVgU9PDxw6tQpyftZWVkoKirSqByqsrGxgY2NTZXu05SkpqZi5syZkMvlsLS0RFFREVxdXREVFQVfX99qucaaNWswdepUpKWliYG+UaNGWLNmjd7nqMuB8IMPPtDY17ZtW3HCJSIiIiIyHgZCFWFhYeJEMYKBAwciLCwMb7zxBgCgU6dOsLKywv79+xEaGgoAuH//Ps6fPy+W1Lt37w6FQoGkpCRxYfRTp05BoVCIobF79+749NNPcf/+fTRq1AgAEB8fDxsbG3Tq1KlW7tcUhIeHIzY2Fl5eXuK+W7duYcSIETh27Fi1XMPHx6fCh6z1VRcDIRERERE9vkwuEObm5uLq1avi9vXr13Hu3Dm4uLigadOmaNCggaS9lZUVPDw80Lp1awCATCbD2LFjMXXqVDRo0AAuLi6YNm0afH19xTDp4+ODQYMGYdy4cVi9ejWAsmUngoKCxPP4+/vjmWeeQVhYGJYsWYLMzExMmzYN48aN4wyj1aikpAQymUyyz8nJCSUlJUbqUfkYCImIiIioNplcIDx9+rRkbZQpU6YAKJsVacOGDXqdIyYmBpaWlggNDUV+fj769euHDRs2iGsQAsCWLVsQEREhzkY6ZMgQrFy5UnzfwsICe/bsQXh4OHr27Ak7OzsMHz4cn332WTXcJQkWLlyIoKAgWFtbw8nJCQqFAsXFxVi0aJGxu6aVKQXCESNGYMuWLcbuBhEREZFJM1Oa0jfQOig7OxsymQwKhYKVxXLk5+dDLpfD2dkZtra2tXLNtLQ0eHh46NW2c+fOOH36NNLT09GwYcMa7lntmjFjhsY+pVKJ7du34/r160boERERUfV69OgRrl+/Dm9vb9jZ2Rm7O0+M/Px83LhxA82bN9f4fsbvuLXH5CqEZJrs7Oxq/X/Qo0aNQnx8vF5t6/KkMlu2bEFsbKzG/sOHDxuhN0RERNVPWF4pLy+PgdAAeXl5AP79/Mg4GAiJqkiYOEhVXl4e7ty5Y/C56mIgfPPNN+Hj46N1bU4iIqK6wMLCAvXr10d6ejoAwN7e3uAlzEyJUqlEXl4e0tPTUb9+fcljV1T7GAiJqignJwepqamwtCz766RUKmFubl6pdfbqYiAsKCjQeDZWqVTin3/+MVKPiIiIqp/wmIgQCqli9evX1/vxGqo5DIRkkvz9/fUezlmRqKgo5OTkSNalBIB69eoZfK66GAg5ZJSIiEyBsA6xm5sbioqKjN2dx56VlRUrg48JBkKq04S1IlUplUqkpqZW2zVCQkIk2xcvXgQAg54hqMvPEOoaMjpq1Cgj9YiIiKjmWFhYMOjQE4WBkOq05ORkHDp0CObm5uI+pVKJsLCwGrvmO++8AwAGrXVYl58zmD9/vtb9ERERtdwTIiIiIlJnXnEToifX9OnT4ejoiGbNmokvb29vMbTVBOFZwuLiYoOPrYsVwv3796Nr167o0aMHtm7dKu4PDAw0Yq+IiIiICGAgpDouPDwcrq6u4rZcLgcADBs2rMau+csvvwCoXIWwLgbCjz76CPv27cOBAweQlJSESZMmobS0VJxqmoiIiIiMh4GQTMrQoUNr/BpCqDMkEKofW5cIU3Hb29sjOjoanTp1QnBwMHJzc43dNSIiIiKTx2cIyaTUZuBihbBMgwYN0KFDB9jb2yMiIgJjxoxBs2bNMHjwYGN3jYiIiMjksUJIJmXnzp01fo2qhLq6GAjT09Nx5MgRccjo+PHj4efnh86dOxu7a0REREQmjxVCMinOzs7Izs6Gg4MDp4SuJcKQUQCIjo6Gj48PgoOD8fvvvxu3Y0RERETEQEimRyaT4a233sKqVatq5PyVqfLV5SGjDx8+xIQJEyCTycRte3t75OTkGLlnRERERMRASCZp+/btNRYIBZUJd3UxED548ADDhw8Xt3v37g1HR0f89ddfRuwVEREREQEMhGSiFApFjZ2bFUKpN998Ez4+PnBzc5PsHzVqlJF6REREREQCBkKq07p06aJ1f2UWja9JdTkQzp8/X+v+iIiIWu4JEREREaljIKQ6LScnB6mpqbC0/PePupmZGczNa26CXc4yqp979+7B09PT2N0gIiIiMmlcdoLqtKioKK2Tl1hZWRmhN6Zp/PjxsLW1hb29PQYNGiTub9u2rRF7RUREREQAAyHVcSEhIXB2dq7Va7JCKPXtt98iMzMTeXl5cHBwQJMmTfD333/j4cOHxu4aERERkcljICSTVBvPEKqHuxEjRuhsW5efIczPz0fz5s3xzDPPID8/H5mZmXBzc0NRUZGxu0ZERERk8vgMIZmkmgxeH3zwAQAgKysLM2bMEK+XmJio85i6HAhLS0sxY8YMtGjRAv/973+xbds2fP3119i5c6exu0ZERERk8hgIiarZd999BwCws7NDYGCguP/w4cMVHlsXA6GXlxfCwsLg5uaGHTt24NGjR9i5cyccHByM3TUiIiIik8dASFTNRo0ahUWLFsHW1hZ+fn6S/RWpi4EwJCQEDRo0AABs3rwZ9evXB1AWmImIiIjIuPgMIVE1mzNnjtb9prru3rJly2BhYSFuCz8//fTTxuoSEREREf0PAyGZpMetEleXnyFUd+vWLQDgpDJEREREjwGTC4RHjx7F4MGD4enpCTMzM/zwww/ie0VFRZg5cyZ8fX3h4OAAT09PjBo1Cvfu3ZOco6CgAJMmTYKrqyscHBwwZMgQ3LlzR9ImKysLYWFhkMlkkMlkCAsLg1wul7S5desWBg8eDAcHB7i6uiIiIgKFhYU1detUSyoT6kwpEAoYCImIiIiMz+QC4cOHD/Hss89i5cqVGu/l5eUhJSUFc+bMQUpKCnbu3Ik///wTQ4YMkbSbPHkydu3aha1bt+L48ePIzc1FUFAQSkpKxDbDhw/HuXPnEBcXh7i4OJw7dw5hYWHi+yUlJQgMDMTDhw9x/PhxbN26FTt27MDUqVNr7uZJ9LgGr8e1X1Xx/fffo2PHjhg5ciQ2btyIDh06AAD++ecf43aMiIiIiAClCQOg3LVrV7ltkpKSlACUN2/eVCqVSqVcLldaWVkpt27dKra5e/eu0tzcXBkXF6dUKpXKP/74QwlAefLkSbHNiRMnlACUly5dUiqVSuXevXuV5ubmyrt374ptvv32W6WNjY1SoVDofQ8KhUIJwKBjTB0ApZmZWY2d/4cfflACUFpbWyu//fZbcf9LL72k85i+ffsqASh///33GuuXsXTp0kX58OFDZVpamtLDw0N5584dJQClubm5sbtGREREjyl+x609JlchNJRCoYCZmZk4M+KZM2dQVFQEf39/sY2npyfatWsnrjN34sQJyGQydO3aVWzTrVs3yGQySZt27drB09NTbDNw4EAUFBTgzJkzOvtTUFCA7OxsyYseL1FRUQCAhg0bIikpCZMmTUJpaSny8vKM3DPjuHjxIvr06YPBgwejsLBQrLiXlpYauWdERERExGUnyvHo0SO8//77GD58OJycnAAAaWlpsLa2hrOzs6Stu7s70tLSxDZubm4a53Nzc5O0cXd3l7zv7OwMa2trsY02CxYswLx586p0X1SzQzOFWTTNzc0RHR2NDRs2IDg4GLm5uUbtl7FYWlri2LFjsLGxAQDk5OTAyclJMvMoERERERkHK4Q6FBUV4fXXX0dpaSm+/PLLCtsrlUpxYhAAkp+r0kbdrFmzoFAoxNft27cr7BvVLl9fX8n2mDFjMGXKFOTk5Og8pi5PKrNu3TpJdVS4x2bNmhmrS0RERET0PwyEWhQVFSE0NBTXr1/H/v37xeogAHh4eKCwsBBZWVmSY9LT08WKn4eHBx48eKBx3oyMDEkb9UpgVlYWioqKNCqHqmxsbODk5CR50eNl8eLFGvv69u2LS5cuGaE3xhcSEiKpqP/5558AgHr16hmrS0RERET0PwyEaoQweOXKFRw4cAANGjSQvN+pUydYWVlh//794r779+/j/Pnz6NGjBwCge/fuUCgUSEpKEtucOnUKCoVC0ub8+fO4f/++2CY+Ph42Njbo1KlTTd4iPcbqYoVQ3ZQpU4zdBSIiIiL6H5N7hjA3NxdXr14Vt69fv45z587BxcUFnp6eePXVV5GSkoKff/4ZJSUlYhXPxcUF1tbWkMlkGDt2LKZOnYoGDRrAxcUF06ZNg6+vL/r37w8A8PHxwaBBgzBu3DisXr0aADB+/HgEBQWhdevWAAB/f38888wzCAsLw5IlS5CZmYlp06Zh3LhxrPo94YRQV5lwZwqB0MrKCgC45iYRERHRY8DkKoSnT59Gx44d0bFjRwBl1YqOHTti7ty5uHPnDn766SfcuXMHHTp0QKNGjcSXMDsoAMTExODll19GaGgoevbsCXt7e+zevVsyScaWLVvg6+sLf39/+Pv7o3379ti0aZP4voWFBfbs2QNbW1v07NkToaGhePnll/HZZ5/V3odBNaqwsBAHDhxASkpKheGnLj9DqG7Hjh0AgDt37hi5J0RERERkchXCPn36lPulW58v5La2tlixYgVWrFihs42Liws2b95c7nmaNm2Kn3/+ucLr0ZNl69atAIC8vDwkJCRALpcjJSUFEydOxMiRI43cu9rXpUsXyXZJSQkAmOwyHERERESPE5MLhEQ1bcOGDQCA+vXrY/78+QCA4uJi9OnTp8JAWBcrhDk5OUhNTYWlZdn/brKysuDi4gJ7e3sj94yIiIiITG7IKJm22ghctra2GtdMSEjQ2K+qLg8ZjYqKkiy5Idxjw4YNjdUlIiIiIvofVgjJpNRG4Fq1ahWeeeYZpKeno1u3brCyssLzzz9f4RDiuiokJETrfi47QURERGR8DIRE1czNzQ1AWQXs5MmTBh1bFyuE6kzhHomIiIieFBwySiblcQ0jdXnIqC63bt0ydheIiIiITB4rhETVrCqhri4GwhkzZki28/PzAXCWUSIiIqLHAQMhmZTaDFx1MdxVxpYtWxAbGytuy+VyrFy5UrJuJxEREREZBwMhmZTaCGmsEEq9+eab8PHxEZ+tzMjIMHKPiIiIiEjAQEj0GKjLzxAWFBTgs88+E7eFoaLCAvVEREREZDycVIZMijErhCNGjKjxaz+OtmzZgsDAQPHVv39/AOCQUSIiIqLHACuERNXs448/BgAoFApxQhWlUonExMQKj62LFUL1IaPp6ekAgPr16xuxV0REREQEMBCSiamNwLVjxw4AgK2tLQIDA8X9hw8f1nlMXR4yOn/+fMm2cI8NGjQwRneIiIiISAWHjJJJqY3A9Z///AcAYG1tDT8/P/E1atSoGr/24+j7779Hx44dMXLkSGzcuBE9e/YEAGRnZxu5Z0RERETECiFRNZsxYwZiYmI09kdERFR4bF2sEC5duhS//vorcnJy0KFDByQkJKB169b4559/jN01IiIiIpPHQEgm5XENXHV5yKidnR3s7e1hb2+Pfv36wdHR0dhdIiIiIqL/YSAkk/K4B67HvX+VYW9vjw4dOqBdu3YYMGAAevXqBaBu3isRERHRk4aBkKiaMehI/fPPP0hMTBSHjP7444/o2rWrsbtFREREROCkMmRiaiOsJSQkAAD+/vtvbN26VdyvOuOoLnUxTApDRt3d3dGvXz+89957AP4dJktERERExsNASFTNPvvsMwCAi4sLkpKSMGnSJJSWliIvL0/nMXX5GcIOHTqgpKQEALB582bxHlUXpr93755R+kZERERk6hgIyaTURuASgo6ZmRmio6PRqVMnBAcHIzc3t8av/ThatmyZJPy98sorAMoWpt+7dy/27NmD4OBg7N2711hdJCIiIjJZDIRkUmojED7zzDOS7TFjxmDKlCnIycmp8Ni6WCFU9/777wMA8vPzkZycjNOnT0Mul+P06dNG7hkRERGR6WEgJKpmn3zyiWRbLpejTZs2OHv2rM5j6vKQUXXPPfccAKCwsBD+/v746KOP0KpVK8ydO9fIPSMiIiIyPQyEZFJqI3CpX2Po0KHw9PTESy+9ZPCxddH//d//AQAaNmyIgwcPIjQ0FHK53LidIiIiIjJRXHaCqIYJIe/IkSM625jSjJsymQwAkJaWhtmzZyM7OxuXLl0ycq+IiIiITJPJVQiPHj2KwYMHw9PTE2ZmZvjhhx8k7yuVSkRGRsLT0xN2dnbo06cPLly4IGlTUFCASZMmwdXVFQ4ODhgyZAju3LkjaZOVlYWwsDDIZDLIZDKEhYVpVEFu3bqFwYMHw8HBAa6uroiIiEBhYWFN3Db9jzEqhDt37qz0sXVBly5dJK8hQ4YAKHuGEACcnJzQpUsXY3aRiIiIyGSZXCB8+PAhnn32WaxcuVLr+4sXL0Z0dDRWrlyJ5ORkeHh4YMCAAZIJQSZPnoxdu3Zh69atOH78OHJzcxEUFCROrQ8Aw4cPx7lz5xAXF4e4uDicO3cOYWFh4vslJSUIDAzEw4cPcfz4cWzduhU7duzA1KlTa+7mySiBy9nZWe+2dTEQ5uTkIDExEUlJSUhKSsKPP/4IALCxsTFyz4iIiIjI5IaMBgQEICAgQOt7SqUSy5Ytw4cffoihQ4cCADZu3Ah3d3fExsZiwoQJUCgUWLduHTZt2oT+/fsDKFtbzcvLCwcOHMDAgQNx8eJFxMXF4eTJk+jatSsAYO3atejevTsuX76M1q1bIz4+Hn/88Qdu374NT09PAMDSpUsxZswYfPrpp3BycqqFT4NqghDq6mK4q4yoqCjk5ORoBOPS0lIj9YiIiIiIBCZXISzP9evXkZaWBn9/f3GfjY0N/Pz8kJiYCAA4c+YMioqKJG08PT3Rrl07sc2JEycgk8nEMAgA3bp1g0wmk7Rp166dGAYBYODAgSgoKMCZM2dq9D5NWW2GtKKiIhw4cAApKSl6H1MXQ+SCBQswcOBAccio8HenqKhI0k717xQRERER1Q6TqxCWJy0tDQDg7u4u2e/u7o6bN2+KbaytrTWqHe7u7uLxaWlpcHNz0zi/m5ubpI36dZydnWFtbS220aagoAAFBQXidnZ2tr63R7Vkx44dAMqekUtISNBrBs26vOxETk4OUlNTYWlZ9r8bV1dXAGX3HBoaCqDsvlNTU43WRyIiIiJTxUCohfqMj0qlssJZINXbaGtfmTbqFixYgHnz5pXbF9KtNgJXbGwsgLLJUubPnw8AOp9ZNQXqQ0Zzc3MBlP0jypIlSwCU/V5Un7ElIiIiotrBIaMqPDw8AECjQpeeni5W8zw8PFBYWIisrKxy2zx48EDj/BkZGZI26tfJyspCUVGRRuVQ1axZs6BQKMTX7du3DbxL01YbgVB9shRDrlkXK4QhISGSivoHH3wAoCwwN2vWDM2aNYO3tzfeeecdY3WRiIiIyGQxEKpo3rw5PDw8sH//fnFfYWEhEhIS0KNHDwBAp06dYGVlJWlz//59nD9/XmzTvXt3KBQKJCUliW1OnToFhUIhaXP+/Hncv39fbBMfHw8bGxt06tRJZx9tbGzg5OQkeVHNGjFihEHtY2JiAACZmZno1q0bevfuXeExdXnIqLqRI0dq3T9s2LBa7gkRERERmdyQ0dzcXFy9elXcvn79Os6dOwcXFxc0bdoUkydPRlRUFFq1aoVWrVohKioK9vb2GD58OICyRbXHjh2LqVOnokGDBnBxccG0adPg6+srzjrq4+ODQYMGYdy4cVi9ejUAYPz48QgKCkLr1q0BlE2g8cwzzyAsLAxLlixBZmYmpk2bhnHjxjHk1aDyAteMGTO0thcmAtKX8Iycs7MzTp48CUD/hedNIRAKTOleiYiIiB5XJhcIT58+jb59+4rbU6ZMAQCMHj0aGzZswIwZM5Cfn4/w8HBkZWWha9euiI+Ph6Ojo3hMTEwMLC0tERoaivz8fPTr1w8bNmyAhYWF2GbLli2IiIgQZ04cMmSI5DkyCwsL7NmzB+Hh4ejZsyfs7OwwfPhwfPbZZzX9EZi08kLIli1bxOf/VB0+fLgmuwRA/8BYFzAIEhERET0+TC4Q9unTp9wvpGZmZoiMjERkZKTONra2tlixYgVWrFihs42Liws2b95cbl+aNm2Kn3/+ucI+U+1488034ePjozFD7KhRoww6T1UCjymFpUePHuHAgQNwcXFBu3btYG1tbewuEREREZkckwuEZNrKC1zCjKDqIiIiaqo7GkwhEO7atQsAoFAoxGU5UlJSMHHiRJ3PFxIRERFRzWAgJKpmphDqquLbb78FULbshBDCi4uL0adPHwZCIiIiolrGWUbJpFQmrBk6y2hVmEKYtLW1BfDvvSqVSiQkJIj7iYiIiKj2sEJIJqU2ZhlVDTr6MqVlJxYvXoxevXrh1q1b6NatG6ysrPD8889X+MwtEREREVU/BkKi/9E1y6iwdEhNMqVA2LBhQwBlkyoJy3IQERERkXEwEJJJKS9wyWQyLF26VDJ0sTIBzRRCXVXw8yEiIiJ6fDAQEv1Pfn4+li9fDnPzfx+tVSqVSEtLq7U+MCwRERERUW3ipDJkUsoLXNOnT4ejoyOaNWsmvry9vfHOO+9U2zVq8tgnxalTpwAA6enpiI+PR8eOHdGnTx+cOHHCyD0jIiIiMj2sEJJJKS9whYeHS7blcjnq16+PYcOG1XS3xGcITcHSpUsBAE5OThg9ejSSk5OhUCjw9ttv48iRI8btHBEREZGJYYWQSIehQ4dW6rjKzDKqfmxdlp+fD6Bs7UE3Nzf89ttvGDNmDLKysozcMyIiIiLTw0BIJsWQwCW09ff3r6nu6LxmXXbz5k0AwKNHjzB06FCcPn0acrkc2dnZRu4ZERERkenhkFGi/wkNDZVsy2QyvPbaa0hNTTVSj+qmX3/9FZ07d0ZhYSH8/f3RvXt3nDp1Cj/99JOxu0ZERERkchgIyaSUV4FLTk7GoUOHNGYZDQsLq7Zr1OSxTwo7OzsAgLu7Ow4ePIiYmBjI5XJYWvJ/R0RERES1jd/AyKToM8uoq6urZL+hs4xWhiktTC8wNzfH7NmzkZ2djUuXLhm7O0REREQmic8QEv1PeHi4RhgEAD8/P4POU5lQZ0qBMCkpCQCQkZGB+Ph4+Pn5YcaMGVx2goiIiMgIWCEkk1KZwDVq1CjEx8fXyrUMVVxc/MQNtZw/fz4AIC8vD8OGDUNqairs7e3RqlUr/PPPP0buHREREZFpebK+SRLVoC5dumjsUyqVuHLlikHnqelnCFNTUzFz5kzxubuioiK4uroiKioKvr6+lb52bUlPTwcANGnSBEVFRVi0aBGWL1+O0tJSI/eMiIiIyPQwEJJJKS9w5eTkIDU1VaPi1rt375rulkifQBgeHo7Y2Fh4eXmJ+27duoURI0bg2LFjNdm9amFlZQWg7BnCW7duYcOGDRg8eDBycnKM3DMiIiIi08NASCalvMAVFRWFnJwcODs7S/YLC6lXxzV0EZ4h1EdJSQlkMplkn5OTE0pKSgy+rjE4OjpCLpcjLS1NXOojNzfXyL0iIiIiMk0MhET/s2DBAixYsECyrzJDRqtCnzC5cOFCBAUFwdraGk5OTlAoFCguLsaiRYtqoYdVJwRXFxcXLFmyBAqFAk5OTgYv70FEREREVcdASCalMkNGBwwYUG3XqI5je/fujaNHjyI/Px9yuRzOzs6wtbWt9DVr2+jRo7FgwQJYWVmhWbNmePHFF3Ho0KFaWd6DiIiIiKS47ASZFH2GjKqbPXt2TXYJQOWWnbCzs0OjRo2eqDAIAMOGDZNsFxYWat1PRERERDWPgZDof0JCQjSeHwRqZx1CUyKsN3jnzh1s3boV5uZl/xsKDAw0ZreIiIiITBIDIZmU2gxrlbmWIcdkZmbi6tWryMzMNPg6xrRq1SoAQKNGjZCUlIRr166htLQUeXl5Ru4ZERERkenhM4RE1awqs4zqc+zBgwcxd+5cuLq6wsnJCXK5HFlZWZg3bx769etn8LVrm1ARNDc3R3R0NJ566ikEBwdzplEiIiIiI2CFUE1xcTFmz56N5s2bw87ODi1atMDHH38sWTRbqVQiMjISnp6esLOzQ58+fXDhwgXJeQoKCjBp0iS4urrCwcEBQ4YMwZ07dyRtsrKyEBYWBplMBplMhrCwMMjl8tq4TZNlSFiTy+XYtWsXRowYUYM9MtzcuXMRFxeHH3/8EZs2bcLu3buxd+9ezJ0719hd00vr1q0B/BuC3377bUyZMgVZWVnG7BYRERGRSWKFUM2iRYvw1VdfYePGjWjbti1Onz6NN954AzKZDO+++y4AYPHixYiOjsaGDRvw9NNP45NPPsGAAQNw+fJlODo6AgAmT56M3bt3Y+vWrWjQoAGmTp2KoKAgnDlzBhYWFgCA4cOH486dO4iLiwMAjB8/HmFhYdi9e7dxbt4ElBcIZ8yYIdmOi4tDamoqmjZtWm3XqI5jzc3NkZGRIf5ZA4CMjAyx8va4mzFjBr777jvJvfbt2xctWrQwYq+IiIiITBMDoZoTJ04gODhYnODC29sb3377LU6fPg2g7Av7smXL8OGHH2Lo0KEAgI0bN8Ld3R2xsbGYMGECFAoF1q1bh02bNqF///4AgM2bN8PLywsHDhzAwIEDcfHiRcTFxeHkyZPo2rUrAGDt2rXo3r07Ll++LFZRqPZs2bIFsbGx4nZKSgqAskXfa4s+gXDNmjWYOnUq0tLSoFQqYWZmhkaNGmHNmjW10MOqE9YbvH37Nlq3bg1LS0vY2trir7/+MnLPiIiIiEwPA6GaXr164auvvsKff/6Jp59+Gr/99huOHz+OZcuWAQCuX7+OtLQ0+Pv7i8fY2NjAz88PiYmJmDBhAs6cOYOioiJJG09PT7Rr1w6JiYkYOHAgTpw4AZlMJoZBAOjWrRtkMhkSExN1BsKCggIUFBSI29nZ2dX8CdRt5QWuN998Ez4+PnBzcwOASgesmp64xsfHB7t27arRa9Sk9PR0AGXLZoSGhkIulyMlJQVNmjQxcs+IiIiITA8DoZqZM2dCoVCgTZs2sLCwQElJCT799FP85z//AQCkpaUBANzd3SXHubu74+bNm2Iba2trjSUM3N3dxePT0tLE4KHKzc1NbKPNggULMG/evMrfIOlUUFCAzz77TNw+e/YsAFT6uc6anmV0xIgR2LJli8HXMLZ69erh77//houLC+bPnw+g7NldX19fI/eMiIiIyPQwEKr57rvvsHnzZsTGxqJt27Y4d+4cJk+eDE9PT4wePVpsJ0yIIRCG7pVHvY229hWdZ9asWZgyZYq4nZ2dDS8vrwrvi8qUF7jUh4yePXsWFy9eRP369avtGpU5Vv3ZRqFdYmJipa9jTG5ubrhx4waKiooAABcvXsS9e/fEyiERERER1R4GQjXTp0/H+++/j9dffx0A4Ovri5s3b2LBggUYPXo0PDw8AJRV+Bo1aiQel56eLlYNPTw8UFhYiKysLEmVMD09HT169BDbPHjwQOP6GRkZGtVHVTY2NrCxsan6jZooQ4aMrl27FgDw8ssv13i/ylt2Qj2oCg4fPgyg7Fk8KysrODg4SCaaeVwJFde7d++iXr16ePToERo0aCAGRCIiIiKqPU/GtIS1KC8vT2O2RgsLC3HZiebNm8PDwwP79+8X3y8sLERCQoIY9jp16gQrKytJm/v37+P8+fNim+7du0OhUCApKUlsc+rUKSgUCrEN1a758+drHcY7atQog85T3c8QCkHVz88Pfn5+uHnzJt555x08ePAACxcuRNOmTdGoUSMEBwdX63VrSmFhIQDAxcUFubm56NevHx48eCB5npaIiIiIagcDoZrBgwfj008/xZ49e3Djxg3s2rUL0dHRCAkJAVBWyZk8eTKioqKwa9cunD9/HmPGjIG9vT2GDx8OAJDJZBg7diymTp2KgwcP4uzZsxg5ciR8fX3FWUd9fHwwaNAgjBs3DidPnsTJkycxbtw4BAUFcYbRGmRIWBOqdmPGjKmh3mjS1j/1oLpq1SqkpKTg9u3bsLe3L/fYx9HEiRMBQKwI7tq1C/369cP48eON2S0iIiIik8Qho2pWrFiBOXPmIDw8HOnp6fD09MSECRMki37PmDED+fn5CA8PR1ZWFrp27Yr4+HjJcL2YmBhYWloiNDQU+fn56NevHzZs2CCuQQiUDQWMiIgQZyMdMmQIVq5cWXs3SxKhoaGS7VOnTgEA/vzzT4POU5XJZPRdh9DKygoAEBERIa6P+ffffxt8XWPo06cPgH8D4fbt23Ho0CE8//zzeO2114zYMyIiIiLTw0CoxtHREcuWLROXmdDGzMwMkZGRiIyM1NnG1tYWK1aswIoVK3S2cXFxwebNm6vQWzJUeYErOTkZhw4dEocMT548Gbdu3TJ4YXp9rlUVgYGBuHHjBry9vSX7GzduXCPXq27C51JcXAwA5f5dIyIiIqKaxSGjZFLKC2nTp0+Ho6MjmjVrhmbNmqFevXoAgNzc3CpdQ59gaEiF8IMPPoC3tzdGjBgh2R8XF2dAL41PCIRC1byiWXqJiIiIqPqxQkj0P0eOHMGRI0fE7ZMnTwIAMjMzq3TeqgbC0NBQHDt2DObm5njuuefg4+MDpVL5xC5Or36Pixcvxosvvmik3hARERGZNgZCMimGDBnt3LkzABi8zqMh1T59/PDDD9i1axcsLS2xbt06XL16FZMmTcJXX31VLeevbbo+F1YIiYiIiGofAyHR/whDRl1dXQFADIbCmpSVVdUKoYeHBzp37gw3NzcMHDgQGzZsQHR0tGSNyyfZkzI7KhEREVFdxGcIyaSUFz7Cw8PFMAj8OxvmwIEDa+ya6m20tQ0ODkZeXp64PWbMGEyZMkWy5MSTRNczlqwQEhEREdU+VgjJpBhSjbKxsTH4mMq0r+hYbTPV9u3bF5cuXar0dR5HDIREREREtY8VQiIdhIBSWlpapfMYUiE0BZWZhZWIiIiIagYDIZmUyoSPy5cvV+oahlyruieieRKxQkhERERU+xgIyaRUJnC99dZblbqGEHAqEwxV7d+/H127dkWPHj2wdetWcX///v0N6tfjwpRDLxEREdHjhs8QEv2PsBC94NGjRwCA7Oxsg85TlYXptfnoo4+wb98+WFtbY/bs2fj111+xfPlypKSkGNSvx8HZs2cxY8YMY3eDiIiIiP6HgZBMSnnBq6ioCAqFAra2tgCAN954Axs2bICTk5POY4qLi2FpWX1/jbT1LzU1Ff7+/uL233//jU2bNiE3N7farltbIiIi0L9/f5w4cQIAMGHCBBw8eBAAcOfOHWN2jYiIiMgkMRAS/c/kyZNx//59NG/eXLL/zTfflGynpqZi5syZkMvlsLS0RFFREVxdXREVFQVfX98qVQi1tbW0tERsbCxatmwp7jt8+DCCgoL0vrfHhZmZGXbs2CFux8bG4vnnn8dff/2Fw4cPG7FnRERERKaJgZBMSnnhbNGiRZLt27dvAwBCQ0Ml+8PDwxEbGwsvLy9x361btzBixAgcO3as2gPh119/jQYNGkj29e3bF3v37q3wvI8bNzc3/P333+J2586d0blzZxw5cgTm5nykmYiIiKi28RsYmRRDJjQ5duyY1mNKSkogk8kk+5ycnFBSUiJpX12zZoaEhMDZ2VncFtYf9PPzq5bz16bt27eL6zsCwPvvvy9WDIVnNomIiIio9jAQEumgax3ChQsXIigoCP3798fQoUPRr18/BAcHa1QYDVlKwpC24eHhevW/tnz77bdwd3eHp6cnVq9eLe5/+umntbYvKCgQfx49ejQiIyMBANbW1jXaTyIiIiLSxCGjZFIMqRAOHz4c69ev1zimd+/eOHr0KPLz8yGXy+Hs7CxORKPtGtUdCK2srAAAaWlp8PDwqLB9TXvrrbewc+dO2NjY4PXXX8fevXvx448/IiMjQ2t71eDn4+MDV1dXAOCQUSIiIiIj4DcwogroCml2dnZo1KiRJAyqtq+phdb37dsHABg1alSNnL8y+vXrh169euHOnTtQKBRo06aNRmVV4OLiIv586NCh2uoiEREREWnBCiGZFEMqhJVZWL6y1yyvQtilSxet7a9cuVKlflUXR0dHHD9+HL169QIAHDlyBBMnTsRXX32l0fb7778XJ+sBgNatW4v3HBYWVjsdJiIiIiIRK4RkUioT7gw9pirX0HZsTk4OEhMTkZSUJL6Sk5PRuXNng69TE+7cuSOGQcGqVau03svSpUsxZswYcXvmzJn47LPPAABbt26t0X4SERERkSYGQiIddE0qs3//fnTt2hU9evSQhJjAwEAAlXuGsDxRUVHIycnR2D979uwqndcY7OzsEBsbK26fP38ea9euBQAUFRUZq1tEREREJouBkExKdVQIP/roI+zbtw8HDhxAUlISJk2ahNLSUuTl5WltX9Uho+rLTgiexGUnOnToIJk8Jjo6Gs2bNwcAFBYWGqtbRERERCaLgZCoAuohzcLCAvXr14e9vT2io6PRqVMnBAcHIzc3t8rXqGo18XG3bNkyODo6ittbt27FoEGDAEDnrKREREREVHMYCMmkVEeFsEOHDrhx44a4PWbMGEyZMkUc1lmVIaOGtB0xYoTebY2hQYMGWvcrFArx56SkJHz++ecAgMaNG9dKv4iIiIjoX5xllExKZQKh+jOEK1as0GjTt29fXLp0Ses1DBkyqs2MGTO0tk9MTKzwvLXBy8tLY59SqYRcLtfaXn3IqHA8h4wSERER1T4GQiIdKrvsRGXWISxvyOiWLVskE7EIDh8+bFC/akpaWhoOHjwICwsLcZ9SqRQn2VHn7e2N8+fPAwBSUlJQv3593Llzh4GQiIiIyAg4ZFSLu3fvYuTIkWjQoAHs7e3RoUMHnDlzRnxfqVQiMjISnp6esLOzQ58+fXDhwgXJOQoKCjBp0iS4urrCwcEBQ4YMwZ07dyRtsrKyEBYWBplMBplMhrCwMJ1VFaoetbHshPpxVR0y+uabb8LHxwd+fn6S1+PilVdegbu7O3r27Cm+evXqJVleQrBp0yZcu3ZN3F6/fr0YBN99993a6jIRERER/Q8rhGqysrLQs2dP9O3bF7/88gvc3Nzw119/oX79+mKbxYsXIzo6Ghs2bMDTTz+NTz75BAMGDMDly5fFCTMmT56M3bt3Y+vWrWjQoAGmTp2KoKAgnDlzRqykDB8+HHfu3EFcXBwAYPz48QgLC8Pu3btr/b5JN20hraCgABcuXEBmZiZcXFzQrl07WFtb62xfmWuoXktYq0+1/T///GPwdWqC+vqBcrkc9evXx/LlyzXarl69GkuXLkVAQACAsuG3P/zwA0JCQmqlr0REREQkxUCoZtGiRfDy8sL69evFfd7e3uLPSqUSy5Ytw4cffoihQ4cCADZu3Ah3d3fExsZiwoQJUCgUWLduHTZt2oT+/fsDADZv3gwvLy8cOHAAAwcOxMWLFxEXF4eTJ0+ia9euAIC1a9eie/fuuHz5Mlq3bl17N13HnT17FnPmzIGVlRX8/f3F/WPHjsW6desqPF49rG3atAmrVq1C586d4eTkBLlcjpSUFEycOBEjR47UGDJa1Qrh4z5kVN3QoUNx6NAhre/Z2dnh999/F7eVSiVSU1MBGDbEloiIiIiqBwOhmp9++gkDBw7Ea6+9hoSEBDRu3Bjh4eEYN24cAOD69etIS0uTBAsbGxv4+fkhMTEREyZMwJkzZ1BUVCRp4+npiXbt2iExMREDBw7EiRMnIJPJxDAIAN26dYNMJkNiYqLOQFhQUICCggJxOzs7u7o/gjonIiIC69evh6WlJd544w1xv+rQRW10LUy/evVqHD9+XDI5SnFxMfr06SMJhIKqrkMoDBl1c3OT7B81alSF5zWG8u5306ZNmDhxorjdu3dvcY3F+/fva7S/d+8ePD09q7+TRERERASAzxBquHbtGlatWoVWrVph3759eOuttxAREYFvvvkGQNkEGgDg7u4uOc7d3V18Ly0tDdbW1hqLiau3Uf+CDwBubm5iG20WLFggPnMok8m0zvBIUmZmZmjZsiW8vb3x8ccfi/uLi4v1Ov7jjz9GSEiIOKunnZ0dgoKCxPeVSiUSEhJga2tb6T6WFwjnz5+v9c9KREREpa9Xk3bu3AkA4jIcqjw8PPDWW2+J2wkJCWJIX7t2Lfbu3Su+9uzZg+DgYOzdu7d2Ok5ERERkghgI1ZSWluK5555DVFQUOnbsiAkTJmDcuHFYtWqVpJ368DalUlnhkDf1NtraV3SeWbNmQaFQiK/bt2/rc1smzc3NTVw3UDVwJScn63X82LFjERMTg5iYGERHR2PTpk34/fff0bNnT3Tr1g29e/fGzz//jM2bN2tcQ9u2ofbv34+uXbuiR48ekuf1dM3iWdu++eYb+Pr64rnnnsPChQvFfwgJDg7W2l51v6OjI/7zn/8AKFt2YuXKlTh9+jSSk5Nx+vRpyOVynD59uuZvgoiIiMhEMRCqadSoEZ555hnJPh8fH9y6dQtAWYUDgEYVLz09Xawaenh4oLCwEFlZWeW2efDggcb1MzIyNKqPqmxsbODk5CR5Ufm2b98uPgeqGs4ePXpU7nFCMPfw8IC3tze2bduG7OxszJkzB82bN8evv/6KkydP4tixY4iJiRH/bFT3kNGPPvoI+/btw4EDB5CUlIRJkyahtLQUeXl5FZ63NqxatQopKSlISUmBvb09Xn31VeTl5em875KSEvFnhUIhBmlbW1u88MILuHTpEvz9/fHRRx+hVatWmDt3bq3cBxEREZEpYiBU07NnT1y+fFmy788//0SzZs0AAM2bN4eHhwf2798vvl9YWIiEhAT06NEDANCpUydYWVlJ2ty/fx/nz58X23Tv3h0KhQJJSUlim1OnTkGhUIhtyLiEQKga/iMjI+Hn56d3dVFf5QVCCwsL1K9fH/b29oiOjkanTp0QHByM3Nzcau1DZZmbm8PKygpA2TDWCRMmICAgQOs/eADAyy+/LP6sVCrFZzT79euHWbNmYfXq1Th48CBCQ0O5DAsRERFRDeOkMmree+899OjRA1FRUQgNDUVSUhLWrFmDNWvWACgLCZMnT0ZUVBRatWqFVq1aISoqCvb29hg+fDgAQCaTYezYsZg6dSoaNGgAFxcXTJs2Db6+vuKsoz4+Phg0aBDGjRuH1atXAyhbdiIoKIgzjNagygzfbNiwoWR75MiRGDlypN7XqOqQ0QYNGqBDhw6wt7dHREQExowZg2bNmmHw4MFVOm918fT0RJs2bWBvb4/Q0FC8//778PT0RO/evbW2f/PNN7F9+3YAZUO0hYrhCy+8AKBsGOns2bORnZ2NS5cu1c5NEBEREZkoVgjVdO7cGbt27cK3336Ldu3aYf78+Vi2bBlGjBghtpkxYwYmT56M8PBwPP/887h79y7i4+PFNQgBICYmBi+//DJCQ0PRs2dP2NvbY/fu3eIahEDZcgK+vr7w9/eHv78/2rdvj02bNtXq/ZqSzMxM3L17V9zWN6gZGuiqe8hoeno6jhw5Ig4ZHT9+PPz8/NC5c2eD+qUP1T/n+rpz5w5SU1PFIaMDBw5E8+bN0b59e63tVe9RqVSKk8yo/t0AACcnJ3Tp0sXg/hARERGR/lgh1CIoKEgyi6Q6MzMzREZGIjIyUmcbW1tbrFixAitWrNDZxsXFRXx+imrOwYMHMXfuXLi6ukqeuztw4AAGDBhQ4fFVDYSGHFPekFEAiI6Oho+PT5WHjM6YMUNrH4SZVA2hPmT066+/RkBAADIzMzXanj17VvL3RqlUikunqC7jQURERES1g9/AqM6bO3cu4uLi8OOPP2LWrFni/o8++kiv46s65LOqx3fo0EGcJRUom+SmY8eOVVqDcu3atVi7di3WrVuHkpISBAYGIigoSOtagBUJDAyU9M/d3R1ffvklGjdurNE2IiJCXNMTAJYvXy7+LATCzMxMXL16VWugJCIiIqLqxQoh1Xnm5ubIyMiQDOkV9pdH18L0AODv74/4+Hitx1V3hVC9yjxlyhQMGTIEn376qcHXEeTl5WHLli3w8PDA66+/jqtXr+LHH3+sVJXugw8+kGzv27cPABAXF6fR1szMDI0aNRK3VUPtn3/+iZ49e8LV1RVOTk6Qy+XIysrCvHnz0K9fP4P7RUREREQVYyCkOm/NmjWYOnUq0tLSJLNWfvHFF3odv2zZMnGxdaAstKWmpupsX93PEKoTKpvqy5oYwtbWFq+++iqAsmcA+/TpgzZt2ohDP2uKm5ubZPbRWbNmYcGCBQCAX375Bb///rskuGdnZyMgIICBkIiIiKiGMBBSnefj44Ndu3YBkD43+PTTT+t1/Ouvv46QkBBxW6lUIiwsTGd7IdQJFUZDKoY11Vado6Mjjh8/jl69egEAjhw5gokTJ+Krr76q9Dn1sX37duzevVvcVr0HMzMzjUpuRkYGny0kIiIiqkEMhGRSVAOItqGg2tja2orrUAreeecdg65VnW0//fRTvPTSS3j48KHex6i7c+eOxr5Vq1ZV6bnEylC971dffVWs5CqVSnF4qbDkCxERERFVPwZCMinqSx6UR6jwOTg4aLw3bNgwva6hz3UMbStU0H755Re9z6uuOmcZNZT67yAkJAS7du2Cm5sbFi9eXOPXJyIiIqJ/MRCSSSgoKMCFCxdw5swZcZ++FcLKLjthyJDR8p4hVF+LT1huIi0tzaB+qdqyZQtiY2M19q9evVqyffbsWcyZMwdWVlaYPn06evToAQAYO3Ys1q1bV+nrC5RKpUHPTxIRERFR9WIgpDpv06ZNWLVqFTp37oyMjAxx/7fffosJEyZUeHxtrkOoTU5ODlJTU2FpWfbX9fjx43jhhRfg6upq8HUEMpkM0dHRsLGxkfRBCLGCiIgIrF+/HpaWlpg+fTpOnjyJKVOm4Nq1a2IbQ0Lj999/j/fff1/c7ty5M/755x/x+kRERERUuzhbA9V5q1evxvHjx7F8+XLJZDDr16/X6/jCwkKkpKTgwIEDSElJQWFhoUHXr+qQ0aioKOTk5GjsLy4uNqgfqu7fv48DBw5g7969sLe3x5IlS7BkyRLk5eVJ2pmZmaFly5bw9vbGtm3bkJ2djXHjxkmuHRERgWXLliEmJgYxMTGIjo4GAEloFCxduhQLFy4Ut+Pj49GzZ08Auj+nqlRCiYiIiKh8DIRU59nZ2SEhIQGANHSoVse0EaplixYtwsaNG5GQkID169ejb9++2Lx5s87jqnvZiQULFmDgwIHo0qULunTpgtGjRwOAZAkNQ+Xn5+P48eO4ceMGUlNTMXjwYDRp0gTW1taSdm5ubpJF5yMjI+Hn54fk5GRxnz6hUWBnZye5hqOjoziLqK4hvKNGjar0fRIRERFR+ThklOq8TZs2YeHChZg9e7Y4PBGoeB1CIRDOnDkT48aNE/cXFxejT58+GDlypNbjqnthevUho506dQIAuLu7G3wdgY2NDTp27AgAOHPmDMLCwtC4cWONdtu3b9fYN3LkSMm9C6HR29sbQFlo3Lx5MzZt2qRxbIcOHVBSUiJuK5VKcfuLL74QlwdRff/KlSuG3yARERER6YUVQqrzPDw8sGzZMvz6669YsmSJuL9hw4blHieEs8uXL0v2JSQkwNbWVu/rV/XZOPUho0Iw7Nq1a6XP2axZMxw/flzcvnv3LmbOnFmpYajbt28Xw6Bg5MiRePTokUbbZcuWSdYVlMvlYvAuLCxEYmIikpKSxFdycjI6d+5scJ+IiIiISD+sEJJJMWTZCeH9c+fOoWfPnigpKYGVlRWef/55g4aMGtIvbceGhIRItmNiYtCzZ080adLE4OsIfv/9d8l2YWEhpkyZgri4uEqfszLefPNNyGQyAED//v2Rk5MDZ2dnSZvZs2fXap+IiIiITAkDIZkUQxamF9qGhoZi/PjxlbqGtu3yjqmtmTZDQ0Ml25cvX8Zrr72G1NRUre0zMzORmZkJFxcXuLi4SN4zdGkK9d+BsO3j46MRBgHAz8/PsJsjIiIiIr0xEJJJqUwg1He9QvXjDFmHsLYlJyfj0KFD4vDN119/HUuWLJHMwgoABw8exNy5c+Hq6gonJyfI5XJkZWVh3rx56NevHwD9lqZQpfp5rF27FtOmTdPYT0RERES1g4GQTEplAmFlg0pllpuo6hIV+po+fTocHR3FtQz37t0LZ2dnjYly5s6di7i4ODg6Oor7srOzERAQIAZCYZZRANi2bRsiIyMxbtw4nDt3rsJ+yGQyLkxPREREZEQMhGRSKvMMYUXt4uLiUL9+fXTr1k1r++oeMmpoxVKb8PBwybYwVPO7777DhAkTxP3m5ubIyMiQBMKMjAzJxDDXrl1DYGAgHBwcxH03btzQuSyG+u+AgZCIiIjIeBgIyaTURIUwICBAa/uaGjJaHYGwRYsWSEtLg5mZGVxcXNCoUSMolUqNqt6aNWswdepUpKWlQalUwszMDI0aNcKaNWvENlZWVli5cqUkJCqVSo3hp4KioiLx599//11cdoKBkIiIiKj2MRCSSanNZwgrc0xVKoRCYNPH/fv3kZmZCTs7O3z++ec4evQovvnmG3h6ekra+fj4aKwNqE59+KngnXfe0Wi7adMmfPLJJ+L2999/j9OnT4v9V3fv3j2NPhERERFR9eE6hGRSKjNk9KuvvkJISAgSExPF98aOHVupa1ZHW2FdxN27d1e6T82aNRPXCYyIiMCECRMQEBCAgoICvc8hCA8Pl4RBYajosGHDNNquXr0aH3/8sbgdGRmJjh07AgCuXLmCvXv3iq89e/YgODgYe/fuNbhPRERERKQfVgjJpFSmQhgSEoL//ve/es2gqX4NbdvlHaNP25UrVwIAevfujZiYGHF/eX1Sl56ejkaNGsHCwgIuLi6oX78+lEplpQKhuqFDh+LQoUNa37Ozs8OFCxfE7dLSUmRlZQEAfvrpJygUCnTr1k38HORyOU6fPo2XXnqpyv0iIiIiIk2sEJJJqUwgdHV1hbe3N7Zt24bs7GyMGzcOxcXFel2jMv3Sl5OTE7Zt2yZul9cndfn5+cjKysLDhw8xffp03L17F0lJSahfv75ex+fk5Oh8T7gXf39/jfc2bdokDhEFypa7+OeffwAAEydOxAsvvIBLly7B398fH330EVq1aoW5c+fqfV9EREREZBgGQjIplQmEQmAByoY4+vn5ITk5Wa9raNvWt3+6yGQyrftVg1ZF1IeMFhUVISAgQCMQfvPNN/D19cVzzz2HhQsXivuDg4PFn0NDQyUvmUymc5F7Dw8PjB49Wtz+9ttv8dRTTwEom5xm1qxZWL16NQ4ePIjQ0FCdM5USERERUfXgkFEyKYY8QyhQD0kjR47UWK+vqgwZMvrBBx8gMDBQY78w9FIfo0aNgkKhEJeb6NGjB6KjozF16lRJu1WrViElJQVWVlb4/PPP8eqrr+Kbb76R9FN9kXvhPnTNMqqqtLRU494dHR0xe/ZsZGdn49KlS3rfExEREREZjhXCCixYsABmZmaYPHmyuE+pVCIyMhKenp6ws7NDnz59JM9FAUBBQQEmTZoEV1dXODg4YMiQIbhz546kTVZWFsLCwiCTySCTyRAWFsaKSA2rjYXpq/IMoT7Km2VUXx988AG8vb3F7eXLl6Nt27aIi4uTtDM3N4eVlRWAskriW2+9hYCAAPz9999iG2GW0WbNmokvb29vrbOMqvezvHUInZyc0KVLFwDA2bNnERQUVKXJfYiIiIhIEwNhOZKTk7FmzRq0b99esn/x4sWIjo7GypUrkZycDA8PDwwYMEDyXNXkyZOxa9cubN26FcePH0dubi6CgoLENdcAYPjw4Th37hzi4uIQFxeHc+fO6VVVocp7XAOhIW2Ffqu3rcr6hOoL1QsCAwNx48YNcbt///748ssv0bhxY8mxqrOM3rt3D3/88YfOiWAqszB9REQEli1bhpiYGMTExCA6OhqAYRPpEBEREZEmBkIdcnNzMWLECKxdu1YcVgeUfWldtmwZPvzwQwwdOhTt2rXDxo0bkZeXh9jYWACAQqHAunXrsHTpUvTv3x8dO3bE5s2bkZqaigMHDgAALl68iLi4OPzf//0funfvju7du2Pt2rX4+eefxWUFqPqphiZ9l52ojQXTq2sdwsoSqoDq1CuJADQqierPGXp7e6Nt27aS5wx10RYIMzMzcfXqVWRmZortzMzM0LJlS4Mm9yEiIiKiijEQ6vD2228jMDAQ/fv3l+y/fv060tLSJDMo2tjYwM/PTxzKdubMGRQVFUnaeHp6ol27dmKbEydOQCaToWvXrmKbbt26QSaTSYbEUfWqroXptc2gqe0a2rbLO0aftmfPngVQtqj71q1bxf2vvvpqhcfqsm/fvkofKzxnmJKSAnt7exQVFQHQfS+6KoQ3btxAz5498cYbb2DevHkYPXo0evXqhYMHD8LNzU1SqdRnch8iIiIiqhgnldFi69atSElJ0fplMy0tDQDg7u4u2e/u7o6bN2+KbaytrSWVRaGNcHxaWhrc3Nw0zu/m5ia20aagoECyVlx2draed0VA5QLhli1bkJKSItmvbQZNbdfQtl1VQgh8+eWXkZSUJO4/f/484uPjMXPmTMhkMixYsADdu3ev1mtro/6c4bvvvgsAePDggdb26r8DYTsxMRGXLl2Co6Oj+H52djYCAgLw66+/apynJib3ISIiIjI1DIRqbt++jXfffRfx8fGwtbXV2c7MzEyyrVQqNfapU2+jrX1F51mwYAHmzZtX7nVIt8oEwoEDB2LSpEmS/eU96ykcV9GfB23H6BMehdk8LS0tER0dLS5O7+joiNGjRyM5ORn29vYYOnQojhw5ovUcZ8+exZw5c2BlZYXp06ejR48eAMomaVm3bp3e/QbKqt9t2rSBvb09QkNDxf36BELVCiEAZGRkSAJhRkaGZPZSIiIiIqpeDIRqzpw5g/T0dHTq1EncV1JSgqNHj2LlypXi831paWlo1KiR2CY9PV2sGnp4eKCwsBBZWVmSKmF6err4xdvDw0PrF+aMjAyN6qOqWbNmYcqUKeJ2dnY2vLy8Knm3pseQZSeE962trdGsWTPJe7pm0NR2fHUPGW3WrJnW5RhKSkrg4+ODJk2aAAAsLCx0niMiIgLr16+HpaUlpk+fjpMnT2LKlCmVmqTlzp07SE1NFZemEKhPxiTQFQj79++PqVOnIi0tTfyHkUaNGmHNmjUG94mIiIiI9MN/elfTr18/pKam4ty5c+Lr+eefx4gRI3Du3Dm0aNECHh4e2L9/v3hMYWEhEhISxLDXqVMnWFlZSdrcv38f58+fF9t0794dCoVCMuTv1KlTUCgUYhttbGxs4OTkJHmR/ipTIbS3txf3CcuCDBs2TK9raNuuqjFjxmg9b2JiIg4dOgQAKC4uLvf+9J2kRZ/lHtSHjApUl6ZQpT6xj3Afzs7O2LVrF06cOIGTJ0/ixIkT2LlzJ3x8fLjsBBEREVENYYVQjaOjI9q1ayfZ5+DggAYNGoj7J0+ejKioKLRq1QqtWrVCVFQU7O3tMXz4cACATCbD2LFjMXXqVDRo0AAuLi6YNm0afH19xUlqfHx8MGjQIIwbNw6rV68GAIwfPx5BQUFo3bp1Ld6xaanqpDJDhw4VQ5c+1zC0X1VZs1C1n5aWlpJ/kFAnTNIizCAaGRmJzZs3Y9OmTZJ2+lQShaUp1GcjVV2aQlf/lUqlzmU0VA0ePBhpaWkwMzPDuXPnMGnSJEyZMgUbNmwweIgrEREREf2LgbASZsyYgfz8fISHhyMrKwtdu3ZFfHy85NmnmJgYWFpaIjQ0FPn5+ejXrx82bNggGca3ZcsWREREiDNWDhkyBCtXrqz1+zEllRkyasgx2o6rrXUI1bctLXX/9d6+fbvGPm2TtAiVRADYtm0bIiMjMW7cOPzzzz/o378/2rdvj0GDBiEkJEScyEagvsi9tn6qTipTXkC/e/cufvjhBzg4OCAkJATz58/HH3/8UaW1F4mIiIiIgVAv6hNzmJmZITIyEpGRkTqPsbW1xYoVK7BixQqdbVxcXLB58+Zq6iXpo6oL0+/cubPG+6Vv2wcPHkiqgDURjnRVEtetW4ebN29CLpfD399fMpFNRXQNGdX1GQiz7j777LPw9vZGTk4O2rRpw787RERERNWAzxDSE2XEiBFVOr6qgVB9KRF9jqvuSWWOHz8OALh8+TISEhLE/dqqfrro+0ze9u3bNYaCjhw5Er1794aXlxd8fX2hVCrRpEkTuLi4lDuRjUDXpDK67n3UqFFwcHCQLANz6dKlcteCJCIiIiL9sEJIj6UZM2Zo7FMqlZLwUhnVtTC9PsfV1JBR4RnGnj174uOPP8ann34KANi0aZNkUhd/f3/Ex8drPYeuZwN//vlnnddV/Z08ePAA06ZNg5mZGezs7ABUPJGNtntUDYTbtm3TWPtTqVTiypUryM3NleyXy+X46aefKrwWEREREZWPgZAeS1u2bEFsbKzG/sOHD1fpvIY+DwgARUVFSElJQWZmJlxcXNCuXTtYW1vrdQ1D+6XPscKMnupr+F2/fl1cB1CpVCI1NVXnOS5duoTevXvDzMwMzz33HL7++mvMnTsXDx8+1Lm4vervJDAwUDyX8Du5ePGiZO3Obt26oWHDhoiKioKvr6+4X9eQ0cLCQiQmJmo8+zhgwACN/uszuQ8RERERVYyBkB5Lb775Jnx8fODm5ibZP2rUqCqdtzIVws2bNyM/Px9OTk6Qy+VISUnBxIkTNSZg0XW8egjVtmC9ISFy3LhxeO+99/Djjz/i3Llz4v6vv/4azz77rHi+sLAwnef4559/sHbtWjRp0gTr1q3DvXv3MGbMGHzxxRdaF7fPzMzEyy+/DA8PD41ZcIXfSXh4OObOnStOJmNtbY27d+/Cz88PCQkJYijUNalM69atkZOTozEsd/bs2Rr9r+6lPIiIiIhMFQMhPZbmz5+vdb/qkMjKqEwgDAsLk8yeWVxcjD59+ugMhOUNGa0oEOoTdITZbAcPHowvv/xSrFb6+vqiWbNmYrt33nlH5zmaNGmCwYMHw83NDQMHDkSbNm1w8+ZN2NvbSxa3VygU6NmzJ1xdXeHk5IRp06YhKysL8+bNQ79+/QD8+zspKSnBRx99JF7j6NGjkMvl6NevH8LDw3Hs2DGtn4ew3bBhQ0kYvHTpEtq0aQM/Pz/s378fs2fPhoWFBSIiIsTJfQIDA7Fnz54KPzMiIiIi0o6BkExKZQLhjRs3JPsSEhIkQyPLu4a+7+mzFp/6OdSHjKrfz7Bhw3Sew9XVFXPmzIFMJgNQNnOura0tCgsLJYvbX7t2DXfu3JEsqZKdnY2AgAAxEAoWLlyIoKAgcbtfv34oLi7G/Pnz8cknn2jtp+o9lJSUSM4XHh4u9mXUqFGQy+Vwd3fHJ598ghEjRsDW1haurq4675GIiIiIKsZASCalMusQXrlyBT179kRJSQmsrKzw/PPP67XkgSHrGFZm4hn1QGjIOR48eIDhw4eL271794ajoyOuX78u7rO0tISvry8yMjIkgTAjIwMKhQJdu3YVK3avv/46evfujbZt2+LkyZMAgHr16iE3NxeLFi3CokWLtPazvEAoPCsJAOnp6Xjw4AHS0tLw7LPPYvHixYiPj8eBAwf0vmciIiIi0sRASCZFtTqlb4XwxRdfxOLFiwGUTXwSGBgIhUIBDw+Pco8zJBBWpkKo+vydPvejSv0ZzRdffBGHDh3SeEZz7dq1mDp1KtLS0sThro0aNYKVlRX27dsHa2trzJ49G7/++iuWL18uqZx+8cUXcHV11aim6hsIP//8c1y/fh3NmzeHpaUlcnNz0a5dOzRt2hRTp07Fc889x0BIREREVEVch5CeKFVde86QAKUtpN27dw8HDhzAhx9+qNc1tG2Xd4w+bYV+qQfC8+fP48CBA0hJSUFhYWG55+jduzcGDx6MHj16YOvWreJ59u3bJ2nn4+ODXbt24cSJE5gyZQoePXoEe3t75OXloWvXrvDz80OfPn3QqVMnBAcHS5aHaNiwodahteqhXFcgbNOmDVq0aAEA8PDwQGBgIJ577jlMmDABANC5c2eNGUmJiIiIyDD8NkWPJWH5BFUVLaWgj8oMGVVtJwxjLCgo0Ps4QyqE+rh16xaAsuUeTpw4Ie6fMWMG/vOf/+g1E+pHH30kqfDVq1cP/fv3x/Hjx3UuO7F06VL8+uuvyMnJQYsWLXDixAm0bt0a/fv3x7Fjx9CsWTNMnDhRvIZ6wNP2GZRXIVTl6emJo0ePwsrKCp9//jmGDBmCrVu3okePHnp+akRERESkDQMhPZaSk5Nx6NAhmJv/W8SuaCkFfVSmQmjIMFP1a6gfUx1DRr///nsAQIcOHbBixQpxv4uLizg7a0UzoV65cgXjx48Xtw8fPgwHBwcUFxdLlp1o2bIlMjMzAQB2dnawt7eHvb09QkJC0L59ewAQq3TFxcXiJDXCNqA5E2hlAqG5ubkYxiMiIvD1118jICBA7BsRERERVQ4DIT2Wpk+fDkdHR41ZJMtbSkEfVR0yqk9wU2+jTyBUrSYWFxfrNRTS3t4e//d//ydO+CIEKn1mQi0oKMCkSZPQtGlTAMDBgwfRvHlz/PPPPygpKcGUKVOgVCrx8OFD8ZgOHTogMzMT5ubmWLVqFYCyZyobNGgAoKzq+NZbbyEpKQkAMGTIENy/fx/379/HTz/9hCFDhmj9PIRtIUBqExgYiBs3bsDb2xsA4OzsjJUrV+Ldd9+t8HMiIiIiIt0YCOmxFB4eLtmWy+WoX79+uUsp6KM2AmFlhowKQ1D37NmDF198EUVFRXB1dUVUVJS4oLugXr16Wvt/9uxZdOvWTetMqOohc+HChfDx8RED96NHj7B582YMGjQIBw8eBAAUFRVhz5498PX1hZWVFUJDQ8Xw17dvXxw6dAjW1tbYvn07AMDCwgJfffWVpD/du3dHvXr1sGTJEjEQVlQhTEhIkKxD2bFjR+Tn52PdunWQyWQIDQ3FwoUL0bZtW+Tn52v9PImIiIhIP5xUhp4IQ4cOrfSxI0aMEH9WKpXiMNTKPEOoz+Qv6kFNnwphdnY2AOCll17C0aNHceLECXzxxRcawRgomyFUOK/q+VJSUnDy5EkcO3YMMTExyMjIQNeuXVG/fn04OTnBx8cHMpkMnTt3xo4dOxAeHo7Q0FCEhoaiZcuWmDJlCm7fvo1mzZqhWbNmaNmyJRo3boyUlBSkpKTA3t5ech8FBQVISUkRJ7Lx9fWFmZmZ2KZ///6YOXMmHj58KAmjFQXCmTNnYv369WKb3bt3w9HRUeyLvb09Bg8ejLy8PFy8eFHXr8EocnJyYGZmhsOHDxu7K0RERER6YYWQngj6PFs3Y8YMrcclJiZKti0sLFBaWlqlZwire8iotvednJy0Plena5ZRpVIp+QxiY2NRVFSEYcOG4eeff4ZcLkd8fDzeffddHD58WBLg/vrrLwCaz/G5ublJnt0ThmheuXIFffv2RefOneHk5AS5XI7ffvsN9evXF4/9/PPP0bhxY/z++++SNQ8rmmXU1tYWXl5eYpsmTZrg0qVLMDMzQ5cuXQAADx8+hLu7O/Ly8sr9PGvbnTt3AADffPMN+vbta+TeEBEREVWMgZCeCDt37qywzZYtWxAbG6uxX7Vao1ohrMqQUUOO0ycQ2tnZIScnB/Hx8Rg6dCgUCgWKi4slC7qrn0M91JaWlko+g71798Lc3BzDhw/HmTNn4OTkhNatW4sTtOzbt09cS7Fv3744fPgwfHx8JNdSf3ZPoFAo8Pnnn6N9+/awtrYG8O9ENgLhmUDVYaXqn4G2CqGHh4dGMLW1tUWLFi1w6tQpcd+FCxfwwgsvaP08iYiIiEg/DIT0RHB2dq6wjfpi6wLVxdaFCqHwc3mqOqmM6jW1/axKGFLZt29fLF26FM7OzjonhVENUOphU/Uz+PLLL/HKK6/g448/RlFREczMzBAcHIxPP/0UkyZNgo2NjXisELiF5xMFH3zwgfjzpk2bxJ8bNmyITz/9FOnp6Zg4cSJGjBihMZGNvstOCPcgtN+6davGMWvWrEGvXr3E7UuXLqFt27biOoX6un37NlxdXWFnZ2fQcYbSp6JNRERE9DhgIKQ6Q3UiElURERHiz6qBsKJqn7bnBQ1ZdkJbhVAXoY2FhQUaNWpUbttLly4BAI4fP44dO3aI+9999138+uuv4nbv3r2RkZGB/Px8yOVySci0s7PDwIEDxbaPHj3Co0ePkJ6eLrmWn58fEhISAACrV68W9ycmJmLhwoV48OABJk6ciNWrV4sT2Qj9FyqEOTk54kyo6p+HtkCozYIFCyTbFy5cwDPPPIOrV6/qPEabpk2bIjAwED///LNBx+lL9RlKIiIioicBAyE9tgoKCnDhwgVkZmbCxcUF7dq1E4cnVlZ1DRmt7mcIDVmHMD4+HgDQuXNnnDlzRtz/6NEjre3t7Ow0KmK5ublITU0VK5P169eHQqEQZ/EU+nLy5EnJeQQeHh6IiYnBoUOHsGDBAhw4cADffPMNBgwYILYRAl5wcDBiY2PF4akVVQi1ycnJkfTXxcUFycnJkuvpa//+/QYfQ0RERFRXcZZReixt2rQJffv2xcaNG5GQkID169ejb9++kqUUKqOkpEScJKWmFqavzJBRfWYvFQhVKDMzM8ybN0/cf/36dcTHx6Njx47o06cPTpw4ofMcUVFRyMnJEbeFWU4tLCxw+fJl8aUa0lSHjHbr1g29e/fGzz//LP5OVq1ahZSUFLHNu+++i7y8PCiVSo1huwLV5yB1BcLMzEyN/nbu3BkAMHv2bJ33qEthYaHBxxARERHVVawQ0mNp9erVOH78uFjNA/6dtGTkyJHlHpuZmSlWFV1cXCTvqQbC6niGUNs5KlMhLCoqAlBW/du6dStef/11AGWTuuzZs0fStlGjRrhx44bGpDI2NjYYPXo0kpOTUVBQgOHDh+OXX36Bi4uLxmfyyy+/4D//+Q/Mzc3Ru3dvODo6Ijs7G/n5+fjtt9/Ec6qugShU+ABIKocCc3Nz9OzZU9z+888/4eHhgeLiYkllt7S0FObm5uIMo6WlpbCyshID4cGDBzF37lyx/ejRo5GVlQUnJyf069cPALBv3z4AZUNaTcXmzZuxYMECXLhwwdhdISIiojqEgZAeS3Z2dkhISBCn7lcqlRqTlqgTgoSrq6u4FEJWVhbmzZsnBonS0tJqfYawugKhULXq27cvkpKS8Ouvv2L58uVal1UYPHgwTpw4oREIv//+e0yaNAnDhg2Dq6srbt68icDAQFy4cAHt2rXDU089BblcjuPHj6OgoACZmZmwt7fHK6+8orM6t3LlSq37tQkMDMTXX38tbu/YsQO2traYOnWq5PyqS3+oBkLhmcO5c+ciLi4OTk5OAMrWIczOzkZAQID4e3xc6VNBrqx3330XmZmZNXZ+IiIiMk0MhPRY2rRpExYuXIjZs2eLVT1h0hJdhCChOoGJepAoKSmBhYUFzMzMquUZQm0BT32fPkNGBRYWFoiOjsaGDRsQHByM3NxcnefXtuyEg4MD4uLiYGdnB09PT1y5cgW9e/fGyZMn0aRJE9ja2sLa2hrZ2dniQvM7duzAiBEjxHULgbKJa9q0aWNQBe6DDz6Aj48Phg4dCqCsotu2bVvExcWJE9MI/Rcqv9oqhObm5sjIyJCcOyMjQ1ItflwZ8iyooThhDREREdUEBkJ6LHl4eGDZsmUGHSMECdVAqB4khAqhubm53kNGy1uYXluorEyF0MzMTPLemDFj0KxZM0ycOFGjbXnLTgifQYsWLeDg4ABXV1eMHDkSDx48wJIlS6BUKvHqq6+isLAQx48fF5dyGDp0KGJjY8WhneHh4Th06FC5n482ISEh4s+qVUHVYCkMGRX6rF4hXLNmDaZOnSq27969Oxo1aoQ1a9YY3J/aVt7EOFXFQEhEREQ1gYGQ6gwhSKSlpUGpVMLMzEwjSJSUlMDc3Fx8hq08+ixMX11DRlWfqRP07dtXXGJC2/m1VQhVPwMAyMvLw5QpU+Dm5oZhw4bBzMwM5ubmSExMlCxCL8zeKUzSIjxnmZaWJnl2UJCQkID58+ejffv2GDRoEGbOnAmZTCZZHqK8dQhVh+2WlpbC1tYWBQUFAAAfHx/s2rVLDEDlTY7zuKnJQCgQ/mwTERERVQcGQjULFizAzp07cenSJdjZ2aFHjx5YtGgRWrduLbZRKpWYN28e1qxZg6ysLHTt2hVffPEF2rZtK7YpKCjAtGnT8O233yI/Px/9+vXDl19+iSZNmohtsrKyEBERgZ9++gkAMGTIEKxYsQL169evtfutS4QgUR6hQlhdQ0bLqxBq266OZSfKGzKqz2egjRDQhEAjTNoyatQocZkLVTNnzsS2bdsgl8vRpUsXXLlyBfb29uJwUeDfdQi19V+4nrYho0+ymnyGUAiBJSUlYoAnIiIiqqrH/6GcWpaQkIC3334bJ0+exP79+1FcXAx/f388fPhQbLN48WJER0dj5cqVSE5OhoeHBwYMGCCZFn/y5MnYtWsXtm7diuPHjyM3NxdBQUGSL73Dhw/HuXPnEBcXh7i4OJw7dw5hYWG1er+mxpAKoT6Tymg7h/px+oQ8Q4KEaiAsr2+GEIZorlq1Cl26dEGXLl3QuXNnJCUliW1mzJgh/nzv3j2sWLEC33zzDQCgSZMmcHFxEcM2oLtapj5kVKlUVhgIz549i6CgIISEhCAxMVHcP3bs2Erecc2ojSGjwnOeRERERNWB/8ysJi4uTrK9fv16uLm54cyZM+jduzeUSiWWLVuGDz/8UKyGbNy4Ee7u7oiNjcWECROgUCiwbt06bNq0Cf379wdQNmW8l5cXDhw4gIEDB+LixYuIi4vDyZMn0bVrVwDA2rVr0b17d1y+fFlSkaTqU5lnCCu77IS27YomoVF/X9uQTeF8OTk5OH78uM5j/f39tVb3tBFmMx07diw+/vhjcb/qwu9btmwRf27ZsiUGDRoECwsLHD58GEBZaDt37pzYj0mTJqFly5aIioqSLF9haIVQqVQiIiJCrJ5Pnz4dJ0+exJQpU3Dt2jW97q+21EYg1FV5JSIiIqoMVggroFAoAEBcz+769etIS0uDv7+/2MbGxgZ+fn5i5eLMmTMoKiqStPH09ES7du3ENidOnIBMJhPDIFC22LdMJpNUQNQVFBQgOztb8qLyCc/TAf9WCA0ZMlrewvTVMWS0vECouqC7QFgn8O+//8apU6fE/REREQgNDUVoaChee+01pKamiu+pVq9zcnIknwkAsTKtHmhUF35/8803xZ9/+eUXvPjii/Dz8xP7GBERgdOnT4vDGRctWoQvvvgC4eHhGvdb3iyj33zzjSRA/vLLL3j48CH69++P9957D++99x6ys7Mxbtw4XLx4UePzqU6///47IiMj9W5fk7OMClghJCIiourEQFgOpVKJKVOmoFevXmjXrh2Af8OFu7u7pK27u7v4XlpaGqytreHs7FxuGzc3N41rurm5aXxZV7VgwQLIZDLx5eXlVfkbNBGqoUq1QljdzxDq2lfRshOq+w4ePKhzyKbgzJkzAMr+kWHSpEmSvnXr1g2///47Ll68iKKiIvj6+uK5555Dhw4dxHbBwcEaQbNLly4ANKtPqrODzp8/X/xZtV1ERASAsjCZlpYmBrtZs2bh1VdfxYULFyThVH0tSCEQCuFw1apVSElJEdtHRkbi5s2baNKkCWJiYhATEwMnJyf4+fkhPT1d4/OpTs8++yzmzZuHR48e6dWeQ0aJiIjoScMho+V455138Pvvv0uG5QnUZ/nTZ+Y/9Tba2ld0nlmzZmHKlCnidnZ2NkPh/wihRpVSqcSVK1fEbdVnCCuq4pT3DKGu94QF11XPUVGFUPX9F198Edu3bxe3VYdsCoQKnPqkMg4ODti2bRtSU1NhZWUFNzc33L17Fy1atMDdu3fh4uKCFi1a4M8//9RY0084j76BRtuwxYULF2LQoEHiPVpYWMDOzg5r1qxBeHg4jh07Jn4G2oaMCtc3NzcXtwGgX79+uHz5MkpKSuDt7Y1t27YhMjISFy9eRM+ePfXqr3CtysrNzYWtrW2F7ThklIiIiJ40rBDqMGnSJPz00084fPiwZGZQ4Xku9Speenq6WDX08PBAYWEhsrKyym3z4MEDjetmZGRoVB9V2djYwMnJSfKiMjk5OUhMTERSUpL4Sk5ORufOncU2NVkh1DVc0JBAqP6+6pBNweDBgwEAV69exfDhw8X97733HszNzcUJkFq1aoV69erB3t4erVq1wvfffw8HBwc0a9ZM8pkAECt4hw4dQnx8PDp27Ig+ffroXPJBW5Wqd+/eaNu2rbiW4cyZM5GQkID+/ftLgpKuIaNAWaAKDAzEjRs3xPa+vr7w8fHBvXv3xEllIiMjJcO09VGVSXeEJTEqwgohERERPWkYCNUolUq888472LlzJw4dOoTmzZtL3m/evDk8PDywf/9+cV9hYSESEhLQo0cPAECnTp1gZWUlaXP//n2cP39ebNO9e3coFArJkMBTp05BoVCIbcgwUVFRkmflBKqhqqrPEKoHQX2GjFblGULVIZsCBwcHAIC3t7c4yycAyGQyBAYGIiAgAAAQGBiIDz/8EAsXLkTjxo3Rv39/fPnll2jcuLFG0Ny8eTMAoHXr1hg9ejR2796NnTt3YtasWRrXB8qGtnbt2hU9evTA1q1bJf0XKljLly9Hv379EBwcjEWLFoltVIeMaguEH3zwAby9vcX29erVQ0FBAdq3b4+8vDx8+OGHiI6OxsiRI7UOu9alKhVCfYeMqv6jQHVX8hgIiYiIqCZwyKiat99+G7Gxsfjxxx/h6OgoVgJlMhns7OxgZmaGyZMnIyoqCq1atUKrVq0QFRUFe3t7sVojk8kwduxYTJ06FQ0aNICLiwumTZsGX19fcdZRHx8fDBo0COPGjcPq1asBAOPHj0dQUBBnGK2kkJAQrftVQ1V1VwhVK0K6QmJFzxAaWrlSvY563z744APxHyI++OAD8T1h9ty2bdtqzKQL/LsQvbOzM3x8fMSquBDcAOD7778Xf37//fdhYWEBJycnfPvtt/j111+xfPly2Nraws7ODg8fPsSoUaPw3//+V2OopWqFULgX1UCozsLCAteuXcOZM2dgaWmJ6dOnY9++fbh48SLy8/P1+sx0nVtfhlYIN2/ejM2bN1fr5DIcMkpEREQ1gYFQzapVqwAAffr0kexfv349xowZA6BsPbb8/HyEh4eLC9PHx8fD0dFRbB8TEwNLS0uEhoaKC9Nv2LBB8gV7y5YtiIiIEGcjHTJkCFauXFmzN2jiqvsZwooCofq2oUNGy+uXtoXpAWDnzp0VnkOX48eP47PPPkPHjh3h5OQkqbguXbpU/PnOnTv4+++/YWtri/79+yMkJATBwcHIzc0V29SrV0/rc3fFxcXisFIh3Ajb2kJbUVERlEolgoOD0bFjRwQFBWHKlClITEyUXK8iVQmEj8OkMgJWCImIiKg6MRCq0ecLuZmZGSIjI8udjt7W1hYrVqzAihUrdLZxcXERh+qRbsXFxeJEKiNGjJCsh2eoqlYIhS/8hlQIK7pORRVEXf0qKSnRGibVZ7fVh1ABa9myJUaPHo3k5GTY29tLqq52dnbiz15eXsjKyoK3tzcsLS0xZswYZGRkYO7cuSgsLBT7B5QNXd2zZ494bHFxsUZFUFuF0MLCAiUlJSgqKoKlpSW2b98OFxcXdOjQAdeuXcPOnTsNWpi+Np4hrMo1KsIho0RERFQT+AwhPZbeeOMNtGjRAo0bN0bz5s3h6emJp556CkeOHKnSeav6DKEQWIQv59oCoXrAM2TIqD6BULimrgphZQiBTCaTiUNGXVxcxCAOQLJ0xd69e+Ht7Y3CwkI0aNAAcrkcu3btwv3798XguHnzZpSWloqL3guKioo0KoK6AqHQ3svLC2PGjEFISAieeuopyGQyvPHGGwaF39ocMloTOGSUiIiIagIDIT2WYmNjsWjRIsTGxmLz5s349ttvsWDBAmRnZ1fpvNVVIdS2rWvmUUOGjAIVf+HXFQj/+usvHDhwADt27ED79u0Ner5OGO5cXFyMQ4cOiT+rnn/ZsmWSPsrlclhbW2P79u0YOnQoLCwsEB8fLwbAgoICODk54eTJk/jpp58kx5ZXIVSfmXTWrFm4dOkSIiMjceDAAXTp0gWTJk3Co0ePNJbPKI/qvaguRaKPJ23IqPqfDSIiIiJdGAjpsdSwYUM899xz8PPzE1/+/v5wdXU1+FwjRowQfzbkGUJtgVAIa+VVCNUrihUFQtUv+MeOHcOLL76I7t27Y/DgwZIF3dX7oP6lPyEhAQkJCfjoo4+QmpqK6OhoMVy1adOm3OUkhKGXwnBPoGy9Q9WZctX7MHToUMl9dejQQZxsBgDOnTuHKVOmQKlUSmYrrSgQzpw5E+vXrxeriG+//Taee+45LFq0CPb29oiOjoaPjw9ee+01yWykFVH9XRny7CFQ+SGj1RkQDRkyamVlJU5gpc3p06fx1FNP6X1fREREVHfxGUJ6LMXGxuKNN96AtbU1nJycoFAoUFxcLFlmQd2MGTM09imVSsladaWlpXoPGRW+eJcXCFWredoCoXqVTVsgFM5hYWGBnj17Yvfu3QCAW7duYcSIEeKC7gLVCqHq+cLCwvD777+Lwzyjo6Mxf/581K9fH5mZmQgKCkLv3r0RGRmJWbNmSYbfCn1UDYQA8NJLLyE+Pl5rn1WvvXPnTjg7O2P16tVi/5ycnGBhYQEvLy/JsFHVSWXUA2FxcTFsbW3h5eUlfsb16tWDm5sbDh06hB49eiAiIgLbt2/HnDlzxDUZ9aH6exCur6/KVgiLiookE0lVhfB5bN68GX379i23bWlpKQ4fPqzz/eXLl+PatWu4efMmnn76aY33b968idTUVAQFBVWt00RERPTYYyCkalHeZC+qk8Loq3fv3jh69Cjy8/Mhl8vh7OysdcZKVVu2bEFsbKzGftUvxkVFRbCystJryKi2QFjekFHVyV5U39c2rFSVEAiFUCRwcnLSWmEq7xnCLVu24LnnnsNvv/2G/Px8PPXUU/jyyy8xdepUODk54euvv8aIESM0AtHatWsBACdPnkRoaKh4HdUKpXowVp3NVHiWb9y4ceJMvZaWlvjoo49w4sQJ1KtXT3KsagBUvfeSkhJ4eHhIPreioiJcvHgRSqUSTZs2xfr163H06FHMmDFDY53Q8qh+lkK40ldlnyEsKiqq8M+tob7++musW7euSucQ1rJ8+PCh1venTJmCnTt3ori4uNoCLRERET2eGAjJIPpU4QAgNTUVM2fOhFwuh6WlJYqKiuDq6oqoqCj4+vrqfT07OzvJ7JblefPNN+Hj46OxWPmoUaPEn4uKilCvXj29hoyqDs1U36dtyKhwPtUhfcXFxZLt8gJhUVERTpw4gaFDh+LGjRu4fv06/P39ER8fj5kzZ0Imk2HBggVie/XhqPPnzwcAnDp1CgDQvHlztGnTBr169cKoUaMQEREBuVyuNaDfunULAODh4YGMjAxkZ2fDwsICDx8+xODBgxEVFQUfHx/J56htQpcvvvgCX331FZRKJfLy8hASEoLs7GzJ2oeq19c2ZFRY6F64t6KiIty/fx/37t1Dfn4+OnTogGbNmqFhw4Ya1dPyaJscSNXq1avx6quvokGDBgCkv6vKDhlVr7hWhbbnJUtLS/H111/jjTfeMCi4CZ+/rudVf//9dwBAZmYmGjZsWIne1ryCggLs2bNHMnSZiIiIDMdASAbRpwoHAOHh4YiNjYWXl5e4T9cQyOoiBCJ1ERER4s/VVSHUVg0U9ql+yS4pKZFslxcI3d3d0apVK3zxxRcIDg7G77//DrlcDn9/f3EZiKFDh4qfqXqFcNasWXjzzTfx1ltvYfXq1XjvvffwzTffYODAgXBycsKPP/6I4uJiLF68GN27d5f0oU+fPti5cyeuX7+O1NRU8Rrt27fHF198gREjRkieJywpKUFBQQEuXLiAzMxMuLi4oF27drC2thb7FB4ejqNHj0omoxE+V1tbW5iZmYmfn7Z1CFUDoZOTEzIzM+Ht7Y1+/frh7t27mD59ukGzzqqeWz0I5eTk4K233sKPP/6IvXv3arSv7JDR6gyE2v7s/Pjjjxg3bpy49Ie+hECoq38ymQwAkJ6e/tgGwk8++QSffPIJLl26hNatWxu7O0RERE8sBkIyiD5VOKDsi7HwpVKgawhkeTIzM8XA4eLiIlbMKquwsBDW1tYVPkOoVCo11hwEIKnOqf4XkAYYa2trFBYWori4uMJZQ4X3HRwcUFxcjEaNGsHe3h5eXl7w8vISl4EA/l2bT7ietgqlUL309fXVe9jt1atXAZQNIRQCtKWlJTIyMsTfm+p9fPXVV3j33XfxwgsvwNnZGXK5HCkpKXjrrbfENlZWVrCwsECXLl007tfS0hJmZmZi5U2oAuv6PF977TUxpG7evBlZWVlwcHDASy+9VO5nq6q8QCgEvrS0NHGfaliq7JDR6gyE2v4cCZPjqC/tURGhmqhrJtr69esDADIyMgw6b21KT08HoPseiIiISD8MhGQQfapwALBw4UIEBQVpTAqzaNEiva7j5+eHCxcuwMbGRhxyWlhYqNc6feXRt0Koq6qnHgR1BRg7OzsUFhZqBCltX+qFffb29mKAEJ6js7Cw0FgGQnUoq/rwVODfQCicS59ht7dv3wYANGvWDPfu3cPly5fRrVs35OfnIzg4GIsWLcLmzZvF9gcPHsSwYcNw9uxZTJw4ESNHjkRxcTH8/Pwkn5Xqc4aq/RR+B7oCoer6jQqFQqPKKAxXXblyJUpLSyGXy+Hi4lLuPZY3ZFToh+p+1c9WW4Wwb9++kMvlOHv2rNZjtG1XhfAZtW/fXtyn/o8A+hICoa7KpzBsVvhzoWr79u2QyWQYMGCAQdckIiKixxMDIdWIykwKo+rUqVNITk6Gk5OTuC87Oxs9e/as8Fj1qqIq1UBYXrjUNnuo6n4hOGgLjsJMmQqFQiMQagsIwr569eohJycHAMTn6FQJy0AMGzZM7Jfq+dSrWNevX0fbtm3h4uJS7mcCAL169cLu3bshk8lw6tQp9O7dG+vXr8eBAwcQFhYGAJg2bZrYvkmTJnjllVewbNky9OnTB4MHD0b79u3h6ekptsnIyIBSqUROTo64zqHw+QgVQiGQqAbCgwcPYs6cOWL7H3/8EadOncK8efPQr18/Sb9HjRqFPn364MMPP0RhYaHGxDyqyqsQCuFZVyDUViHUNlxVvSJ49+5dtGzZUmefDKEa8AWV/QcSYchofn4+pk2bhpYtW0qqu8IQ3n/++Ufj2Ndee61K164uQgg2dj+IiIiedAyEVKMMmRRGVZMmTVBQUIBmzZqJ+/766y9J4FB38OBBzJ07F66urnBycoJcLkdWVpYkSOhbIdQ1EYy+FUIh/KoPGdUWCIX3U1NTUVhYiK1bt+L1118HAAQGBmLPnj1iW0tLS8mQUfXQcvDgQezatQsAsHHjRqxatQoXLlxAu3bt8NRTT2n9TACgc+fO2L17t3i+b775Bo0aNRLDIABJoI+IiMAPP/yASZMm4fbt2+jVqxdu3bqFzMxMsc3Ro0cxevRoHDt2DDt27JD8DiwtLWFjYyMGYNVAOHfuXPz8889ilWrIkCFISEjAyy+/LJnYRqlU4s8//xS3c3Jyyq0Sagv2qp+d+n7VEKjvkFH1di+++GK1rUUo/G5Ur6FPhVCoNKtSrRAuXboUACSBUAif2dnZ1dDzmlWdaz0SERGZIi5MT5WSmZmJq1evSgJAddq9ezc+/fRTdO/eHd26dUP37t0xffp0MexoM3fuXMTFxeHHH3/Epk2bsHv3buzduxdz584V2wiBsKJnCIVgYGlpWalnCIXwpE+FUHj/hRdegJubG5KSkjBp0iSUlpZqfTZMtQ+q1cWCggLMnTsXwcHBAICJEyfC3NwcFy9ehJmZmfiZWFtbSz4T9b4DZc+KqouJiRF/XrBgAVJSUjBgwABcvnwZ0dHRAP5dzkA413fffQdfX1/JwvT5+fniPxQoFAoA0kBobm6OBw8eSM5z5coV5Obm4vz583BxcUFSUhKSk5Px8OFDsSoohEtdyqsQCiHr8uXLGvsA/SeVUa8Qavsz9tVXX+GDDz7Q63zazq16jYoC4bVr12BpaalRzRRmLNX1/N3FixcBSAPhvXv3cPPmTYP7XVOEe9Y3rBMREZF2rBCSQfSpwlUHHx+fcsOfNubm5sjIyJAMT8zIyJBM16/vkFEhGFlbWxscCIUho8LPRUVFMDMzg1KpLDcQOjs7o6ioCNHR0diwYQOCg4Mhl8tx9epVyVBP1QqhEA4cHR1RUFAAc3NzcTjgp59+ijt37mDEiBH4888/ERoaCqVSidTUVLRp00bSB/UhsNo+G9Xq2/z58+Hg4AAbGxt4eHjgt99+02jfrl07tGvXDqWlpWLwA8rCVXmBcM2aNZg5c6bY/vvvv8fDhw9x6NAh9O3bF6+88gqaNGmCc+fOAag43AjKqxBqm/ylMhVC9YrayJEjNdpMnDgRABAVFaXXOQWFhYUwNzfXGgjfeustTJgwAYD0Pj/++GMAZbMA9+nTR9wv/DnUFnTPnz8vrj+pej+NGzc2qL+1hYEQuH//PiwsLDQm+yIiItIHAyEZRKjCqYau7OxsBAQE6BUIqzpLaHnWrFmDqVOnIi0tDUqlEmZmZmjUqBHWrFkjthFmGdV3Uhn1QGjokFGhQmhnZ4e8vLxyA6GwlAMAeHl54fr167h58ybmzZsnCd7ahow6ODigoKAAa9asESuEqampaNWqFS5evIiGDRviypUrYjBV/UyEPgOAXC5Hx44d0apVK2zcuBHz58+Hs7Mz5syZg2eeeUbS58GDBwMoCyXCvauGst27d4v3prowfX5+PmxtbbUGwuLiYvj4+CA2Nlb8MxYUFIQNGzZIQqLqAvZCpaiiKp4+FULhflRnQLW1tdW7Qvj333+jcePGuHv3rtbrVEVhYaEY/AXqIdfS0lLy/saNG7X2Q/h9a6v4qT43mJWVVT2dr0GXLl3Ciy++WOXz/P333zh58iSCgoKqoVc1Y/To0XBzc8OSJUsk+9u3b4+///6bz1MSEVGlMBCSQfSpwgFAaGioxrFCdUpfuta500WfqqK+y04IX6ptbGzKnVRGW7WmuLhYXHJDeIbQ3t4eeXl55VaiGjduLL7/wQcf4MSJE1qDtxA2hUAoPI9XUFAAHx8fDB48GNHR0ejfvz82b94MV1dXyfW+++47ybN4wL8BQaFQ4ObNm8jJyUGHDh3Qpk0bxMXFoX///li7dq3G56D6uap74403sHbtWlhYWKBbt27ifm1DRu3t7XV+roWFhbCzs8PixYvFKteLL76Ir776Cq+99lq1VAhVQ1R+fj7s7e3FfTKZTO8qlEKhQMOGDcVAWJ1LIhQVFcHFxUXnchgKhQINGjTQ65rCccJQX1Wqw09rakh4dRB+72+//TaGDx8uLpVRWS+99BKSk5NRWlpq8KytQNlw4+bNm5f7/6iq+uabbwBAIxD+/fffNXZNIiKq+xgIySD6VOEAIDk5GYcOHZIERaVSKZmkpDybNm3CqlWr0LlzZ3FoakpKCv7zn/9v777Do6jWP4B/Nz2UdEihBLiCiQEEaQpciiDwAy9c8LlSpD1IU0P/oYhwUbiA8BNiBKmKV5oUDaAXFYKQ0FsKRTokoaWQuunb3t8fuec4s7tJNhAMkPfzPPMkOzM7c+bd2Z3zzjkzMxShoaEPXf6CggK4urqW20IoKtU1a9ZUnXU3fzyBsuVIjCuthVBMs1YmoKTLqPJattISb/PHTjg6OsLFxUW+VyQMQUFBqmQwOzsbHh4e8i6lSps2bZLlE0mXTqdDXFycfPRHWY/PUMZLdDMU1/SZTCbMmTNHzltUVCRbCO/evQvgjxZEEUNloqPX67Fp0ya8+OKLcpxGo0FmZib279+P8PBwudyy2HKXUaDk2X7KhNDNza3MhHDDhg3ymkutVqt6kHtFnw9YVtkNBgPc3NyQnJwsxyvLlZWVBW9vb6txMD9hY22euLg4tG7dWpVQKhONOnXqPPJzCdPT03Hq1Cn069fPpvnHjBkDjUaDr7/+2mKacpvS09MfOSG8efMmgJKYVuSOyEDJ/hQUFIRJkybhiy++eKRyMMYYY382TghZhdh6bd/MmTNRu3Zti9YpW5O5tWvX4ujRo6pKn8FgQJ06dR4pIRStP+VdQygqxbVr11YlcWK8tYRQ2comrrfT6XTQ6/WyBay8hFCv18NkMqFZs2alJt6jRo2SCa141IJoIVSuQzy0XBg0aJB8pqE5kRA5OzvjxIkT8i6UXbp0gU6ng7e3d5kJoYiDSFZcXFxkYkhE8vmERKRqIRQJh0iizBNC8QzKgQMHqm4a06ZNG4wZMwbXrl2TrTkjR460+tw8wdYuo3l5eahbt64qISwr2YyIiJAJYU5ODpo1ayanVVYLoVi/u7u7qpunstwiPsp1ipZpZYtXcXGxqrVXGDRoEBISEpCfnw+gJJ6//vqrnG7e8rVz5075CApbDRs2DJGRkfLmQeX55ptvAMBqQqjcpvT09HIf70FE2LFjB9544w15na2SGBcSEoL4+HjVyRgiwoYNGzBixAirLYDZ2dkAgLNnz5a7TYwxxtiThu8yyh6Ld9991yIZBGC1dcqaCxcu4IUXXkD79u3Rvn17tGvXDiEhIeXeSdKalJQUACWJkmits7OzK/N29aJSXbduXVViZZ4QWrsTZVZWFho3bgygJEHIzs6WCU9pCaG9vb3sZlpYWIh9+/Zh165dOHHiBE6ePIkTJ04gIiICwcHBKCwslJXVwsJCmxLC3NxcVQIsYiK89NJLAABHR0fVIwoKCwvh5OSE77//XlX20h7sLjg5OeH27dtWt1V0qRWtpu7u7qoW1Y0bN6JXr14A/kgIAchrI5Xry8jIkImBaG0sja1dRkXcbO0yqkxstFqt6sYeZSWEFWltUyaEpd39VJRbOU585gsWLJDjDx06ZHUdIiESCWGHDh2QlpYmTxZY6xZuMBjQpUsXxMbG2rQd4jNS3mToYSnjYEsso6KiMGTIEHz11VdWp4u71d66dQsnTpxQTTt27BjGjh1bauufuNbS/PEepbl58yZatmxZKXFQqswuyuzZI27OxRhj5jghZE+kunXrolevXvKOoC4uLujbty86duxY4WWNHDkSwB+VJVdXV9SqVcuiBU1JzOvr66u602JZLYSFhYUoLCxEcXEx/vKXvwAoSVgyMjLg7+9vMb9QUFCAGjVqwM3NDUBJ8ubp6Vlm2cQz+lJSUlC7dm2ZEG7cuBE//PADAKju/DlgwABERERYxEQQ8+bn56N9+/Zo2bIl2rVrh+vXr1tsO6BOqO7evWuRMJlMJtWjIzZv3gzgj4qzp6enfERFnTp1ZEXaaDRi9erV+O677wCUtFiePn0aBQUFqoRWtLhmZWXJ5ZTXDVHZLbS0Fk4RAwDlthCKBP6nn36S+4O4ju/u3buYPHlymRX0N954o8zyKonluLm5wWg0Wj0hIfZnMa+7u7tq/eIkQGlJizIhtLOzk9eZ3rp1C4D17q8PHjzAkSNHMGvWLJu2Q6xbJHC//vorNBrNQ928RvmZ2JIQis+1tHmVrYbmvQeUJyCsEdda2poQfvvtt7hw4QKOHTtmdfquXbvw3nvvydcGg8HqdY3Hjx9X7df+/v5WTzoxBpT03OnRo4fq8TqMMQZwQsgeQnFxMWJjY3HgwAHExsZavaHIo1q6dCk++eQTHDt2DCdPnsSRI0cQFhaGBQsWlPoe0ZqoHNq1a4fTp08DUCeE3t7eZd6IobSEUFRCrSWERUVFsmLr6+uLWrVqITMzE5mZmfD394erq6vsWqYkEkLR6ldeK2hhYaFscbx37x7c3d3h7OyMoqIirF69Wl4DaDAY4OXlhbZt2+Ls2bPo3bu3RUwEZSvQ6dOn4ePjgzNnzqBdu3ZyHlGhBtQtnVqt1iIhbNKkiapSvXr1agDqhFAkzbdv35aVcYPBoLq+09/fH/7+/vif//kf1eclWhczMjLkusurjCvLaJ4QKk8O5OXl4dChQ1i6dCkAwMPDw2pip1ye8rl9bm5uqFevHmrUqFFmQljWNazmlC2EgPWH1Ju3EJqfVBD7VWknQsQ+XVBQgJo1a6JRo0YAILvh5uXlqa6PBP54LEVSUpJN10uKcotHhojE31pX3/LumFnRhFDMX1rcRQshYBkj8d7S7hor9uvo6GhcuXKl3LI4OzsDKL1Fb9CgQVi1ahVmzZoFk8mkum5UvO/KlSvo1KmT6jcxJyfHovX/cSAiDBw4UO737PEICwtDdHR0qdPz8/MRGhoKk8mEpKQkJCQklLm8ixcvAgAOHz5s0/oPHjwIjUbz2J4/2rt3b4tn4lZUUVHRY6mD2CIvLw8vv/xyuXFn7GnACSGrkE2bNqF79+749ttvER0djW+++Qbdu3eXLUBKj5I4Dhw4UFWhzcrKwpw5c/DKK6+U+p7c3FwcP34cp0+floMyqUlLSwMA+Pj4wMfHp0IJoaicWusyKrrSKRNCT09PeHl5yRZCb29veHl5Wb1rY2kJYXFxMfbv328Rv4KCAouE0MPDA1lZWbCzs1MlBLVq1UKNGjUQGBhoNSaCaA0yGo0oKipCYWEhDhw4gDfffFOuVySEzs7OquQwJyfHIiE0j6+IkbjLrKenJ+rXrw+gJBl1d3eHk5MTkpOT0a9fPyQmJgIoudmMm5sbVq1aZfU5eGvXrpXbW14irSyjeZdX84Tw1VdflUmzt7e3xbKJSLU88UiRwsJC2dLr6upqUeFXJtJNmjQps7xKylY/5bYUFxejZcuWqm0Q8yqfGwn8ER+RxClboADILr7Z2dlwd3eX+2NeXp58JIrYNkGc4Lh27Rp69+4tx+t0Oqxbt84i+RL7jeg6/uOPPwKw3vKmTKysdTWvaEIotr+0RFPZQmj+PEmxnVu2bLGaxCm/18HBwVZP/Ajx8fHyJkviN6k0S5YswcaNGy2278GDB/JmSv/6179U08paZlpaWqU8CiUxMRG7d+9WPYqmInJycso9IXL9+nVcunSp1OlP8vMn09LS5EmPh5Wfn4/p06ejW7duKCoqsnrCZejQofjyyy8RHByMRo0aoUmTJmVeCiGWsXXrVsTGxlqNYUFBAbZu3QqDwSAfJSVODlWm6Oho7N+/HwsWLMChQ4eg0Wjkzc1stWzZMri6usoTLH+28ePH49SpU/IEaFRUFDQajbxGe9++fRg3blylrW/SpEno0qVLpSzru+++w08//VTmPOKu40/yd41VHk4IWYWIm72Eh4djwYIFWLFiBaKjo7FmzRrVfBVJHG2xdOlSLFy4sMyD7KJFi6wmBaLyJc5yBgYGwsfHp8xKpDIhNBgMsvIpKn75+fkgIvncOcAyIWzcuDFu3LghH5shEkRzIiEUCXBGRoaM39ixY1Xx27RpE/Lz8+Hr6wugpLumu7u7vANkv3795Hbl5eUhPDwcn376qSqZys3NVd31E4Cq5ad79+5o1aoVfv75Z5w/f15+bqIy7+fnp7r2yVpCeP78edXrefPmAfijRcjX1xfjx4/HwIEDER0dDTs7OwQGBuLWrVuYPXu2THxq166NnJwchISEqG5wIj6f+/fvy8/EvBJvrqwWwtzcXPj5+cm4KXl4eFiMy87OViUWiYmJcv2i7NYSQmXXyIpcPyaWLZI8sT/m5eXBzc0NLi4u8vMR00pLCMXda5csWSKnNWrUCMXFxVi7di3S09Ph4+OjSgjFsmfPno3AwED5PmWF4ujRo/L/zZs3Y8KECRYVDmXcs7OzZeJkPl9xcbEq2dixYweMRiNq1qwp9yVlBbm8hPDBgwfyxj979uyxmowoy2a+L4nPLTk5GfPnz7d4r3mXV/P9X0nZOh8aGmq1oq9MTvPz8y1+NwIDAy1+cwVlV22lnJwc+Pr6YsSIETAajQgPD3/oaw6VJ4RKM3XqVJw6dcpivNFohIeHB9555x20aNECly9fxr179ywS2WbNmiEkJMTqsrOzs+Hi4vLQxxNrdDod3NzcsHfv3kdelq+vL1q3bl2h95hMJqxfvx6DBw/G1atXcePGDTnN1dVVdo1XUv4OCjt27MAvv/yC9evXQ6PRqC4VEN+TqKgotGnTBi4uLliyZImqVXnWrFl46623VC3mAHDy5Em8/fbbFerZUBZxaQMA+RzRkSNH2tQz4JdffgER4X//93/l+Mq+Htfc/fv3sXPnTtU45evhw4eje/fuAEoSxYyMDPTp0wdfffUVZsyYUeay09PTMX369DK7e2dkZGDlypU4cuSIvCMyUHIpQG5uboU+l2+//RbDhg1D//79LY6F2dnZskuxh4cHGjVqBBcXlzJPNLBnAyeErEJcXV1VXViICNHR0Ra3abc1cbSVaG0qqyJi3qooWhjEHS6TkpLg6OgIf39/BAYG4v79+6WeyRc3axGJkqiQpaSkoHHjxtDpdCgoKEBycrJs6cnLy5PLEwnhnj17oNPpoNFoSk0IU1JScPv2bXnHxgkTJuDdd9+FTqeDVqtVxe/LL7+EXq9H8+bN5Xs9PDxkQjh79myZ+KSmpuKDDz5AaGio7EZ65coVDBgwQMZEUFZK9+/fj4MHDyIsLEz1ueXl5cHBwQFeXl7yOXtAyQFEmWx5eXlh1KhRVuNar149BAcHw8PDAw4ODoiIiJBnPJs0aSKvWbx27RocHR3RpEkTeQ2bkjj4e3h4yEpOeRUC0YLq4eFhUeHPy8uDt7c3HB0dodVq0bBhQzmtdu3aFicaRKVb3EBm8ODBcv2iFc3T0xNarVZ1kBctHs2aNVOVYd++faoKkjlxMqNDhw4AgFWrVsFkMiErK0veaEa0tomKtTir36BBAwB/JISpqanw9fWV12ECJc+mBICJEyciNTUV3t7ecHJygoODA3Jzc2XCU69ePVU5Fy5cKP9XVt5Fq7JyfyciVeIkTg4AJV3jGjZsiEWLFmHLli1WewI899xzKCgokAlZZmYmOnXqBH9/f1WlV6x/1apVMvaixRkoaaGz1hKhrGSZ7x/KLpvltRACJa2tRUVFCA0NtfjOK/dTk8mEmjVrqh6pYjQaVZXiGzduyGW0b9/eYt3mUlNTcfz4cVy9elUVb3G94rZt2zBx4kRMnToVNWrUsLieuDTKMilv4KTRaLB8+XJ88cUXOHz4MIxGIzIzMxEeHm71MUPi+7xu3TpcvHgRQ4YMQf369REQEICmTZtiypQpqphNnjxZ1bq7du1a2eXR1scYASUV+rVr12LVqlX4+eefLaZfuHABubm5eP/99zFmzJgyk+X09HRZpvz8fIubEAlXrlzBokWLbKqsHz16FOPHj8eOHTsQFBSEVq1aWcxjXiZxYlB5wmrYsGHo27cvxo8fD6DkWuV58+bh0qVLVm/0NWvWLPj7++PevXtITU3FihUrLMoFAK+88go2bNgAe3t7nDx50uo2ZGZmonXr1hZdKD/55BPEx8cjPz8f9+/fh16vt1iP8Pnnn2PlypXQaDTQaDQ4d+4cYmJi5DLDwsLQt29f2etEXJ8/aNAg+Z6y7jYtyin258TEROh0Oty9exdxcXHYt28fgJLEU5z4BUp++958803527B06VJ5Uy2gpNVVSXlTveXLl8uyaTQadO3aFQaDAV9//TV0Oh2Cg4MRFhYGJycnpKWlyZN6V69exYoVK0BEGD16tFzec889B61WC6PRCH9/f7i5ucHe3r7c58aeO3cOrVu3Vi3L0dERx48fl5cKeHp6IigoyOKa5fISdfYMIPZUy8nJIQCUk5Pzp6wvOTmZpkyZQh07dqQOHTpQ586daerUqZScnKyar2fPnnTw4EH52mQy0YEDB6hHjx4Ptd4hQ4YQAIqIiLD5Pd27d1e9njlzJjVp0oSIiI4fP04ASi3PrFmzqEGDBnT+/HkCQMeOHSOTyUTOzs7Ur18/AkBJSUnUuXNnGj58OHl5edH8+fNp+vTpBICKiopo4cKFBIAA0Pvvv08TJ06kpk2bWqzr+eefJw8PD9Lr9XJ+Eb+ePXsS0R/x69ChAwGgo0ePynmnTZtG//73vwkAabVaatCgATk5OZG9vT117dqViIjCw8PpjTfeoC5dulC3bt0sytC8eXNq1qwZAaCtW7fKZSs/tzlz5lBAQAB16dKFXn75ZTnPqlWraOLEifI1APr+++9Vr9955x0iInJycqK+fftajfnHH39MAGjTpk0EgLy8vOjtt9+W5VB64403CADVr1+fvLy8qFatWlSnTp0y9gaihQsXUp06dSgkJIQmTZqkmjZmzBh6+eWXKSAggObOnUsAqFu3bnTw4EH69ttvCQDl5eXJ+aOioggAXblyRW5jbGwsAaAzZ84QEdHevXsJAN2+fVu+T8w7cOBAatWqlcV4rVZLJpOJdDqdqnz/+te/yMvLi9LT0+W8q1evpjZt2tDYsWPJ09OTAJBer6fJkydT06ZNafz48QSAfH19CQBt2LCBjh49Ss7OznK/UK5X+XkNGTJETu/RowcdOHCAANDly5eJiGjBggWq+cWQlJRERESrVq2S4/Lz84mI5Dr8/Pysvre04YUXXrAYl5eXJ/er4OBgi31k8+bNBIAWL15MREQRERGq9y9ZskQV35MnT1qsQ2wrEdFbb72l+r6ZTCb6+OOPKSYmhgwGA02bNs3i/Z999hkBIB8fH7p+/ToREX300UcEgEJCQiggIEA1v3D79m0CoJoeHh5OTk5OZDKZ5G8AAIqKiqI333xTtZzWrVvL/7t06SKXu3LlylJjHBMTY/EdS0tLk/8bjUby9fWlZcuWkVarpdWrV5e6rI0bN9LBgwflax8fH7mcst6nHCZNmqR6LX6zkpOTLebdu3cvabVaKk/Lli2txlvo2bOnavrKlStLXZZyGbNnzyYAtHbtWvmZmJfR39+fDAZDmeXr3bu31Vg4ODhQw4YN5WtxXM3Nza3Q9+hhBhEDa9OOHDlCGzZsoNTUVLkN1r7b4vfH2mBnZyf/Dw0NLbc88+bNs2mcGJYtWyb/f/vtt+m7776Trxs0aEDOzs6PHKPff/+dfvjhB/lap9Oppq9fv/6xf07lDdY+lzFjxtj03vnz59OYMWPK/X49Ln92Hbc644TwKfekfllsTRxt9frrrxMA+uabb2x+T69evVSvu3TpIpNEk8mk+gE397e//Y369OlD+fn55OzsTGFhYZSWlqY6AG3ZsoUA0IwZMyg4OFiVJBER/fbbb/J1Tk6OrJSuW7dOrufYsWMEgEaOHEmZmZly/k2bNtGUKVOoefPmqviJZCkpKUnOu3v3boqLi5PLAUDPP/88aTQaVQwiIyPJ09OTmjdvrtpWg8FAzs7ONHbsWAIgE14A1KpVK/m5/fWvf6Xu3bvTiBEjVAeMt956iwYMGKAal5qaWuoBZuzYsVY/r5SUFIt5RSVLeXKBiKhz586q+dq3b0/29vZUVFRU6v4wbtw4atGiBfXs2ZMaNGigmubg4ECtWrVSVabff/99IiI6ffo0AaDTp0/L+bdt20YAKCsrixwcHAgAff755wSA7t69S0REiYmJchuU6wFKEhUAsiKr3JZ169YRUJJUC2Kacr8Vwz//+U/asWMHAX8k8//4xz9kQujj42PxHpGUv/TSS+Th4UFERGvWrJHTO3bsaFEuAGQ0GomIaMWKFVY/21q1apHRaFQlSL/++isREV29elW1fWKwlowph+3bt1uMe+655wgATZ8+naZMmaIqM9EfiRcA+umnn+TrHj16yPGRkZFye0SZxPcIALVt25ays7MpKiqKOnToQC1atCAA1LVrV7p165acb9y4cfL/+Ph4+b/4rAGQp6en6oSPk5OTKmkSQ2FhIS1dupSAkoTUPPEmUv92FRYWym0+ceKE1fidPXuWiIiGDx9OwcHB8iSL+RAZGSmXFRMTQwBo+PDhtHXrVnlizJbh7bfftkgCxO++rcswH5o1a6Yql7Xhn//8J124cIEePHhARER6vZ6io6OJiOQJBOXQqVMnGjRoUKmJcvPmzalOnTrUoUMHSktLo8uXL8uTRWJQJmq2DgcPHiS9Xk9Go5FycnIoOjpaVYaQkBD5f3FxsfxMRo8ebXV5y5cvJ6DkeNStWzfVtPT0dNUJFW9vb3kci4mJsUi8xSB+w4S8vDxaunQpnT179qE/Q2tDdnY2GQwGeTKioieLxHdg8uTJlVouW4eXXnpJxkir1cqThuL4fPbsWTKZTPL3asaMGfLkmrVBeeLJ2nD+/HmL30+g5LtbkXK3bt2aiIh++eUXq9MzMzPp9u3bdOfOHapqT2od91nECeET4Msvv6RGjRqRs7MzvfTSS3T48GGb31uVXxZlpcve3p7Cw8Np7ty5dODAAUpISJAHFaPRSAUFBY+0LrGesLCwh3p/QkICASUJk9CoUSO53AcPHsjKoTgL/eGHHxIRkZubm+rHcv/+/arXH330Ef39739XjRPi4uJIr9cTEVm0wiiHo0ePEhGpKprih16832g0yvEmk4m+//57uT35+fmq94kD/aVLl1RxuHjxIvXu3Vs17syZMwSAdu7caVGuCRMmUFJSkqykDhkypNSD74wZM+i1116Tlb+pU6dSdHS0RfIm4mxNeHi4KibmiWWtWrXk/61atZL/f/jhh/L/GzduUGxsLKWlpVFUVBS99957skVxxowZsmIVHBxMoaGhshLy17/+VZXsiv3XPLbKwWQyqVpUHRwcVNtTt25di/ds2rRJFeuhQ4eWunyROCr3q2vXrpGXl5cct2TJEotkukePHmQ0GmnZsmWyAqgcEhISrMbfyclJfh+IiPr06WN1v1Z+B4xGo9VWETH4+vpS+/btVXEV/z///PNyvzR/X8OGDalHjx6k1Wrl5x4UFKSa5/z581RQUFDqupWDSCrMxw8bNky1faW9f8GCBfT111+XuQ4iki2DZQ3ipNCNGzdkZdF8EBVla/HftWsXbd++3eLzK6/FY/z48UREVL9+fZtiVt5g3hOgIoOfnx/duHGDrl27RgaDgQB1a8/ixYspMTGR+vfvX+oylL/hlTH4+/tX2rJEr42MjAyb37N3795SfxuJyOr+Vx6TyURGo5FSUlJKnWfVqlX0+eefU0ZGhkUyaM5gMMjfCWvDvXv35P/i2BIQEEAeHh40evRoio2NpejoaJvqLJcvX5b7ijjBBZQkynFxcbIV22Qy0X/+8x8yGAyk1+spOTlZ9powH3r06KH6vcrIyKADBw7QjBkz6Ny5c2Q0Gmnt2rX02WefUVZWFk2aNImGDx9O8fHxpNPp6N1336VevXrJEy0Pw2g0qo6Dytb57Oxsun//PiUmJhIRUWFhocVJa71eT0uWLKGdO3eqxovjwrhx42SLc79+/cjHx4caN25MV65csdpSfeXKFfroo4/ot99+e+htelw4IfzzcEJYxbZt20aOjo60fv16unTpEk2ZMoVq1qwpu16Vpyq/LOVVjipjEN0YSxvE2c+mTZvatLy4uDiL2JU2iM/AvDWkqKhI1UVSp9OpzqCX1UplnjiKQXlAUB74rA19+vSxumxlxV/ZUmHrkJ2drXpds2ZNi3kSExPpzp07BIAmT55Mbdu2ldPOnTtntVwmk4mGDx9O4eHhNnXt0uv1MkEmolIrhEeOHJH/K7tSljVcuXKFHjx4YHXarVu36ObNm+Ti4kIbN25UlWnw4MEW80+YMIGISNVFyLybmWhdVA6pqamq1iJbh6tXr8rlGo1GateuHb377rvyrLRyXvMzu9evX5fTlF1frX1W4gSE+CwCAwOtvi8sLIxiYmLka1EBFkNQUJDF99fPz4+IiKZNm0bTp09XfVcKCgpo3759ZZ4wICLVvi2+N6dOnbKIl4eHh+p127ZtiUjdndV8EMQ+rhyKi4spKyvLYnvE/xcvXpTvP3ToEAElSaSyBRGAbLVSEq2cYhg3bpycVlxcTHfu3LHo0mmNwWCg559/nqKioqx2KRSVTIPBQLm5ubRp0ybavXt3qa2G5oM4OTZgwAC5Tq1WSwaDgWJjYyksLEzOe/nyZasnIxITE8v8jTQajapKq3k3UdHKKxKc4uJim79DqamplJmZSQ4ODhQUFCSPG3PmzKFdu3aR0Wgkk8lEubm5stdDgwYNVMsYO3YsffXVV7R06VLy9PSkTZs2UXFxMa1fv57Onz9Pr7/+uoyzEBMTQ6+99prs6WJtUPZAKMvx48fJ0dGRQkJCyu2G+rhptVo6ePAgJSUlUUJCguq3g7HKwAnhn4cTwirWvn17mjhxompcUFAQzZo1y6b3V/WXJTk5mU6cOEF79uyhZs2aUXBwsNVrfp6EITQ01KL8pZ29nTlzpsV2FhcXqyoyd+/efagDclpaGm3ZsoU+++wzys7OtjrPzZs3S90Oa11clUTFUVx3acuwefNmIiqpCGs0Glq/fr28zlIMe/bssbq+9PR0eZ3Y41JYWEiLFy+W27RhwwYiKkkiROtzeWfilS0q9+/fp2HDhpGdnR2NHDmyzLPnQkJCAnXu3Jm6du1Kx48ft7nsWq2Wzp07R4sWLaIffvhBjk9JSSF7e3sCQD///DMVFBSQl5cXdejQgVJSUujVV1+lmTNn0vbt21Vdx0pjNBopMzOz1EpZcXHxY/+cUlNTaeHChZSTk0Mmk4mKiopo9uzZNHr0aIqPj3+s6z58+DABJV19//3vf5NOp6P8/Hzas2cPXbp0ySIJMZlM8rqxrVu3UmZmpmp6Xl4e3b9/nwoLC1XJ2MGDB2nu3Lly3N27d1VdN63R6/V0586dMk/0GY1GSkxMpNzc3IpueplycnLowoUL5f5uEJV0612+fDmlp6eTwWCgBw8eUFJSEo0ePZqysrIeugw7d+6kBQsWlHkyoiyFhYV0586dcstQVFRESUlJlJiYSLdu3Xro9T1OxcXFNiX3jLGqr+NWJxoivnVQVdHpdKhRowZ27tyJgQMHyvFTpkxBfHy81QfSFhcXq+7oqNVq0aBBA+Tk5Fg8I+yx274d2LLF5tlNRCV3riJCcnIyatWuDb1OBxdXV+h0OpiMRuTm5aF27dpITUmBn58fUlJTUcfHB3Xq1IHJZEJOTg7y8/NRp25dZKSnI0erhYO9PR48eIAmf/kLXF1cYGdnhxo1a8Kg15c8rFyjgb29PTTlF/GJZDAaYdDr4ezi8tDbkJ2dDQLg+N/b2Ws0Gmjs7ODs7Ax7O77ZMGOMMcassLMDdu+uklVrtVq4u7tXTR23mnEofxb2uKSnp8NoNMpbRwu+vr6q5wIpLV68GJ988smfUbxKZyduY6zRICAgQDWt5n9vge/t7V3y97/PUFM+S83Ozg6enp7y0RIBAQFyOU2bNrVYn30VPay2sjnY28PB3v6RluHh4VE5hWGMMcYYY88UTgifANae92I+Tvjwww8xffp0+Vq0EFaJwYNLBsYYY4wxxthTiRPCKuTj4wN7e3uL1sC0tDSLVkPB2dkZzs9IyxdjjDHGGGOsavHFQ1XIyckJbdq0QWRkpGp8ZGQkOnbsWEWlYowxxhhjjFUX3EJYxaZPn44RI0agbdu2eOWVV7Bu3Trcvn0bEydOrOqiMcYYY4wxxp5xnBBWscGDByMjIwPz589HcnIymjdvjp9//hmBgYFVXTTGGGOMMcbYM44fO/GU41vyMsYYY4yxZw3Xcf88fA0hY4wxxhhjjFVTnBAyxhhjjDHGWDXFCSFjjDHGGGOMVVOcEDLGGGOMMcZYNcUJIWOMMcYYY4xVU5wQMsYYY4wxxlg1xc8hfMqJp4ZotdoqLgljjDHGGGOVQ9Rt+Ql5jx8nhE+53NxcAECDBg2quCSMMcYYY4xVrtzcXLi7u1d1MZ5p/GD6p5zJZML9+/dRu3ZtaDSaqi7OE0mr1aJBgwa4c+cOP9i0knBMKx/HtHJxPCsfx7RycTwrH8e0clV1PIkIubm5CAgIgJ0dX+X2OHEL4VPOzs4O9evXr+piPBXc3Nz4AFHJOKaVj2NauTielY9jWrk4npWPY1q5qjKe3DL45+B0mzHGGGOMMcaqKU4IGWOMMcYYY6ya4oSQPfOcnZ0xb948ODs7V3VRnhkc08rHMa1cHM/KxzGtXBzPyscxrVwcz+qDbyrDGGOMMcYYY9UUtxAyxhhjjDHGWDXFCSFjjDHGGGOMVVOcEDLGGGOMMcZYNcUJIWOMMcYYY4xVU5wQsmfG4sWL0a5dO9SuXRt169bF3//+d1y9elU1DxHh448/RkBAAFxdXdGtWzf8/vvvVVTip8vixYuh0WgwdepUOY7jWXH37t3D8OHD4e3tjRo1aqBVq1aIiYmR0zmmtjMYDJgzZw4aN24MV1dXNGnSBPPnz4fJZJLzcDzLdvjwYfztb39DQEAANBoNdu/erZpuS/yKi4sxadIk+Pj4oGbNmujfvz/u3r37J27Fk6OseOr1enzwwQdo0aIFatasiYCAAIwcORL3799XLYPjqVbePqo0YcIEaDQafP7556rxHFM1W2J6+fJl9O/fH+7u7qhduzZefvll3L59W07nmD5bOCFkz4zo6Gi89957OHnyJCIjI2EwGNCrVy/k5+fLeZYuXYrly5dj5cqVOHPmDPz8/PDaa68hNze3Ckv+5Dtz5gzWrVuHli1bqsZzPCsmKysLnTp1gqOjI3755RdcunQJy5Ytg4eHh5yHY2q7JUuWYM2aNVi5ciUuX76MpUuX4v/+7/+wYsUKOQ/Hs2z5+fl48cUXsXLlSqvTbYnf1KlTsWvXLmzbtg1Hjx5FXl4eXn/9dRiNxj9rM54YZcWzoKAAsbGxmDt3LmJjYxEREYFr166hf//+qvk4nmrl7aPC7t27cerUKQQEBFhM45iqlRfTmzdvonPnzggKCkJUVBTOnTuHuXPnwsXFRc7DMX3GEGPPqLS0NAJA0dHRRERkMpnIz8+PPv30UzlPUVERubu705o1a6qqmE+83Nxcatq0KUVGRlLXrl1pypQpRMTxfBgffPABde7cudTpHNOK6devH40ZM0Y1btCgQTR8+HAi4nhWFADatWuXfG1L/LKzs8nR0ZG2bdsm57l37x7Z2dnRr7/++qeV/UlkHk9rTp8+TQAoKSmJiDie5Sktpnfv3qV69erRxYsXKTAwkMLCwuQ0jmnZrMV08ODB8nfUGo7ps4dbCNkzKycnBwDg5eUFAEhISEBKSgp69eol53F2dkbXrl1x/PjxKinj0+C9995Dv3790LNnT9V4jmfF/fjjj2jbti3+8Y9/oG7dumjdujXWr18vp3NMK6Zz58747bffcO3aNQDAuXPncPToUfTt2xcAx/NR2RK/mJgY6PV61TwBAQFo3rw5x9gGOTk50Gg0spcAx7PiTCYTRowYgZkzZyIkJMRiOse0YkwmE/bu3YtmzZqhd+/eqFu3Ljp06KDqVsoxffZwQsieSUSE6dOno3PnzmjevDkAICUlBQDg6+urmtfX11dOY2rbtm1DbGwsFi9ebDGN41lxt27dwurVq9G0aVPs27cPEydOxOTJk7Fx40YAHNOK+uCDDzB06FAEBQXB0dERrVu3xtSpUzF06FAAHM9HZUv8UlJS4OTkBE9Pz1LnYdYVFRVh1qxZGDZsGNzc3ABwPB/GkiVL4ODggMmTJ1udzjGtmLS0NOTl5eHTTz9Fnz59sH//fgwcOBCDBg1CdHQ0AI7ps8ihqgvA2OMQGhqK8+fP4+jRoxbTNBqN6jURWYxjwJ07dzBlyhTs379fdd2AOY6n7UwmE9q2bYtFixYBAFq3bo3ff/8dq1evxsiRI+V8HFPbbN++HZs3b8bWrVsREhKC+Ph4TJ06FQEBARg1apScj+P5aB4mfhzjsun1egwZMgQmkwmrVq0qd36Op3UxMTEIDw9HbGxshePDMbVO3JRrwIABmDZtGgCgVatWOH78ONasWYOuXbuW+l6O6dOLWwjZM2fSpEn48ccfcejQIdSvX1+O9/PzAwCLs1dpaWkWZ8BZyYE2LS0Nbdq0gYODAxwcHBAdHY0vvvgCDg4OMmYcT9v5+/vjhRdeUI0LDg6Wd27jfbRiZs6ciVmzZmHIkCFo0aIFRowYgWnTpskWbY7no7Elfn5+ftDpdMjKyip1Hqam1+vx5ptvIiEhAZGRkbJ1EOB4VtSRI0eQlpaGhg0byuNUUlISZsyYgUaNGgHgmFaUj48PHBwcyj1WcUyfLZwQsmcGESE0NBQRERE4ePAgGjdurJreuHFj+Pn5ITIyUo7T6XSIjo5Gx44d/+ziPvF69OiBCxcuID4+Xg5t27bFW2+9hfj4eDRp0oTjWUGdOnWyeBTKtWvXEBgYCID30YoqKCiAnZ36MGZvby/PcHM8H40t8WvTpg0cHR1V8yQnJ+PixYscYytEMnj9+nUcOHAA3t7equkcz4oZMWIEzp8/rzpOBQQEYObMmdi3bx8AjmlFOTk5oV27dmUeqzimz6AqupkNY5XunXfeIXd3d4qKiqLk5GQ5FBQUyHk+/fRTcnd3p4iICLpw4QINHTqU/P39SavVVmHJnx7Ku4wScTwr6vTp0+Tg4EALFy6k69ev05YtW6hGjRq0efNmOQ/H1HajRo2ievXq0X/+8x9KSEigiIgI8vHxoffff1/Ow/EsW25uLsXFxVFcXBwBoOXLl1NcXJy866Ut8Zs4cSLVr1+fDhw4QLGxsfTqq6/Siy++SAaDoao2q8qUFU+9Xk/9+/en+vXrU3x8vOo4VVxcLJfB8VQrbx81Z36XUSKOqbnyYhoREUGOjo60bt06un79Oq1YsYLs7e3pyJEjchkc02cLJ4TsmQHA6vDNN9/IeUwmE82bN4/8/PzI2dmZunTpQhcuXKi6Qj9lzBNCjmfF/fTTT9S8eXNydnamoKAgWrdunWo6x9R2Wq2WpkyZQg0bNiQXFxdq0qQJffTRR6rKNcezbIcOHbL6uzlq1Cgisi1+hYWFFBoaSl5eXuTq6kqvv/463b59uwq2puqVFc+EhIRSj1OHDh2Sy+B4qpW3j5qzlhByTNVsienXX39Nzz33HLm4uNCLL75Iu3fvVi2DY/ps0RARPd42SMYYY4wxxhhjTyK+hpAxxhhjjDHGqilOCBljjDHGGGOsmuKEkDHGGGOMMcaqKU4IGWOMMcYYY6ya4oSQMcYYY4wxxqopTggZY4wxxhhjrJrihJAxxhhjjDHGqilOCBljjDHGGGOsmuKEkDHGGGOMMcaqKU4IGWOMMcYYY6ya4oSQMcYYY4wxxqopTggZY4wxxhhjrJrihJAxxhhjjDHGqilOCBljjDHGGGOsmuKEkDHGGGOMMcaqKU4IGWOMMcYYY6ya4oSQMcYYY4wxxqopTggZY4wxxhhjrJrihJAxxhhjjDHGqilOCBljjDHGGGOsmuKEkDHGGGOMMcaqKU4IGWOMMcYYY6ya+n/OaB2k1AyBaQAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "uc = ex.GetSolutions()[0][0].DirectUnitCell()\n", "c = pyobjcryst.crystal.Crystal(uc[0], uc[1], uc[2], uc[3], uc[4], uc[5], \"P1\")\n", "pdiff = px.AddPowderPatternDiffraction(c)\n", "\n", "# Plot with indexing in new figure\n", "px.plot(diff=False,fig=None,hkl=True)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Fit the profile and background\n", "We use a maximum sin(theta)/lambda because we don't really need high angle/high resolution data.\n", "\n", "This will go faster and is more reliable for spacegroup indexing and structure solution." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "No background, adding one automatically\n", "Selected PowderPatternDiffraction: with Crystal: \n", "Profile fitting finished.\n", "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n", "to disable profile fitting and optimise the structure.\n", "Fit result: Rw= 7.91% Chi2= 7415.97 GoF= 1.24 LLK= 1116.695\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "91bea8d3a61d4805b7c6d1dca5ed6825", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA06xJREFUeJzs3XlcVOX+wPHPsIMCgsTmApVLpKZmLmiKpGIEZlph1z3NFlOuF0XNLcybS+aW3Uy75m6W3uxm9nPPfcOtyC3L/SZKwgBuLMP5/QFznBkGmEEBZb7v14tXnDPPOc9zBrX58n2e76NRFEVBCCGEEEIIIYTNsavoAQghhBBCCCGEqBgSEAohhBBCCCGEjZKAUAghhBBCCCFslASEQgghhBBCCGGjJCAUQgghhBBCCBslAaEQQgghhBBC2CgJCIUQQgghhBDCRklAKIQQQgghhBA2SgJCIYQQQgghhLBREhAKIYQQQgghhI2SgFAIIYQQQgghbJQEhEIIIYQQQghhoyQgFEIIIYQQQggbJQGhEEIIIYQQQtgoCQiFEEIIIYQQwkZJQCiEEEIIIYQQNkoCQiGEEEIIIYSwURIQCiGEEEIIIYSNkoBQCCGEEEIIIWyUBIRCCCGEEEIIYaMkIBRCCCGEEEIIGyUBoRBCCCGEEELYKAkIhRBCCCGEEMJGSUAohBBCCCGEEDZKAkIhhBBCCCGEsFESEApRAb766iv8/PwIDAxk/vz56vl69epV4KiEEEIIIYSt0SiKolT0IISwNZ6ennz77bc4Ozvz2muv0axZM/773//i5eVFWlpaRQ9PCCGEEELYCAkIhagAnp6epKenq8ft27cnOTmZK1euGJ0XQgghhBCiLMmUUSEqgLu7O7t371aPt2/fTnh4OBkZGRU4KiGEEEIIYWskQyiEEEIIIYQQNkoyhEIIIYQQQghhoyQgFEIIIYQQQggbJQGhEEIIIYQQQtgoCQiFqABHjx4lOjqabt26sXfvXvW8i4tLBY5KCCGEEELYGikqI0QFcHZ2xtvbG4D09HScnJyoWrUq//vf/5C/kkIIIYQQorw4VPQAhLBF2dnZfP3119jb2wOwcOFCUlJSSE5OruCRCSGEEEIIWyIBoRAVoGbNmuTk5NCuXTsA2rRpw/Lly/nxxx8reGRCCCGEEMKWyJRRIR4AWq2WatWqVfQwhBBCCCGEjZGiMkI8ALp3717RQxBCCCGEEDZIAkIhHgCSqBdCCCGEEBVBpowK8QBIS0vDy8uL5ORk/P39K3o4QgghhBDCRkhAKMQDpHr16ly/fr2ihyGEEEIIIWyEVBkVogLo9yA0pdVqy3cgQgghhBDCpklAKEQFuHHjBsePH8fJyUk9pygKjRs3rsBRCSGEEEIIWyMBoRAVoH///mg0GoKCgozO+/j4VNCIhBBCCCGELZI1hEJUgBYtWhgd37x5Ezc3N86cOSPTRoUQQgghRLmRDOFDLi8vjz///BN3d3c0Gk1FD0dYKD09nX379uHgkP9XsHbt2ly8eJGuXbuSkZFRwaMTQgghhKhYiqKQmZlJYGAgdnayU15ZkgzhQ+7y5cvUqlWroochhBBCCCHEfXfp0iVq1qxZ0cOo1CRD+JBzd3cH8v+yeHh4VPBoRGnp9yEUQgghhBCQkZFBrVq11M+6ouxIQPiQ008T9fDwwMPDg9mzZzNixAh69+7N4sWLqVatGoqikJubS7du3Vi+fLl67Z9//km9evW4efMm3377Ld26dQPy98K7c+cON2/epH379uh0OrZv386uXbv44Ycf+Pjjjy0eX926dalRowZZWVm0bt2aGTNmmG2XnJzMvHnzmDhxIu3bt+eHH36gatWq9/DOGPv8889xcXGhf//+Zl/v27cv27Zt4/Lly/etT2tIMC+EEEIIUZgsiSp7MiG3EmrSpAmLFy9Wj0+fPs2lS5dYtWoVt27dUs97e3uTmJjI448/bnS96cbo//d//4e9vX2pxuLp6cn27dvZt28fx44d43//+5/Zdv7+/kycOLFUfdwPS5cuxd/fv8L6F0IIIYQQoiJIQGgjvL29cXV15ezZs+o5FxcXQkJC7um+GzZsoG3btrRu3ZqvvvqqyHY6nY6cnBxcXFy4evUqHTp0oF27drzyyivodDrOnz/PK6+8UuT17du35+9//zstW7bkww8/JDY2llatWjF9+nQAfvnlF9q0aUPr1q355z//CcDFixd59tlneeGFF9i5c6d6r8mTJxMWFka7du1ISkq6p+e/35KTkyt6CEIIIYQQwoZIQGgjTp8+zZ07d3jiiSfu2z3z8vL44IMP2Lp1K7t37+bzzz9Hp9MZtUlPT6d9+/Y8+eSTBAUFUb16dby8vNi4cSM7d+6kdu3abNu2zaL+YmJi2L9/P1988QUDBgxgz5496hTYMWPG8O9//5s9e/awc+dOzp8/z0cffcSECRP48ccf1ekGSUlJnD59mh07dvDNN98wYcKEe34fjh49SnR0NN26dWPv3r3q+YEDB1p9r759+97zeIQQQgghhLCUrCG0AfXr10ej0TB69Gh1m4P74a+//uLMmTNERESoxykpKUZTL/VTRhVFISYmhl27dlG3bl3efvtt0tLSuHLlCo0bN6Zu3bol9vfUU0+h0Wjw9/encePGaDQaHB0dAbh69aqa7Xz66af5448/+P3332nWrBlwd9+/kydPsnfvXtq3bw9Q6qmwhmJjY1m0aBEODg7Ex8ezf/9+4uLijLKxpkz3IYT88spnzpy55/EIIYQQIv8X19nZ2RU9DFEER0fH+/I5TNw7CQhtwOnTp8tkfZyPjw8hISFs3rwZR0dHcnJy1ADNlEajwdPTk9TUVFasWEFERASDBw8mLi4OS3c+MVxUbLrA2M/Pj5MnT/LEE09w5MgR3n77berUqcPRo0fp2LEjhw4dokOHDjzxxBOEhYXx73//G4CcnJxSPr3xuOrUqQPA6tWrSUhIYNCgQeTm5hZ5TWZmJklJSYUC9E6dOt3zeB4WvXr1YsWKFRU9DCGEEJVQdnY2586dIy8vr6KHIopRrVo1/P39pXBMBZOA0Mb5+vpy/fp1+vbtS48ePdRAqSirV6/m2LFjQP70xrFjx9KxY0fs7Ox45JFH+Oabb4za66eM6nQ6/Pz8iIyM5MSJE/Tp04eNGzfi5ubGU089dc/P8eGHH/LGG2+gKApRUVEEBwczcuRIevbsyccff0y1atXQ6XQ89dRT1K1bl7CwMOzs7OjUqRNjxoy5p759fX05f/48wcHBACQkJLB8+XKWLVtW5DWTJ08mMzOz0FYT48aNu6exPIhGjhxZ6JyiKEbTa4UQQoj7RVEUrly5gr29PbVq1ZJNzR9AiqJw69Ytrl27BkBAQEAFj8i2ycb0D7mMjAw8PT1JT0/Hw8ODf//73wwdOpQePXoYVRq1RvXq1XF0dCQ5OZnXXnuNK1eusG3btocyrZ+UlMSoUaPQarU4ODiQk5ODj48PkydPplGjRmq7vn37curUKQ4ePFgh4zx16tR9Xd/5IKlRowYrV64sdH748OEcOnSoAkYkhBCiMsvJyeH3338nMDAQT0/Pih6OKMb169e5du0a9erVK/Q50/Qzrig7EhA+5OQvS/Hatm3LypUrqVWrlnru4sWL9OrVi127dlXgyIw999xzFhfXediMHz+eoUOH4uvra3T+k08+ITY2toJGJYQQorK6c+cO586dIzg4GFdX14oejijG7du3OX/+PI8++iguLi5Gr8ln3PIjU0ZFpabT6Qr9dtDDw6NQNdSKVtTay8pg0qRJZs9LMCiEEKIsybq0B5/8jB4MEhCKSm3q1KlER0fj5OSEh4cH6enp5ObmMm3atPveV2pqKqmpqXh7e+Pt7V1s26NHjzJ+/HgcHR2Jj49n48aNQP5WFQsXLrzvYxNCCCGEEMIcCQhFpdauXTt27tzJ7du30Wq1eHl5FZqScK+2bt3KhAkT8PHxwcPDA61WS1paGhMnTqRDhw5mrzHdquL777/Hw8Oj2K0qhBBCCGG7tm/fTnh4OGlpaVSrVq2ihyMqEQkIhU1wdXUts3UEEyZMYMOGDbi7u6vnMjIyiIyMLDIgNN2qwtvbm7S0NJ599tkyGaMQQgghhBDmSB1eIe6RnZ0dKSkpRudSUlKKLXOt36pCr3r16gAkJiaWyRgr0jfffEPTpk3p3bs3S5YsoX79+jRv3pzvv/++oocmhBBCCGHzJCAU4h4tWLCA4cOHExoaSqtWrQgNDSU+Pp4FCxYUec2aNWvUfQvh7qLqO3fulPVwy92MGTPYs2cPM2bMYPTo0Rw8eJDdu3czffr0ih6aEEII8UDJysoiNjYWX19fXFxcePbZZwv9snjPnj00btwYFxcXWrZsSVJSkvrahQsX6NKlC15eXlSpUoUGDRrw448/lvdjiIeMTBkVNikiIoJNmzbdl3uFhISwdu3a+3KvysjV1RU3Nzfc3Nzo0KGDWvXVwUH++RFCCCEMjRw5kv/85z8sWbKEoKAgPvroIzp37szvv/+utomPj2fOnDn4+/szZswYXnzxRX777TccHR159913yc7OZufOnVSpUoUTJ05QtWrVCnwi8TCQT2SiUouJiSl0TlEUo9+mPQgqc9nlJk2aoNPpsLe3Z/ny5QBkZ2er02SFEEKIsnbr1i1OnTpV7v0+8cQTuLm5WdT25s2bzJs3j8WLFxMZGQnAF198webNm1m4cCHNmzcH4P3336dTp04ALFmyhJo1a7J27VpiYmK4ePEiL7/8Mo0aNQLgscceK4OnEpWNBISiUktMTGTbtm1G6/kURaFPnz4VOCrbMnv2bKNjrVZLtWrVWLNmTcUMSAghhM05deoUzZo1K/d+Dx8+zNNPP21R2z/++IOcnBzatGmjnnN0dKRFixacPHlSDQhDQ0PV1729valfvz4nT54E8quYv/POO2zatImOHTvy8ssv89RTT93HJxKVkQSEolKLj4/H3d0dHx8fo/NDhgwp876Tk5Px9/e3qK0+Q3g/p7I+qLp37862bdvo1asXK1asqOjhCCGEsAFPPPEEhw8frpB+LaUoClB41pCiKCXOJNK//sYbb9C5c2fWr1/Ppk2bmDJlCjNmzGDo0KFWjlzYEpsLCHfu3Mn06dM5fPgwV65cYe3atbz00kvq6/3792fJkiVG17Rs2ZL9+/erx1lZWYwYMYKvvvqK27dv06FDBz777DNq1qyptklLSyM2NlatpPjiiy8yd+5co31jLl68yLvvvsu2bdtwdXWlZ8+efPzxxzg5OZXNw9ugwYMHGx3rs1M9evQo87779u1bZHBnOpX1zz//BHjgprLeDyNHjjQ6/v3334mPj2fv3r0VNCIhhBC2xs3NzeJMXUWpU6cOTk5O7N69m549ewKQk5PDoUOHGDZsmNpu//791K5dG8j/vPnbb78ZBZ61atXi7bff5u233+a9997jiy++kIBQFMvmAsKbN2/SuHFjXn/9dV5++WWzbZ5//nkWLVqkHpsGaMOGDWPdunWsWrWK6tWrM3z4cKKjozl8+DD29vYA9OzZk8uXL7NhwwYA3nzzTfr06cO6desA0Ol0REVF8cgjj7B7926uX79Ov379UBSFuXPnlsWjC+5mp+6nFi1aFDqnKApnzpwp8hrTqaxHjhwhMzNT3ZuwMlmxYgUrV65Uj9u1a4e7uzs//fRTBY5KCCGEeLBUqVKFd955h/j4eLy9valduzYfffQRt27dYuDAgfz8888AfPDBB1SvXh0/Pz/Gjh2Lj4+PmtwYNmwYkZGR1KtXj7S0NLZt20ZISEgFPpV4GNhcQBgZGaku1C2Ks7NzkVP90tPTWbhwIcuWLaNjx44ALF++nFq1arFlyxY6d+7MyZMn2bBhA/v376dly5ZA/qLg0NBQTp8+Tf369dm0aRMnTpzg0qVLBAYGAvnl+fv378+HH36Ih4fHfXxqoaefjnE/ZWZmkpSUVKhqpn7BtzmmU1n1v3Qoj6ms5W3AgAGEhITg6+trdL5v374VNCIhhBDiwTR16lTy8vLo06cPmZmZPPPMM2zcuBEvLy+jNn//+985c+YMjRs35vvvv1c/R+h0Ot59910uX76Mh4cHzz//PLNmzaqoxxEPCZsLCC2xfft2fH19qVatGmFhYXz44Yfqh9nDhw+Tk5NDRESE2j4wMJCGDRuyd+9eOnfuzL59+/D09FSDQYBWrVrh6enJ3r17qV+/Pvv27aNhw4ZqMAjQuXNnsrKyOHz4MOHh4WbHlpWVRVZWlnqckZFxvx+/Uvv222/v+z0nT55MZmam0T/WAOPGjSvyGtOprB0yMvgOqGumKurDbtKkSWbPx8bGlvNIhBBCiAebi4sLn3zyCZ988kmh19q3b6/+Yjs6Otrs9TLLTJSGbExvIjIykhUrVrBt2zZmzJhBYmIizz33nBqEJScn4+TkVOjDv5+fH8nJyWob02wIgK+vr1EbPz8/o9e9vLxwcnJS25gzZcoUPD091a9atWrd0/PaGtOf2/0QHBxMnz596Natm9G6uKVLl1p8j+EpKdSjbDKYD6ri/pwLIYQQQojyIRlCE4bFRho2bMgzzzxDUFAQ69evp3v37kVeZ1oBylw1qNK0MfXee+8RFxenHmdkZEhQWMFiY2NZtGgRDg4OxMfHs3//fuLi4jh79qzF99AV/NeWAsLiiu4IIYQQQojyIQFhCQICAggKClILhPj7+5OdnU1aWppRtunatWu0bt1abXP16tVC90pJSVGzgv7+/hw4cMDo9bS0NHJycgplDg05Ozvj7Ox8z89l66zZEqIkGo1GLQazevVqEhISGDRoELm5uRbfQyn4JUBycjI1atS4L+N6UJSm6I4QQgghhCgfMmW0BNevX+fSpUsEBAQA0KxZMxwdHdm8ebPa5sqVK/z6669qQBgaGkp6ejoHDx5U2xw4cID09HSjNr/++itXrlxR22zatAlnZ+cK2TjV1tzPgia+vr6cP39ePU5ISCAsLIzExESL75FX8N/+/fvft3E9KPRTQx0cHIiLi+PgwYMkJiYWKsIjhBBCCCHKn819Irtx4wa///67enzu3DmOHTuGt7c33t7eJCQk8PLLLxMQEMD58+cZM2YMPj4+dOvWDQBPT08GDhzI8OHDqV69Ot7e3owYMYJGjRqpVUdDQkJ4/vnnGTRoEPPnzwfyt52Ijo6mfv36QP4G5E8++SR9+vRh+vTppKamMmLECAYNGiQVRu+j8shOrVmzptC53r1707t3b4vHdSc7G2fgjBVB5MPC1dWVb775Bl9fX8aNG8eePXuYM2eOTHUWQgghhHgA2FxAeOjQIaMKnvr1eP369WPevHkkJSWxdOlStFotAQEBhIeH8/XXX+Pu7q5eM2vWLBwcHIiJiVE3pl+8eLG6ByHk770WGxurViN98cUX+fTTT9XX7e3tWb9+PYMHD6ZNmzZGG9OL+8dwS4jc3Fw1K1XclhDlPS6AE66uPHnnDh0e8E1zS8PX15fg4GAAZs6cyZQpU+jatatkCIUQQgghHgA294nMsGSvORs3bizxHi4uLsydO7fY0r7e3t4sX7682PvUrl2bH374ocT+ROm99dZbREZGcvPmTRwcHMjJycHHx4eePXtW6LhMt6rQ/4kcPXx4xQ2qjDRp0oTz58+rQeHmzZsZP34877zzTsUOTAghhBBC2F5AKGzLf/7zH1auXGk0PfHixYv06tWL119//b72lZqaSmpqqjr9uDj6Kch6eQVFZdq2anVfx/QgMP3FiaOjI+Hh4Zw6daqCRiSEEEIIIfQkIBSVmk6nw9PT0+ich4cHOp2uiCust3XrViZMmICPjw8eHh5otVrS0tKYOHEiHTp0sOge+gyhYkVl0oeVJVl4IYQQQlgnISGB7777jmPHjlX0UMRDRgJCUalNnTqV6OhonJyc8PDwID09ndzcXKZNm3bf+pgwYQIbNmwwWmeakZFBZGSkxQGhriBDaAsBoRBCCCGEeHBIQCgqtXbt2rFz505u376NVqvFy8sLFxeX+9qHnZ0dKSkpRgFhSkoKdnbW7+qi5OWV3KiSyMzMNHrPhBBCCCFE+ZN9CIVNcHV1JSAg4L4HgwALFixg+PDhhIaG0qpVK0JDQ4mPj2fBggVW36syBoRLly6lUaNGPP3000ydOlU937Vr1woclRBCCPHgycvLY9q0adSpUwdnZ2dq167Nhx9+CMCoUaOoV68ebm5uPPbYY4wfP56cnJxi7/fll1/SoEEDnJ2dCQgIYMiQIeXxGOIhIxlCIe5RSEgIa9euvT83K6YC7sNq3rx5HDlyBEdHRz755BNeeeUVli5dWmy1XyGEEMIWvffee3zxxRfMmjWLZ599litXrqhF2Nzd3Vm8eDGBgYEkJSUxaNAg3N3dGTlypNl7zZs3j7i4OKZOnUpkZCTp6ens2bOnPB9HPCQkIBTiQaBfQ1gJgyQ7OzscHR0BiI2N5cknnyQyMpLU1NQKHpkQQgjx4MjMzGTOnDl8+umn9OvXD4DHH3+cZ599FoBx48apbYODgxk+fDhff/11kQHhP//5T4YPH87f//539Vzz5s3L8AnEw0oCQmGTIiIi2LRpU0UPo5DKOGU0KirKaB/Cjh07EhAQQKdOnSp2YEIIIWzHrVtQEdsdPfEEuLlZ1PTkyZNkZWUVWZBuzZo1zJ49m99//50bN26Qm5uLh4eH2bbXrl3jzz//tLi4nbBtEhCKSi0mJqbQOUVRSEpKKvO+k5OT8ff3t+6iSpgh1Gq1fPbZZ0bnFEXB2dm5gkYkhBDC5pw6Bc2alX+/hw/D009b1NTV1bXI1/bv389rr73GxIkT6dy5M56enqxatYoZM2ZYfS8hTElAKCq1xMREtm3bZlTxU1EU+vTpU+Z99+3b1+osZGWcMrpixQpWrlxZ6PxPP/1UAaMRQghhk554Ij84q4h+LVS3bl1cXV3ZunUrb7zxhtFre/bsISgoiLFjx6rnLly4UOS93N3dCQ4OZuvWrYSHh1s/bmFTJCAUlVp8fDzu7u74+PgYnb+fVbZatGhR6JyiKJw5c8bqe1XGKaMDBgwgJCQEX19fo/N9+/atoBEJIYSwOW5uFmfqKoqLiwujRo1i5MiRODk50aZNG1JSUjh+/Dh16tTh4sWLrFq1iubNm7N+/foSC9olJCTw9ttv4+vrS2RkJJmZmezZs4ehQ4eW0xOJh4UEhKJSGzx4sNnzPXr0uG99ZGZmkpSUhIOD8V8nq9bI6YvKVMKAcNKkSWbPx8bGlvNIhBBCiAfb+PHjcXBwYMKECfz5558EBATw9ttvM3DgQP7xj38wZMgQsrKyiIqKYvz48SQkJBR5r379+nHnzh1mzZrFiBEj8PHx4ZVXXim/hxEPDY1SGeeo2ZCMjAw8PT1JT08vcmGxKFtr166lffv2eHl5GZ3fsWMHYWFhFt3jqLs7TW/cIPXXX/Fu0KAshimEEELYhDt37nDu3DkeffTRMtl/WNw/xf2s5DNu+ZGN6YW4R926dTMKBvX7BVkaDBqS388IIYQQQojyJAGhsEnJyclldu+ipqlaRAJCIYQQQghRjiQgFDapLAua6Ddht4Y+DKyMawg3b95My5Ytad26NatWrVLPR0VFVeCohBBCCCEESFEZUcndzwqgltq4cSM5OTk4ODigKSgWY6nKOGX0/fffZ+PGjTg5OTFu3Dj27NnDnDlzuHXrVkUPTQghhBDC5klAKCq1+1IB1EqKouDk5MS0adMYOXKkRdfow8bKmCG0t7enWrVqAMycOZPFixfTtWtXbty4UbEDE0IIIYQQMmVUVG6TJ08mMzOz0Plx48aVed9r1qyxvHEl3naiSZMmnD9/Xj3u378/cXFxZn8uQgghhBCifEmGUFRq3bp1M3u+NBVALaWf9pmbm1vqayuTuXPnGh1rtVrCw8PVaqxCCCGEEKLiSIZQ2B6NBj75pMy7KU1AaAtVRrt3717RQxBCCCGEEAUkIBS2aerUMrt1aTKEahhoAwFhZcyCCiGEEEI8rCQgFLapHNbqWRMQVuaiMqa+/fZbAHr16lXBIxFCCCEqj4SEBJo0aVKmfSxevFgtFCcqD1lDKGxTGWapZA2hMXOVVhVFYe/evRUwGiGEEEIIYUgCQmGbyiHwKk1wVxkzhCtWrGDlypWFzv/0008VMBohhBBCCGFIpowK21QOGUKrrtFvYF8JM4QDBgwgJCSEsLAwo6+YmJiKHpoQQgjxQMnLy2PatGnUqVMHZ2dnateuzYcffgjAqFGjqFevHm5ubjz22GOMHz+enJycYu/35Zdf0qBBA5ydnQkICGDIkCHFtk9LS6Nv3754eXnh5uZGZGQkZ86cKdTuu+++o169eri4uNCpUycuXbqkvvbzzz8THh6Ou7s7Hh4eNGvWjEOHDpXi3RDlRQJCYZPu3L5dZvdWFIV2gFspsn2Vccpo3bp16dChA08//TRTDYr5bNiwoQJHJYQQQjx43nvvPaZNm8b48eM5ceIEK1euxM/PDwB3d3cWL17MiRMnmDNnDl988QWzZs0q8l7z5s3j3Xff5c033yQpKYnvv/+eOnXqFNt///79OXToEN9//z379u1DURReeOEFo8Dz1q1bfPjhhyxZsoQ9e/aQkZHBa6+9pr7eq1cvatasSWJiIocPH2b06NE4Ojre4zsjypQiHmrp6ekKoKSnp1f0UB4eoKRqNGV2+6w7dxQFlP+6uVl8zREPD0UB5eJPP5XZuCpKq1atlOzsbEVRFGXOnDnKyy+/rNy8eVNp3759BY9MCCFEZXT79m3lxIkTyu3btyt6KFbJyMhQnJ2dlS+++MKi9h999JHSrFkz9fj9999XGjdurB4HBgYqY8eOtbj/3377TQGUPXv2qOf++usvxdXVVfnmm28URVGURYsWKYCyf/9+tc3JkycVQDlw4ICiKIri7u6uLF682KI+i/tZyWfc8iMZQmGTNCU3KTX9OsDaJkVlLKmqWRnXENrZ2am/GYyNjeWtt94iMjKSv/76q4JHJoQQQjw4Tp48SVZWFh06dDD7+po1a3j22Wfx9/enatWqjB8/nosXL5pte+3aNf78888i7/X2229TtWpV9Uvfv4ODAy1btlTbVa9enfr163Py5En1nIODA88884x6/MQTT1CtWjW1TVxcHG+88QYdO3Zk6tSp/PHHH9a9EaLc2VxRmZ07dzJ9+nQOHz7MlStXWLt2LS+99BIAOTk5jBs3jh9//JGzZ8/i6emp/mEODAxU79G+fXt27NhhdN8ePXqwatUq9TgtLY3Y2Fi+//57AF588UXmzp1rVKr34sWLvPvuu2zbtg1XV1d69uzJxx9/jJOTU9m9AQIAuzKcmjlm7FjsgWu5ufgWVNhULKyqqVTCKaNRUVGcP3+e4OBgADp16kRgYCDDhw+v2IEJIYSwKe/88A7/y/xfufVXw70G86LnWdze1dW1yNf279/Pa6+9xsSJE+ncuTOenp6sWrWKGTNmWH0vgA8++IARI0YYnSvqM4iiKGg0xr9KNz02PJeQkEDPnj1Zv349//d//8f777/PqlWr6NatW7FjEhXH5gLCmzdv0rhxY15//XVefvllo9du3brFkSNHGD9+PI0bNyYtLY1hw4bx4osvFloMO2jQID744AP12PQvXs+ePbl8+bK6TurNN9+kT58+rFu3DgCdTkdUVBSPPPIIu3fv5vr16/Tr1w9FUZg7d25ZPLooJ1+tWsVXwFk7Ox6LilLPW1RVsxIGhHXq1KFbt240aNCATp06kZCQgI+PD+PHj6/ooQkhhLAh1gRnFaFu3bq4urqydetW3njjDaPX9uzZQ1BQEGPHjlXPXbhwoch7ubu7ExwczNatWwkPDy/0uq+vL76+vkbnnnzySXJzczlw4ACtW7cG4Pr16/z222+EhISo7XJzczl06BAtWrQA4PTp02i1Wp544gm1Tb169ahXrx7/+Mc/+Nvf/saiRYskIHyA2VxAGBkZSWRkpNnXPD092bx5s9G5uXPn0qJFCy5evEjt2rXV825ubvj7+5u9z8mTJ9mwYQP79+9X0+5ffPEFoaGhnD59mvr167Np0yZOnDjBpUuX1OzjjBkz6N+/Px9++CEeHh7343FFEcpyymi/Pn0I+egjfDQaGoSFqef79u1b5DX6KqOVccrojBkz2LNnD5mZmTRp0oS6deuyefNmOnbsyIsvvljRwxNCCCEeCC4uLowaNYqRI0fi5OREmzZtSElJ4fjx49SpU4eLFy+yatUqmjdvzvr161m7dm2x90tISODtt9/G19eXyMhIMjMz2bNnD0OHDjXbvm7dunTt2pVBgwYxf/583N3dGT16NDVq1KBr165qO0dHR4YOHconn3yCo6MjQ4YMoVWrVrRo0YLbt28THx/PK6+8wqOPPsrly5dJTEwslIQRDxZZQ1iC9PR0NBqN0VRPyN9bzcfHhwYNGjBixAgyMzPV1/bt24enp6fRHOxWrVrh6empThvct28fDRs2NJqK2rlzZ7Kysjh8+HDZPpQo0z/4E8aNw9dMH7GxsUVeow9QK+OUUVdXV9zc3PDz86NDhw64urri7OyMg4PN/T5KCCGEKNb48eMZPnw4EyZMICQkhB49enDt2jW6du3KP/7xD4YMGUKTJk3Yu3dviTNt+vXrx+zZs/nss89o0KAB0dHRZreQMLRo0SKaNWtGdHQ0oaGhKIrCjz/+aFQl1M3NjVGjRtGzZ09CQ0NxdXVVl03Z29tz/fp1+vbtS7169YiJiSEyMpKJEyfe+5sjyox8IivGnTt3GD16ND179jTK2PXq1YtHH30Uf39/fv31V9577z1+/vlnNbuYnJxcKA0P+en55ORktY2+jLCel5cXTk5OahtzsrKyyMrKUo8zMjLu6RltVVlmCPXTPkvTR2XMEDZp0gSdToe9vT3Lly8H8n/RUr169QoemRBCCPFgsbOzY+zYsUZTQ/U++ugjPvroI6Nzw4YNU79PSEggISHB6PW33nqLt956y+L+vby8WLp0aZGv9+/fn/79+wPQvXv3Qq87OTnx1VdfWdyfeDBIQFiEnJwcXnvtNfLy8vjss8+MXhs0aJD6fcOGDalbty7PPPMMR44c4emnnwbML7Y1XZRrSRtTU6ZMkd+y3AdlWmW0ICC0JgupzwuWaaBaQWbPnm10fOfOHapVq8acOXMqZkBCCCGEEEIlU0bNyMnJISYmhnPnzrF58+YS1/M9/fTTODo6qml4f39/rl69WqhdSkqKmhX09/cvlAlMS0sjJyenUObQ0HvvvUd6err6denSJWsfT5Q1fUBoxfRPdcpoJcwQmsot2I7ju+++q9iBCCGEEEIICQhN6YPBM2fOsGXLFoumtR0/fpycnBwCAgIACA0NJT09nYMHD6ptDhw4QHp6ulq1KTQ0lF9//ZUrV66obTZt2oSzszPNmjUrsi9nZ2c8PDyMvsSDZevWrbQEYnJzjbYiiTKoOFqUyriG0JSdXf4/O9nZ2RU8EiGEEEIIYXNTRm/cuMHvv/+uHp87d45jx47h7e1NYGAgr7zyCkeOHOGHH35Ap9OpWTxvb2+cnJz4448/WLFiBS+88AI+Pj6cOHGC4cOH07RpU9q0aQNASEgIzz//vFqlCfK3nYiOjqZ+/foARERE8OSTT9KnTx+mT59OamoqI0aMYNCgQRLkPeQ+nDaNjcD/7O1ZePAge/bsYc6cOdy6davEa20hQ6goCj5A1o0bFT0UIYQQQgibZ3MZwkOHDtG0aVOaNm0KQFxcHE2bNmXChAlcvnyZ77//nsuXL9OkSRMCAgLUL311UCcnJ7Zu3Urnzp2pX78+sbGxREREsGXLFuzt7dV+VqxYQaNGjYiIiCAiIoKnnnqKZcuWqa/b29uzfv16XFxcaNOmDTExMbz00kt8/PHH5fuG2KiyXKtnZ2dHNaCKRsPMmTNp1qwZXbt25UYxAZB+24nKuA+hOSmA7vjxih6GEEIIIYTNs7kMYfv27YudllfSlL1atWqxY8eOEvvx9vZWKyoWpXbt2vzwww8l3ks8XJ5q2JDzBw6ohWL69+9PUFAQ77zzTonXVsYpo/qNa/Xy8vLQAH8UrCUUQgghykJl/H9qZSM/oweDzQWEQpS16ZMn475wIecNzoWHh3Pq1Kkir6nMRWUyMzNJSkpS9x28ceMGVd3dCa/gcQkhhKic9DO2srOzcXV1reDRiOLol9MY7nMoyp8EhMImlem2E/cS1FXC35RNnjyZzMxMvLy8gLu/DRxhZ3Mz1oUQQpQDBwcH3NzcSElJwdHRUS1mJh4ciqJw69Ytrl27RrVq1YyWXYnyJwGhsC2VMOB60HXr1s3oWB8QPlvMfptCCCFEaWk0GgICAjh37hwXLlyo6OGIYlSrVg1/f/+KHobNk4BQ2JZyCAiVvDyygON5efy+ZQve3t40bNgQJycni64VQgghxL1xcnKibt26ssXRA8zR0VEygw8ICQiFuM9WrV7NEqC+olBzxw60Wi1HjhzhnXfeoXfv3mav0VcZtYWAUJ8hlPygEEKIsmRnZ4eLi0tFD0OIB54EhMK2lEMwsmjFCvYCl+zsCJo0CYDc3Fzat29fZEBoOj6bYEvPKoQQQgjxgJJVtsK2lEMQ4ursjOHGJIqisGPHDot+S2kL5Zf1z/iGDWRDhRBCCCEedJIhFOI+mzdzJp+3aMFunQ6HVq1wdHTkmWeeKXFfSqBSZs1GjhxpdHznzh2cgW8rZjhCCCGEEMKABITCpigFm6KX5ZRRP19fZgMX7O0J2r/fqmsrY4Zw9uzZPPbYY+pxXl4edoCu4oYkhBBCCCEKSEAobEt5BFyl6UO/BUMlDAhzcnLo3bs37u7uQP4mtG5jxhBfweMSQgghhBASEAobo88QPqgqY5XRZ599lm7dutGgQQMAUlNT8R4zhm0VPC4hhBBCCCEBobAx5bHlgT6oK1UflTBDuGvXLqNj/c9gmZ3UtBJCCCGEqGjyiUzYllIEXL169SrzPmxJZVwnKYQQQgjxsJIMobApxU3JNK2GCfnBy969e63ro4iAp1evXqxYsaLU4xNCCCGEEOJ+k4BQ2JTislMrVqxg5cqVhc7/9NNPVvWRMHUqrkBGXh4eBUFmSYGlfnppZQwIv/nmG6ZMmUKDBg3o1KkTkyZNwgsYoSj0qOjBCSGEEELYOAkIhW0pZg3hgAEDCAkJwdfX1+h83759repizbp1rAKuaTT4RkWp560NLCuL4cOHk5qaym+//cbatWv55ZdfqFmnDlUlIBRCCCGEqHASEAqbUlwGbtKkSWbPx8bGWtVHz+7dCfn8cx7TaKgVFqaetyiwrITr6/7880/Onj1LlSpVqFevHl26dOEXoPI9qRBCCCHEw0eKygibUh4FTUbHxuJr5nxxgaV+VJVxyqiDgwM1a9bEx8eH1NRUmjRpQmBFD0oIIYQQQgASEApbU47bTlilEm9MX79+ffbt26cez5o1i9HIPz5CCCGEEA8CmTIqbMqDnoGrjFsy/PLLL0bHWq2WOOBN2YdQCCGEEKLCyScyYVP0AZc1YVdERIS1nQCyMX1RBg4cCJRtllYIIYQQQlhGMoTCthQTrMXExJhprpCUlGRVFzv27uVjQKfTMWLVKl577TUAoqKiWL9+vflhmYyvMtNnaa8qCo9V8FiEEEIIIWydBITCphQ3ZTQxMZFt27ZhZzCVUVEU+vTpY1UfH332GZuBvzQaPjt4kD179jBnzhxu3bpV5DXqPoQ2EBB+sWABNGrE64rCjooejBBCCCGEjZOAUNiU4gLC+Ph43N3d8fHxMTo/ZMgQq/qwt7OjGnBTo2HmzJksXryYrl27cuPGjXsa38PqscceIzk5GY1Gg7e3Nz7Vq+MAHK3ogQkhhBBCCFlDKITe4MGDCwWDAD16WLd9eoN69ThvcNy/f3/i4uLIzMws+eJKmCG8cuUK169f5+bNm8THxxMYGMgOwL2iByaEEEIIISQgFLZFn4Eryz/4H44aRTB3p4FqtVrCw8M5depUGfb64AoKCuLOnTtA/l6Mvf/2NyKRgFAIIYQQ4kEgAaGwKeUxJVPfhz7X1717d6uvrUwaNWpEaGgoTz/9NFOnTiUgIIDPgJIn0AohhBBCiLImAaEQJUhOTr6n6xVFYefOnfz5559Ft6nEG9NfvnyZpKQkjhw5gpubGy+98gqPAo0qemBCCCGEEEICQmFjShFw9e3b17ouTLJ83377LWFhYTRv3tzqaysDOzs7HB0dgfwpo7m5uUQCf1XssIQQQgghBDYYEO7cuZMuXboQGBiIRqPhu+++M3pdURQSEhIIDAzE1dWV9u3bc/z4caM2WVlZDB06FB8fH6pUqcKLL77I5cuXjdqkpaXRp08fPD098fT0pE+fPmi1WqM2Fy9epEuXLlSpUgUfHx9iY2PJzs4ui8cWBYoLuFq0aFHoq3nz5mzfvv2e+vTy8gIoNkNYmTdpj4qK4vz58+pxs6ZN+QwIrLARCSGEEEIIPZsLCG/evEnjxo359NNPzb7+0UcfMXPmTD799FMSExPx9/enU6dORhUihw0bxtq1a1m1ahW7d+/mxo0bREdHo9Pp1DY9e/bk2LFjbNiwgQ0bNnDs2DGj/ex0Oh1RUVHcvHmT3bt3s2rVKv7zn/8wfPjwsnt4Uaw//viDdu3a0b59e6Mve3t76250L9M+rbw2Nze39H2VkzFjxhAcHKweL1+4kAbAd5rKHAYLIYQQQjwcbG4fwsjISCIjI82+pigKs2fPZuzYsWohkCVLluDn58fKlSt56623SE9PZ+HChSxbtoyOHTsCsHz5cmrVqsWWLVvo3LkzJ0+eZMOGDezfv5+WLVsC8MUXXxAaGsrp06epX78+mzZt4sSJE1y6dInAwPxcyYwZM+jfvz8ffvghHh4e5fBu2J6SpmS2b98ed3fj+pfff/+91X1kAb8qCie3bMHb27vkawqCI0umjCYlJTFq1Ci0Wi0ODg7k5OTg4+PD5MmTadTowV+Zp39GCQeFEEIIISqezQWExTl37hzJyclERESo55ydnQkLC2Pv3r289dZbHD58mJycHKM2gYGBNGzYkL1799K5c2f27duHp6enGgwCtGrVCk9PT/bu3Uv9+vXZt28fDRs2VINBgM6dO5OVlcXhw4cJDw8vn4e2McUFXIMHD6ZFixb4+voanTcNEEuy5v/+j6+BJxWFgB07Ck0VvleDBw9m5cqV1KpVSz138eJFevXqxa5du+5rX2VBKciCSkAohBBCCFHxJCA0oK8m6efnZ3Tez8+PCxcuqG2cnJzUdWGGbfTXJycnFwoqAHx9fY3amPbj5eWFk5NTsVUts7KyyMrKUo8zMjIsfTwBxU7JzMrK4uOPPzZprnD9+nWruljx3XfsB5Lt7AicNAmgyCnKhYZnQYZQp9Ph6elpdM7Dw8NoyvIDrRJWUhVCCCGEeFhJQGiGxmRtk6Iohc6ZMm1jrn1p2piaMmUKEydOLHYsomhKMcHIihUrWLlyZaHzP/30k1V9uDg5sQN4woI+zQywxCZTp04lOjoaJycnPDw8SE9PJzc3l2nTplk1zopSGSupCiGEEEI8rCQgNODv7w/kZ+8CAgLU89euXVOzef7+/mRnZ5OWlmaUJbx27RqtW7dW21y9erXQ/VNSUozuc+DAAaPX09LSyMnJKZQ5NPTee+8RFxenHmdkZBhNHRTFKy4YGTBgACEhIYWyu9ZuOzFr3DiWvfQSI/PysG/VSt1y4X5p164dO3fu5Pbt22i1Wry8vHBxcbmvfZQpyRAKIYQQQjwwbK7KaHEeffRR/P392bx5s3ouOzubHTt2qMFes2bNcHR0NGpz5coVfv31V7VNaGgo6enpHDx4UG1z4MAB0tPTjdr8+uuvXLlyRW2zadMmnJ2dadasWZFjdHZ2xsPDw+hLWKGYYGTSpElmp/rGxsZa1YVf9erMBtbZ2bF//36L1vXpc8LWZM9cXV0JCAh4uIJBJEMohBBCCPEgsbkM4Y0bN/j999/V43PnznHs2DG8vb2pXbs2w4YNY/LkydStW5e6desyefJk3Nzc6NmzJwCenp4MHDiQ4cOHU716dby9vRkxYgSNGjVSq46GhITw/PPPM2jQIObPnw/Am2++SXR0NPXr1wcgIiKCJ598kj59+jB9+nRSU1MZMWIEgwYNkiCvDFk1fbNAREQEmzZtuqc+ZgEW3cEWsme28IxCCCGEEA8JmwsIDx06ZFTBUz/9sl+/fixevJiRI0dy+/ZtBg8eTFpaGi1btmTTpk1GlSZnzZqFg4MDMTEx3L59mw4dOrB48WKj/epWrFhBbGysWo30xRdfNCosYm9vz/r16xk8eDBt2rTB1dWVnj17FipqIu6zYoKRmJgYM80V6yt3muljWMFXkZdYse2EXmpqKqmpqXh7e1u0tcWD5nVFYVVFD0IIIYQQwsZplNKkTMQDIyMjA09PT9LT0yWzaIHrv/xC9caN8w9M/uhXq1aNmJgYo6I+iqKwdOlS7ty5Y3EfF7dvp3Z4OMl2dvjrK3/q71nEX7fDfn40u3aNAxMn0nLChGLvv3XrViZMmICPjw8eHh5otVrS0tKYOHEiHTp0sHic5WXkyJFGx9qrV/FcupTVwHn550cIIYQQZshn3PJjcxlCYdtK+v1HVFQU1apVMzq3bNmyMhyRCQsCpAkTJrBhwwajrHVGRgaRkZEPZEBoWr1167p1rAduk79udtSoUXh6ejJlyhRCQ0MrbJxCCCGEELZIAkJhU4qbkhkYGMjChQvVIi3Z2dk4OjpaXSX0noqmWBAQ2tnZkZKSYhQQpqSkYGf3YNaIMq3e+vchQ1gHzCF/qnZiYiJubm50796d7du3V+RQhRBCCCFsjgSEwrYUE3Ddvn2bOXPmqIHV3/72N1auXElycnKp+ih+58qiLi05IFywYAHDhw8nOTlZ3bcyICCABQsWlKLHsjdp0iSjY2dHR2oB/9RoOBISQs2aNQGM1uAKIYQQQojyIQGhsCnFBVzx8fG4u7vj4+MD5G/xERwczJAhQ8preBZlCENCQli7dm05DKZsPFK9OgUrK9m2bRsAFy9eJE+2oxBCCCGEKHcSEAqbUtx0zsGDBxsdL1q0CIAePXrctz5KvrjyF1l56fnn2bhlC9mKgtOPP6IoCgkJCUwooZiOEEIIIYS4/x7MRUdClBFrpnEOGDCgdJ3op4xaE9zpt52wgYBw1D//yafAESAxMZFDhw6h1Wo5evRoRQ9NCCGEEMLmSEAobIo12Tt9cKbfS9La60rlHq7NzMwsfb9l6JtvvqFp06b07t2bJUuW4F6lCr8AP5H/3r7//vvUrVtXMoRCCCGEEBVApowKm1JcsGa6Mb2npyevvvoqx44ds7aTUoys4FILAtalS5cyffp0HB0diYmJYfTo0QB07dpVXZP3IJkxYwZ79uwhMzOTJk2a8MOXX9LwhRcII39PxVmzZqHVait6mEIIIYQQNkkCQmFbignWEhMT2bZtm9H2DYqi0LRpUyu7KNtpn/PmzePIkSM4OjryySef8Morr7B06dIHdrqpq6srbm5uuLm50aFDB345cYLBwClgWJ06xMbGcurUKaKioli/fn1FD1cIIYQQwqZIQChsSnEZOEVRePnll3FwcDA6l52dbVUfpdluwqDDEpvY2dmpeyPGxsby5JNPEhkZSWpq6r30XGaaNGmCTqfD3t6e5cuXU/fRRwkAfIDVq1czdOhQGjRoQEZGRkUPVQghhBDC5khAKGxKcVk0V1dXDh48aBQQAoSFhVnXxz1UGbUkyxcVFcX58+cJDg4GoGPHjgQEBDB8+PBS91uWZs+ebXT859WrbANSgKi9e3nvvffYuHEjZ86cqYjhCSGEEELYNAkIhW0pJuCaPHkymZmZeHl5GZ2/efNmWY/qLguCyTFjxhQ616BBAzZs2FAWI7rvcnJy0AENyd9TMS4ujqZNmxIdHV3RQxNCCCGEsDkSEArbUkxAOGXKFKZMmWLSXOH333+3rgvZYL1Y7lWrUkurRUf+xvRarZa2bdvi7Oxc0UMTQgghhLA5EhAKm1LclMzMzEySkpIKTRlt166dtZ0ApVxL+IAWhrmfmj75JH/bu5c8wC4mhu3btxMWFiYBoRBCCCFEBZB9CIVNKS57p58yaur27dtlOaR8pdiYvlevXmU1mjKVdPo0fwHpwGuvvcbjjz/O9OnTH9gqqUIIIYQQlZlkCIVtsWLK6J07d3B2dra+2Ml93ph+5MiRZpop7N27t/T9VCBnJyemAtWAsV99RVRUFMHBwVSvXr2CRyaEEEIIYXskIBQ2xZopo8899xzbtm2jU6dOpeqjNFNGzY1vxYoVrFy5stD5n376qRQ9VDzf6tVpceUKF8nfdmL06NEMGjQIb2/vih6aEEIIIYTNkYBQ2BYrqozq9/obN26cdV3cQ1EZjZnxDRgwgJCQEHx9fUt93weJoig0Ac4Dn69axcGDBxkwYABffvllxQ5MCCGEEMIGSUAobEsxAWG3bt2MjufMmQNYvw/hvUwZNZchzMrK4uOPPy7U7vr166Xupzy1aNHC6PjkH39QH1CAgwcP8ttvv9GzZ0/mzZtXIeMTQgghhLBlEhAKm2JN9m5wr15ss7eH/fvBzvr6S1ZNGS0oKmMumHzYp4yaTsVt1qABh0+coCMwc+ZMHn/8cbp27cqvv/5asQMVQgghhLBBEhAKm2JNJUvHCxfg+nW4dQuqVrWmk1KMTH+p5VNG+/btW+p+ypPpVNzz//sfjYEs7mYP09PTuXHjRsUNUgghhBDCRklAKGyLFcHaxtatYd06uHPHqoDwfq8hnDRpktm2sbGxpe6nPJlOxfV0d+dwejoADgcPotVqqVatmtXFe4QQQgghxL2TfQiFbbEiIMzRb1BfHvsQFjCXIdy8eTMtW7akdevWrFq1Sj0fFRVVbuO6n9o1a0ZjIJr8LTX8/f1p1qwZ4eHhFT00IYQQQgibIwGhsCnWTBn9uWBNW0ZamrWdWNe+hGvff/99Nm7cyJYtWzh48CBDhw4lLy+PW7dulb6fCrR1/37cgZrAZ599hoeHB05OTixZsqSihyaEEEIIYXNkyqiwLVYEa9nZ2QBo09LwKEUfpdmH0Nz47O3tqVatGpBfhGXx4sV07dr17pq74GCoUQP27ClNj+VOm5nJBfKrjN556SUuXLjATz/9JBvTCyGEEEJUAAkIhU0p1fo+KzN+1mQhVQVVRs1d6+3tTZMmTXBzcyM2Npb+/fsTFBREly5d8htcuJD/9ZCo6ubGtlu3CAeWL19OREQEW7ZswdnZuaKHJoQQQghhc2TKqBBFUPRbQVgbRJYmINRfY+balJQUtm/fbjRlNCwsjObNm1vfzwNg5eTJ/AC0BVq1asXt27fZuHEjv/zyS0UPTQghhBDC5kiGUNiWewnWLG5u/ZRRpZh9CEucMvqQecTLi9mADrDfv189n5ycXFFDEkIIIYSwWZIhFDbFmimj+oAuT6crm8GYYS70bNKkCefPn1eP+/fvT1xcHJmZmeU2rvupqJ/Bw7KvohBCCCFEZSIZQmFTrAkI9cGZUkRAmJubi4ODmb9C97APoblr586dW+hceHg427dvL30/FehvY8bgCtwCdE88gYO9PbqrV7mSm1vRQxNCCCGEsDmSITQRHByMRqMp9PXuu+8C+dkZ09datWpldI+srCyGDh2Kj48PVapU4cUXX+Ty5ctGbdLS0ujTpw+enp54enrSp08ftFpteT2msIbBNM6kpCReeOEFWrduzXPPPUdoaChdunQhKSmp0GX3q8poUR7WjNq169dxADoAr776Ko39/fG+fh1vCQiFEEIIIcqdZAhNJCYmojPICP3666906tSJV199VT33/PPPs2jRIvXYycnJ6B7Dhg1j3bp1rFq1iurVqzN8+HCio6M5fPgw9vb2APTs2ZPLly+zYcMGAN5880369OnDunXryvLxRCnWEBpOGR08eDArV66kVq1a6rmLFy/Sq1cvdu3ald/FvWQIzYyvRYsWZpopnDlzpvT9VKAqrq78oNXiBdhNmsSx2bNpuG0b9e7lfRNCCCGEEKUiAaGJRx55xOh46tSpPP7444SFhannnJ2d8ff3N3t9eno6CxcuZNmyZXTs2BHIL61fq1YttmzZQufOnTl58iQbNmxg//79tGzZEoAvvviC0NBQTp8+Tf369cvo6YRVU0bNVBnV6XR4enoatfPw8DD6JYJpUKcoSsnZwmIC1czMTJKSkgpNT23Xrl1Jd30g+Vevzi9XrhBecKzodOwAvBwdK3JYQgghhBA2SQLCYmRnZ7N8+XLi4uLQaO5+pN++fTu+vr5Uq1aNsLAwPvzwQ3x9fQE4fPgwOTk5REREqO0DAwNp2LAhe/fupXPnzuzbtw9PT081GIT88vuenp7s3bu32IAwKyuLrKws9TgjI+N+PrIwwzBDOHXqVKKjo3FycsLDw4P09HRyc3OZNm1akddbEhCq6xXNBIaTJ08mMzMTLy8vo/O3b9+29BEeKP986y3+O3Qo4wBdq1ZkX7tGGDCmTp2KHpoQQgghhM2RgLAY3333HVqtlv79+6vnIiMjefXVVwkKCuLcuXOMHz+e5557jsOHD+Ps7ExycjJOTk6FPrz7+fmpZfWTk5PVANKQr69viaX3p0yZwsSJE+/94WyUNZvGq0GcQYawXbt27Ny5k9u3b6PVavHy8sLFxcW4j/tcVGbKlClMmTLFuI+HeMqoj6cns/UH+/dzdPp0mo4cyU+yMb0QQgghRLmTgLAYCxcuJDIyksDAQPVcjx491O8bNmzIM888Q1BQEOvXr6d79+5F3ktRFKMso+H3RbUx57333iMuLk49zsjIMFrPJkpQiimj5gI8V1dXXF1di7iw8JTRe1HUlNFOnTrd030rjOn7oT8u4c++EEIIIYS4/6TKaBEuXLjAli1beOONN4ptFxAQQFBQkJqt8ff3Jzs7m7S0NKN2165dw8/PT21z9erVQvdKSUlR2xTF2dkZDw8Poy9RNvThSWkzfpqCQMeSgFBtUcyUUVPjxo0r1bgqWlHvx72FzUIIIYQQojQkICzCokWL8PX1JSoqqth2169f59KlSwQEBADQrFkzHB0d2bx5s9rmypUr/Prrr7Ru3RqA0NBQ0tPTOXjwoNrmwIEDpKenq21E2ShNcFfUPoRFX1BEBqy4S4pp261bN6MpyKdOnQJgwYIF1o3rQWHm/fkTJEMohBBCCFEBZMqoGXl5eSxatIh+/foZTdO7ceMGCQkJvPzyywQEBHD+/HnGjBmDj48P3bp1A8DT05OBAwcyfPhwqlevjre3NyNGjKBRo0Zq1dGQkBCef/55Bg0axPz584H8bSeio6OlwmgZOHr0KOPHj8fR0ZEejRpRr+D8wIEDWbhwYZHXmQvSNm/ezLhx47C3tyc2NpbXXnsNgKioKNavX5/fvCDoVAvFWBCEFpdNHDlypNHx119/TUxMDHv37i3xvg+iXT//nB8AAvz4I7+fOMEyoHtaGs9V4LiEEEIIIWyRZAjN2LJlCxcvXmTAgAFG5+3t7UlKSqJr167Uq1ePfv36Ua9ePfbt24e7u7vabtasWbz00kvExMTQpk0b3NzcWLdunboHIcCKFSto1KgRERERRERE8NRTT7Fs2bJye0ZbEhsby+zZs5k1axaLN2xgZsH5s2fPFn9hQcbKsMro+++/z8aNG9myZQsHDx5k6NCh5OXlcevWrbvXFQR1pZpyaiYgXLFiBVFRUeqXn58f0dHRVK9e3fL7lqGjR48SHR1Nt27djILUgQMHmm3//sKFfAocIn/fzxOXL6MFTt+4UR7DFUIIIYQQBiRDaEZERITZTI2rqysbN24s8XoXFxfmzp3L3Llzi2zj7e3N8uXL72mcwjIajYY6BVsazBkyhK/69WMQkJuba9kNDAI6e3t7qlWrBsDMmTNZvHgxXbt25YZBMKOYBoTWTBk1Y8CAAYSEhKiVafVTjfv27WvZ+MtYbGwsixYtwsHBgfj4ePbv309cXFyRAfcPU6ey4913SQKGRkTg4uDAxW3b6BMUVL4DF0IIIYQQkiEUlZ+vry/nz58H8oOzBCCM/OyUJQwzfE2aNFHvBdC/f3/i4uKMi77op3+aHFvWWeG2kyZNMrtNSWxsrOX3LUP6gDs4OJjVq1eTkZHBoEGDigy4T5w9y1bAG5g/fz5h//wne4ATZgrnCCGEEEKIsiUBoaj01qxZQ3BwMHB3rV5v4M6dOxZdbxgQzp07V72XXnh4uFroJf8Ck20nrFhDaFXw+IAwDLgBEhISCAsLKzLgnvPttywC3gI2btzIojfeYA3w73PnymO4QgghhBDCgASEwqZYsyegfh9Ca/YuNNeHJQGhWoDmIQwIDQNuvd69excZcDs7OFALaER+gaVHH3mEToC9VBkVQgghhCh3soZQ2JRSbTthbUBY0N6a8EafIdQ8hAGhtTQaDR2AxsDo0aPp2a8ffkCmpWs6hRBCCCHEfSMZQmEzUlNTuXj1KqkWti+qSmhWVhZHjhxhy5YtHDlyhOzsbOMLS5EhvHtp4YBw8+bNtGzZktatW7Nq1Sr1fEl7ZD6o7mRnsxh4HejXrx+zXnuNtYCrQRVeIYQQQghRPiRDKCq9rVu3MmHCBHx8fFCuXUMB0oCJW7fSoUOHIq8zN2V02bJlzJs3j+bNm+Ph4YFWq+XIkSO888479O7du+DC0geE5tYQ6re6cHJyYty4cezZs4c5c+YYb3XxEHF2dKQWUIv8KaN+Hh54A+dv3qzgkQkhhBBC2B4JCEWlN2HCBDZs2IC7uzsnFizgyf37yQAiJ0woNiDUM9yHcP78+ezevRs7u7vJ9dzcXNq3b68GhKVZQ0gxRWUs2eriQRQREcGmTZsKnb+cksKr5GdgfXx8GLV6NZ7AbYP3WQghhBBClA8JCEWlZ2dnR0pKCu7u7mrAlVJwvjjqGkCDIM3V1ZUdO3YQHh5e8JLCjh07cHFxuXuhaVBnwbpAdXqqmdf0W13oC7f079+foKAg3nnnnRLvWx5iYmIKnVMUhaSkJLPt7e3s+IiC+erTp/Prxx/T4ORJTnl4lOk4hRBCCCFEYRIQikpvwYIFDB8+nOTkZG5dvYobEFBwvjhqcGYyZXTq1KmMGzcOnU6Ho6MjzzzzDMuXL797nUlG0JqN6c0VlZk7d67RsVarJTw8nGbNmpV436IcPXqU8ePH4+joSHx8PK1btwZg4MCBLFy40Kp7JSYmsm3bNqMAW1EU+vTpY7b9sw0b8vLOnbgAsfv2Uc/Dg2DgjmQIhRBCCCHKnQSEotILCQlh7dq1AByfN48GgwfrXyj+woI1hIZTRv39/Zk9e7ZF/RZVlMZs22KmjI4cOdLoeNWqVfTo0YO9e/daNA5zYmNjWbRoEQ4ODsTHx7N//37i4uI4e/asUTtLAsf4+Hjc3d3x8fExunbIkCFm+z518SI7ACdg3MGDfLdzJyuBqo6OpX4eIYQQQghROlJlVNiW0mzrYO01pZgyWtw+hCtWrCAqKkr9ql69OtHR0VSvXt26cRnQaDTUqVOH4OBgVq9eTUZGBoMGDSLXZOuH2NhYZs+ezaxZs5g1axYzZ84EMAocBw8eXCgYBOjRo4fZvu00GqoBbuSviXzCz4+uyBpCIYQQQoiKIAGhECUp5T6ERR2bY269ot6AAQMICQkhLCyMsLAwtm3bRlhYGH379rVqXIZ8fX05f/68epyQkEBYWBiJiYnG47IgcDx69CjR0dF069bNKGs5cOBAs317VKlCE6A1+dnOLk89RRxwUaqMCiGEEEKUO5kyKmxCVlYWx48f5/CJE2QBDcmfsmgJqzezN60yakmGsZg2kyZNMjr28vIC8rN3pbVmzZpC53r37n1364wC+sBRX9AmISGB5cuXs2zZMrWNpdNP9dIyM9kM/A7MXL2azBMn+B6oL0VlhBBCCCHKnWQIRaW3bNkywsPDWbJkCYd+/51FQDgYFYIxR9FoOAoMW7rU4uwXmAkArZlyWpoprWVozZo1ajCo17t3b+7cuaMeF5VFzMrKMntP7c2bdAO+AZ588km0t28TCFy9fbvMnkMIIYQQQpgnGUJR6RnuHfjrJ5/QcONGcoH2n39eKCNmKhaI69yZpnFxFmW/gNJlCIu4tjjJycn4+/tbfu8ycvv2berXr0+VKlWIiYlRs4hffvml+fZZWSwHHgOYNImXbt8mbcYMorKzy3PYQgghhBACyRAKG6DfOxDygzMF2AHGeweao9GgAWp6eZVYfMWIaVB3j1VGi3IvawjvJwcHB3799VeOHDmCm5sbr7zyCt27d6ddu3Zm2z/m788Fg2MlLw8NUM/Ts1zGK4QQQggh7pKAUFR6y5Yt47///S9t2rSh16xZtAN+oOQpowC+wP/S0tTjooqvGNJnBK3ZdsLg4kKn6tevT9WqValatSqPP/44LVq0oHnz5vz000+W39fE5s2badmyJa1bt2bVqlXq+aioKLPtU1NT+f3330lNTS30mp2dHY4FW0bExsby1ltvERkZyV9//WX2Xgk9evBfoA3QqlUrBn39NT+QP/VUCCGEEEKULwkIRaWn3ztwz549rPj739kFzCo4X5I1QKC7u9E50zV0hdznrS0uXbrE+fPnuXbtGl27dqVly5YcOHAAd5NxWeP9999n48aNbNmyhYMHDzJ06FDy8vK4deuWUbutW7fSpk0bXn/9dSZOnEi/fv149tln2bp1q9omKirKqGJpp06d+Oyzz6hRo4bZvkcsXsxeIIf8PR6zdTp2A2czMkr9PEIIIYQQonRkDaGwKVat59NfUw7bTqhtzYwvODgYe3t73NzcmDlzJosXL6Zr1674+vpaNS5D9vb2VKtWDcDonjdu3DBqN2HCBDZs2GAUfGZkZBAZGUmHDh0AiIyMZMiQIerm9d7e3jRo0KDIgPBWVhY/k/+Pj27vXi5HRBB09SqNpMqoEEIIIUS5kwyhsC0VsDH9vU4Z7dChA+np6epxq1atiIuLs25MJpo0aWKU1evfvz9xcXFkZmYatbOzsyMlJcXoXEpKCnZ2d//pMN28vkuXLgCsXbvWbN/vRESg70XJyyNo+3YAsmRjeiGEEEKIcicZQmFbrAjulII1bYqVgYrpGkJL+iyuqMzcuXONjgcNGsSuXbs4deqUVeMq7p5arZbw8PBC91ywYAHDhw8nOTkZRVHQaDQEBASwYMECtc2pU6cYM2ZM/nNoNFy5coXHHnusULYR8jexn/Sf/zAFCACqtGnDHSAZuC0b0wshhBBClDsJCIVNsWbKaHEBXUREBJs2bSr+Ov3l1m5sX4Ljx4/f1/sBdO/enW3bthU6HxISUmSmT+/WrVsMHTqU2rVrAzB9+nS+/fZbhg8fXqhtbGwsnm5ubL9zh/eA5t27s+HwYXyAdC+v+/EoQgghhBDCChIQCttiENzpM17FiQGur1tH9YsXja5LSkoqugvTNYTWTDm1IHhs3Lix5fezkH6MvXr1YsWKFVZdO336dEJCQvDx8VHP/eMf/yAwMLBQW41GQ2znzlT/6itWA+MyMvgNeBToXa/ePTyBEEIIIYQoDQkIhW0xCM7y8vKwt7cvuqlGQyLwcevWPJOQYHALhT59+hR9XTF93g/ffv45aDSwcye0bVuqe4wcOdLouFGjRsTHx7N3716r7zV48GCjY61WS7Vq1ejRo0ehtr6+vtT180OfCxwbH88T06bxBvDBI49Y3bcQQgghhLg3UlRG2BTD7J0lmbt4wNXRkaCgIPUrODiYIUOGFH2RaZbvHtcQFmr7228AXPn88xLbFmXx4sXs2rWLffv2ERQUxMsvv0x0dHShojJFKa5d9+7di3xtzZo11DCYGpqn09EbuAPYyT6EQgghhBDlTgJCYbPyLJieORio5uxc6Ly57JfqPlcZNXWhYPrqb6dPW35fEy4uLsyePZtly5axfft2Dh8+TFhYGF4m6/iWLl1Ko0aNePrpp5k6dap6vmvXrkXeu6RA2ygo1+lQV2Le50yqEEIIIYQomQSEwqYYBiOWBIQFDa3spGwDQgoyaddzcqwZlZHg4GBatmxJcHAwq1evJiMjg0GDBuHt7W3Ubt68eRw5coQjR47g5ubGK6+8wq1bt4oN+r799lsgv/BOSRSdjrP67+9z8R0hhBBCCFEyWUMobIvhGkILt5OwemP6e9l2wgpTzp2j6MmZxfP19eX8+fMEBwcDkJCQwPLly/nyyy+N2tnZ2eHo6AjkVwgNCQkhMjKS1NRUtU1MTEyh+xdbeMfkZ6D+VkoCQiGEEEKIcicBobApSikCwuzcXI4cOUJqaire3t40bNgQJyen4joxPrzHDGGLFi2Mjm9du4YrcPLWLcvva+LixYuFAjlFUXB3dzc6FxUVZRQ4durUicDAQKMtJRITE9m2bZvRZvVFFd755ptvGDd/Pi2ATsA/w8Oxc3LCPzsbD5kyKoQQQghR7mTKqImEhAQ0Go3Rl7+/v/q6oigkJCQQGBiIq6sr7du3L7QvXFZWFkOHDsXHx4cqVarw4osvcvnyZaM2aWlp9OnTB09PTzw9PenTpw9arbY8HtG2GQaEubnFt9VoWAbEfv89S5YsYceOHSxatIjw8HCWL19uUR9mj811VUzbzMxM9u7dy8GDBzl48CArRo8mEXjCza3E+xbF9J4HDx4kMTGR5s2bG7UbM2aMGgxC/ib0DRo0YMOGDeq5+Ph43N3dCxXeGThwYKF+Z8yYwRf9+zMDGA1s+fZbZvv5Mb2IZxdCCCGEEGVLAkIzGjRowJUrV9Qvw6lvH330ETNnzuTTTz8lMTERf39/OnXqZFR1cdiwYaxdu5ZVq1axe/dubty4QXR0NDqDjFTPnj05duwYGzZsYMOGDRw7dqzYrQzE/WG0htCCDOF84F/R0cyZM4dJkyYxd+5cduzYwefFVPgszZRRfRtza/MmT55stqpnH4NfVFirqHumpaUVe53pFhMAVatWJTw8XC08o//FxtKlSwu1dXV1xdneHj+gA+Du6ooTBVMVJCAUQgghhCh3MmXUDAcHB6OsoJ6iKMyePZuxY8eqpfWXLFmCn58fK1eu5K233iI9PZ2FCxeybNkyOnbsCMDy5cupVasWW7ZsoXPnzpw8eZINGzawf/9+WrZsCcAXX3xBaGgop0+fpn79+uX3sDasxAwh4Aocu3KFdgXHiqKwY8cOXFxcir6oFFNGNSb/NdStWzeTxvmtmlatWrhfC7du+Oqrr/jqq6/U44yMDNzd3fnf//5X7HX69YSG9IVnHB0d+eSTT6hXrx7nz583G9w2adJELeazHLiu05Gbl0d1LNsGRAghhBBC3F+SITTjzJkzBAYG8uijj/Laa69x9mx+HcRz586RnJxsVD3R2dmZsLAwdUPvw4cPk5OTY9QmMDCQhg0bqm327duHp6enGgwCtGrVCk9PzxI3Bs/KyiIjI8PoS1jOsLKopVNGd50/T5s2bWjVqhXt2rXjhx9+sGrKqEUBoRX7EBYZ9FkRUO3cuZPffvuNP/74g7Zt25KRkcH06dPJysoq9rqNGzcWOmdaeCYgIIDIyEj++uuvQm1nz55ttN+gVqvFCVhj5fiFEEIIIcT9IRlCEy1btmTp0qXUq1ePq1ev8s9//pPWrVtz/PhxkpOTAfDz8zO6xs/PjwsXLgCQnJyMk5NTof3c/Pz81OuTk5Px9fUt1Levr6/apihTpkxh4sSJpX4+m2dNQAj4A7HNm9N2yRKLuyiU6bIi0LEqS2baNi8P7Cz7HY+bmxv/+c9/CAgIYNy4cVy+fJnatWsTEBBgef8FmjZtynPPPYenpyfx8fFs376dP//8k86dO5c47v7DhvFBwfcaM4Hzn3/+SWBgoNVjEkIIIYQQlpGA0ERkZKT6faNGjQgNDeXxxx9nyZIltGrVCgCNSYZGUZRC50yZtjHX3pL7vPfee8TFxanHGRkZ1KpVq9hrxF1GAVcJmTs1a3eP+xBate2EFRnCQn9SrBhnjRo1ePzxxwGYOXMmTz31FF27dsWtFIVqfv75ZxYtWoSDgwPx8fGEhoYSFxdH3bp1zV9gWNhHUdRAcH9KCrd+/NGgWX4Bp4kTJ/LCCy9YPS4hhBBCCFEymTJagipVqtCoUSPOnDmjris0zeJdu3ZNzRr6+/uTnZ1dqDiHaZurV68W6islJaVQ9tGUs7MzHh4eRl/CCtZsO2FNkGZ0mVLssTnFrSE0derSJaKBsefOGU0xHvjmmxaPsUmTJpw/f1497t+/P3FxcWYLzZREo9FQp06dQpvc5xaVgTV4P76cNk195mnHj/Ppp59y6NAhEhMTOXToEFqtlkOHDlk9JiGEEEIIYRkJCEuQlZXFyZMnCQgI4NFHH8Xf35/Nmzerr2dnZ7Njxw5at24NQLNmzXB0dDRqc+XKFX799Ve1TWhoKOnp6Rw8eFBtc+DAAdLT09U2ooxYs+1EMZU/i2WSqbvXfQhNTVu1itnAkMBAZs2axcyC82fPnbO4m7lz5xptJ6HVagkPD6dZs2aWj7WAfpN7vYSEBMLCwkhMTDR/gcEzelapoh6vCA2lbdu2nDp1ioiICN5//33q1q3LhAkTrB6TEEIIIYSwjEwZNTFixAi6dOlC7dq1uXbtGv/85z/JyMigX79+aDQahg0bxuTJk6lbty5169Zl8uTJuLm50bNnTwA8PT0ZOHAgw4cPp3r16nh7ezNixAgaNWqkVh0NCQnh+eefZ9CgQcyfPx+AN998k+joaKkwWsYMgzPF0gyhhRvYm7Jm2wmNFcGnBqgDJDs5sXr1ahI0GgYBuTk5Fo9t5MiRRsdff/01MTEx7N692+J76L344ot06dIFR0dHYmJiGD16NL179+bLL780297wGZW8POwKjl3t7HjvvffIzMxkzpw5zJo1S/bmFEIIIYQoY5IhNHH58mX+9re/Ub9+fbp3746TkxP79+8nKCgIyP8gPWzYMAYPHswzzzzD//73PzZt2oS7u7t6j1mzZvHSSy8RExNDmzZtcHNzY926ddjb26ttVqxYQaNGjYiIiCAiIoKnnnqKZcuWlfvz2hrFmgwhcBQYvXMn3bp1M56eabDp+vr1642rw5aiymhR15rjVbUq5w3aJgBhQOKRIxZ388UXX7BmzRq+++47tFot3t7eREdHl7gPoTn6bSeOHDmCm5sbr7zyCrdu3SoyuM3OyeEIsAX45cQJcgveH31Q7O7uzrhx4/j3v//N7NmzrR6PEEIIIYSwnGQITaxatarY1zUaDQkJCSQkJBTZxsXFhblz5zJ37twi23h7exe/dYEoE1YFhIpCLDCkSRNaz5pFfHw8+/fvJy4uTt2KBCA6Otr43qUpKmNF2+lvvEHwu+9y2eBcb6C3mXWpRalSpQq7du2iRo0afPLJJyQnJ9O8efMS17CaY7rtREhICJGRkaSmphZqu2zZMj765hueAzyAy+vXc0irZRRQ0+TZPTw8aNGiBQBHjx5l/PjxODo6Eh8fr06tHjhwIAsXLrR6zEIIIYQQIp9kCIVtMZwyakGVUQ1Qw83N8oIp5u5rTZVRC6hTXU0zkVZMbQ0KCqJGjRpAfhA3dOhQIiMjcXFxsfgeelFRUUZrCDt16sRnn32m3t/Q/Pnz+bxHD+YAk4BJQ4fyqYcHn5t5HkOxsbHMnj2bWbNm5a+bnJm/ctIwMBdCCCGEENaTgFDYFMOQw5IMoS9wxaDyprmCKY8AnmYu12f97veUUX11VNOKpJZMgdWzJogryZgxY4wK1Jw6dYoGDRqQZ+a5XV1dOXrp0t0x63T8nJODC3ffp9TUVH7//XejDKPVlUyFEEIIIYRFJCAUtsWKojIaRWENEGCyN1/v3r25c+eOenwNuGjYoBRrCK2ZMnrq4kWigfcuXGDv3r3sADoCT7Vrx6ZNm2jatCnt27dn3759Rd6jqCBu8eLFJfYPsGPHDjp27EhcXBzt2rXDy8sLX19fOnToQLt27Xj11VdJSkoqdN2yZcvY9ccftAFaAa8MG8be7GyWA0fS0mjTpg2vv/46EydOpF+/fjz77LNs3brV+kqmQgghhBDCIrKGUNgUw+DM0m0nLNnw3Wg3yHvZmN4C769cSVXgTnY2cXFxXAF2Aw3//JN+/fqRmJiIm5sb3bt3Z/v27Rbdc/DgwWzbto2+ffuyadOmEtuPGjWK1atXo9Vq+eSTT9i5cydVqlThrbfe4oknnmD69On06dOn0HX+/v78vV07Wh87BsCF6dO50rs3/nfusOjSJfbt329UoCkjI4PIyEj27NlT6F69e/emd+/eFj2fEEIIIYQwTwJCYVMMwy6L19yVcmN6a7J+1kjWavkfcOSxx/ihdWv+feAAEwteCwkJoWbNmgBGVW1N6Yu16J0+fZrmzZtzrCBQK4mLiwu1atWiVq1aPP7449SrVw8fHx+qVKnC1q1bARgyZEjJN1IUNRi2A1JSUowCwpSUFOzsZCKDEEIIIURZkYBQ2BYri8rkN7QyoCvjKaOO9vZoAWc7O2bOnMmeWbM4BGTeuMG2bdsAyM3NNbuGT0+/+bs+2KpSpQonTpwgLy+PTZs2MWrUKDw9PZkyZQqhoaGFrvf390en02Fvb8/p06eN+zx6FP78kx49epjv3GTarv59Hv7oowwfPpzk5GQURUGj0RAQEMCCBQtKfE+EEEIIIUTpSEAobIvhpuiWbkxvJrCKiIgocmqlPkOo7+l+B4SdGjaEgwfVQOoA8BPwtsGaQAcHBzZv3lzkPVxcXBg3bhxeXl4AvPTSS6xdu5b+/ftbNO3U3PYsap8FW1Dk5uTg4FD4nxjDYjiG701tFxfWrl1b9IMLIYQQQoj7TgJCYVOs3YcwBrh25Ai+MTFG9zBXMMWUxuS/xba1Ihv5j8hIgg8e5E+Dc+HA4R9+MGpnLhjTS0hIoGbNmvj4+ADg6elJ69atmTRpEvPnz7do2qk5J0+eZBSgBRyee46cnBx8fHyYPHkyjRo1ym9kkiG000+xLebZN2/ezLhx47C3tyc2NpbXXnsNyK+Wun79eqvGKIQQQggh7pKAUDxUevXqxYoVK0p9vWJFlVGARGBy3bq0nj797nWKYrZgisokI3i/t50oatzWbDsxePBgo2Nvb290Oh09evRQp3qWNO20qPuuBGoBmevX4+7uzsWLF+nVqxe7du3KH7/hPfPy7gaCZvr6888/CQwM5P3332fjxo04OTkxbtw49uzZw5w5c7h165ZV4xNCCCGEEMYkIBQPpJEjRxY6pygKe/fuvbcbWzFlVKMoxANu9vYEBQUZvVZswZR7WENoSTZRP+5CGTUrgzdDWq22UDawpGmnekuXLmX69Ok4Ojpy/fp1dU/Grl27sm3bNjw8PNAZvteGWVqD8/vT07n1448GzRQSEhL4+9//zu3bt+nduzeOjo7Ex8fz22+/0bVrV3799dfSPbAQQgghhAAkIBQPqBUrVrBy5cpC53/66ad7u3ERwYg5GkVhMLDdYOqlVqulWrVqRRdMMenD7HERfeU3LbntwT/+4B9A2h9/0GPsWF4GGgKvDBnCpt271XbFrXMsPGTz/RY17dRwCudff/3F8ePHcXR0JDg4mMcLxvNrUhIdOnQgNzeXadOm3b24iAzhtPPnCf30U1q1aqWOR6vVkpCQQHp6Oi4uLnh4eDB27Fi6dOlCXFwcnTp1suj5hBBCCCGEeRIQigfSgAEDCAkJwdfX1+h837597+m+SmmKyhhc0717d7WSZ0l9lNW2EzM3bSIQaOzqytatW/kX+X+Rs44eJaZgraOl6xz1vv32W6vGYDiFs06dOsTFxTFnzhweffRRxl64wPtA9erVWb9+PS4uLkbXKiaVXvVrCH0dHUlKSuLAgQP4+flRtWpVUlJS1OdZtmwZDg4OxMfH88MPP3Dy5EmqVq1q1biFEEIIIYQxCQjFA2nSpElmz8fGxt7bja0JCPUMAxhLgrsy3nYi7dYtLgIH/P0J3bePR+zsaAgc0OmYXrDWscR1jib01UZNHT16lPHjx6tTNVu3bg3A2bNnqVatGpA/fdbJyYnw8HCOHTvGBCAbSE5O5tVXXzUuKGPyjIpOpz77nbw8zp07x+3bt5kzZw6//PILDg4OVKlShWPHjuHg4EBwcDCrV6/m0UcfRVEUMjIyLH5GIYQQQghRmASEwrZYuYbQ9BqLMmmmAaElU0YNvs/NzS22QmgVJye+zs4muKCvBOA6+dtPGK51tGhj+BI899xzJCYmqpm5/fv3ExcXh4ODA+fPnyc4OJjjx4+zYsUKli5dio+PD3v1QZpWW6igDBRdVOaNgAAyMzPx8vJi3LhxZGRkcOrUKW7fvs3cuXONxhUcHMzAgQPZt2/fPT+jEEIIIYQtk4BQ2BTDqpklrSE0N2W0qEyaOWqhGAsCwtN5eQwGLpw+TfWitmsoMP+119jx738z5cIF3EJD0QCtgIMmay4N1zmWFGTqp5ru27dP3YheURRu3rxJnTp1AHj00Uf5z3/+w+LFiwH47LPP1EI/Wq2WqlWrsnv3bvD0VO9bqKAMGGdc8/LU96mdu7vR++vh4UGLFi3U74cMGaJmKr/99lu8vLzufU2pEEIIIYSNk4BQ2BbD4MzSqpxWVu80zQhaMmV0vE7Hf4BTdevSaedOALPZNQBvFxdmA3tr1yZ09246ODkxC7jq4WHULikpiVGjRqHVanFwcDAKMkePHs3Bgwexs7PjiSee4Oeff+bVV18lJSXFaNrpTz/9pGYC9YV+Nm3axPTp04mKigLyC/10796dqVOn0rJlSy4DXkDVJ5/k/PnzBAUF8f333/Piiy8Wen8Unc6igDk2NpZFixapmcrQ0FDi4uI4e/ZsidcKIYQQQoiiSUAoHirWVM40y4p9CPWBSrZOx5EjR0hNTcXb25uGDRvi5ORUYh/6zJclAaEO8MQ4WDKbXQM1qNUoCkpeHorJeb3BgwezcuVKatWqpZ7TB5n79++nWbNmODo64uvryyOPPEKnTp1YvHix0bTTf/3rXwQHBwN3C/2EhYXx4Ycfqm369u3L2rVradeuHR4eHpwH/gd0TkvjypUruLi40LFjRzUg1JhmCE32IUxNTVXfa29v7/xrNBo1U7l69WoSEhIYNGgQuVbsvSiEEEIIIQqTgFA8kPRTGA1ZWznTLCvXEC4DpiUl0WHJEjw8PNBqtRw5coR33nmH3r17F9uH2b0FFQU0hXcbfM/OjmidjsyzZ/m8e3fS09MLb9dgMm6F/IDqWyALOHbqFPYajRq06nQ6PA2mb8LdINPOzo45c+bg5+dHfHw8zz33HP/617+ws7MDzG+vUVyhH30BG1dXV6oD1YEOHTqo/RtOVy20hrDg25//+osxbdrg4+OjvtdpaWlMnDgRRVFo0qQJbm5uxMbGkpCQwPLly/nyyy/NjkkIIYQQQlhGAkLxQEpMTGTbtm1qgALWV840y4oMIYrCfOCThg15bs4c9XRubi7t27cvOiAsoB+56TYLGpMN4AFaajTsBH4ICqLZv/6Fl5dXoe0aTJ9Bk5eHkpfHD8A84MnNmwm4dk0NWp977jmio6NxcnLCw8PDKMjs27cvfn5+atXOhIQErl+/jpubG2DZ9hqG9Gv/mjRpgm7HDuyB5cuXA5CdnU316tXvNjYJyvXbTixMTWX3mTO4u7urr2dkZBAZGckff/yBVqvF1dWVCRMm8M4771CnTh1cXV0tHqMQQgghhChMAkLxQIqPj8fd3R0fHx+j8/dcOdOaojKAK/BzejrPFRwrisKOHTuKDtbyGxkfWhAQ6rNkzhoNAQEBxY7JdA3efGA3cGXgQGp07QrcDVp3797N7du30Wq1RkHm448/zoABA/D09CQ+Pp7HHnuMNWvWkJ6ezqZNm0hMTKR9+/ZMmTKF0NBQs9M4zZk9ezYYBM/6TOOaNWuMxmzuWewUhZSUFKOAMCUlBTs7O1JSUkhNTeXOnTvUq1ePxx57DG9vb+7cuVPseyWEEEIIIYonAaF4IA0ePNjo2NwUxlKxcmP6ZcCQ1FTWtGmDTqfD0dGRZ555Rs1+ldQHimI0ZbSo9YSFJ5EWTZOXRxZw+s4dtNu2kQtsAZ7UTyU1CVpdXV0LZdKysrKMirSsW7eOM2fO0L17d/r168e+ffsIDAwkPDycqlWrmp3G+eyzz3L8+HE1UDx16hTTp0+nAdAJmFy/PleuXGH58uXq+sFC749BhnBslSoMHz6c5ORkFEVBk51NgJcXCxYsoHHjxqSlpREcHEyXLl3o168fI0aMMKoaK4QQQgghrCcBoXgoWDuF0VCvXr1YsWJF/oGVRWX8gSG1a9N+zx71/M8//4yvr2+R1ykmAaFphrCIi4z/W4yNv/3GGKBmRgaP797Nk0B/wOXdd/H96COLglbTIi2urq588MEHuLi4EBISQsOGDcnNzeXChQtcunQJd3d3vvnmG6ZMmUK9evXo2bMnGRkZeHh40L59e3x9fVm8eDGzZ88m+o03aAKc2L+fl156ienTpxsFhEYZToM1hI/Z27N27Vp27NjBpEmTeGrrVp4HevbsiYuLC4mJiQQHB7N8+XK0Wi1Llizh+eefL/H9EkIIIYQQRZOAUDwULNncfeTIkWav27t3r+GJu9+XYtuJ5ORkxjRpQtsPPmD0+PFFDdboe9MAyJxdisIs4MbZs4xftYrXXnsNgKioKNavX2/U9ofTp/kZ2O/jw9OjR+MyYwa5QKiHB/v37zdqqw+uLl++zCeffMKoUaPw9PTE3t5e3U4CoGvXrrRt25aFCxfy/PPP07p1a+zt7blx4wZdu3Zlzpw5zJgxgz179pCUlMTq1avVNYcdO3bk66+/5pdffmHRokUMBDoAVatW5bvvvqN79+5GY9KYFJXRZwj150eNGsXq1avR1q5NBJC4bh0HDhzg9ddfZ9asWcTGxvLxxx9z6NAhmjVrZv5nIIQQQgghLCIBoXgofPvttyW20e+TZ8po83Iri8oY/Rfg4kXWA2uWLAFLA0LDNXNFBIQf5+WxBdgVFMRPBw+yZ88e5syZw61btwq1dbKzYwfgXFBURoH8Y0fHQkHx8uXL6dKlCydPnqRfv34kJibSp08fjh8/XqjtunXrcHBwYP78+epWFT/99BPTpk2jTZs2QH7l0ICAAKpXr86xY8cIDw/HwcEBRVHw8fFBq9Xm9wvczsmhSpUqxgVlTN4fw/fDruB7FxcXatWqRS0gBKhZsyYxMTE0adKEDRs2MG7cOI4cOUJeXp7Z90cIIYQQQlhOAkLxUNBXsSyOfp880+mcffv2vXtgWFSmhAyhfn88w43TlYItI2reuFH0hSYBYVEBkCF7oBrgotEwc+ZMFi9eTNeuXblhpp8xrVvz32+/ZduVK7hERuIMPAPMeustXpo6VQ2KExISuHXrFr/99hu3b9/GwcGBf/zjH5w6dQqtVstvv/2Gvb09/fv358UXX0RRFNauXWu0VcWUKVP45ptveOGFF2jRogUzZszA3t6e5ORkpk6dytixYzl9+jTt2rXjmWee4V//+hcUFMXRZWfj6uZmVFDG9D0wrDKqf5/8/f3R6XTYA9vIz8ra2dlhb2+Pm5sbM2fOZP78+UW+P0IIIYQQwnISEIpKo7h98lQmBU2KZSZDqK9MqilmCqvpGsI8CzKEDYHzBsf9+/cnKCiId955p1BbLxcXZgN7/fxo/P33VKlZE4CzVasaBcXnz5+nbdu2zJkzh6VLl/L666+jKAq9e/dGq9Xyn//8h4CAAMaNG0eLFi0ICgrC3t6eGjVqYGdnh52dHZmZmXTt2pVp06bRtm1bsj/4AJ29Pf5jx+ZXFC1GblaW+n1ycjL+/v75B0XsQ6jPEK5atcroPn379qVp06b8/e9/V89dvnyZY8eOmX1/hBBCCCGE5SQgFA+srKwsoyqWDRs2xMnJ6d5uahKMFEdjJiBUcnNL7MI06LOkqMxkOzv88vI4U9CXVqslPDycU6dOFW6sDzALpoyq8vKMguL4+HhiYmLw8fEhISFBPT906FDmzp3L448/DsDMmTNZuXIljzzyCE899RSJiYnqVhW9evUyKubj9P77+d+MHVvi+2AYEPbt25dNmzYVvAnmq7D2vH0b1xYtjO6hAGcOHrx7bQEvL6+i3x8hhBBCCGExCQjFA2nZsmXMmzeP5s2bq9sdHDlyhHfeeafEDeGLZc22E2au0eXkAMVnCAutIbQgIFSnpxYcF1tVVb8xfcG9dwCTgNpffcVrtWqphWOmTJlitI+j4dYdX331FU2aNMHNzY3Y2FgeeeQR3nrrLXr27Anc3aoiMzPT7BAyMzON9gvUa2EQ0OV06YKjszPZ2dmcP3/e7Puj5OWpz35LUTi6dy8ODgX/LBVMz+3UvLn596GYcVSU9PR0qlWrxrp164iOjq7o4QghhBBClEgCQvFAmj9/Prt378bOzk49p99svaSAsNhN1EtTVMbwGmszhKYBoYV9FltV1bAqp6IwClgN/NKqlVo4xs3Nje7du7N9+3b1MsMg89q1a2zfvh0nJyfGjRvHH3/8wbJly3BzcyMmJobMzEyqVq3KmTNnaNSoEY6OjsTExPAP4DgwoG1bvvzyy0JZ28zMTJLI/4flfytXUqNBAyIiInjkkUfMvj+KTof+JzzMwYHMzEx1vWhqwVdsbCxLly5l+vTp6jhGjx4NwPPPP88egy1BKtqff/4JwJo1ayQgFEIIIcRDwa7kJrZlypQpNG/eHHd3d3x9fXnppZc4ffq0UZv+/fuj0WiMvlq1amXUJisri6FDh+Lj40OVKlV48cUXuXz5slGbtLQ0+vTpg6enJ56envTp00et0mjrXF1d2bFjh3psutm6OVu3bqVNmza8/vrrTJw4kX79+vHss8+ydetWtY1GKbnAi0GnhU7lWRAQYhIQWrKGUGPQHkqoqqq/h6Kgy83FBagF1PP3JyQkhJoFawqzsrJITU0F8oPkmzdvqsf29vZUq1ZNLdLi5uZGamoq2dnZTJ8+nfT0dKZPn05eXh5HjhzhyJEjHD9+nEDg3+RnGxctWkR4eLi632GLFi3Izc2lBdACiOrRg+bNm3Pw4EHGjRtn9J6o76JBhrCznR1eXl7qz/FVYCKwYMEChgwZwscff8yRI0dwc3PjlVde4datW5w4caLo96kCaDSakhsJIYQQQjxAJENoYseOHbz77rs0b96c3Nxcxo4dS0REBCdOnKBKlSpqu+eff55Fixapx6Zr24YNG8a6detYtWoV1atXZ/jw4URHR3P48GHs7e2B/A23L1++zIYNGwB488036dOnD+vWrSuHJ32wLVu2jKlTpzJu3Dh0Op1Fm61PmDCBDRs2GE0hzMjIIDIykg4dOgAmm6JbsDE9GO+bp2YIiysqU1yGsKSAsECxVVUL7mGXl0eeToc/oCO/aurYsWNp06YN1atX59y5c0RFRXH8+HEaNmxIcHAw/fr1Iy0tjatXr/LWW2+pFUWbNm1KlSpVyMzM5KWXXuLq1avs2LGDO3fu0Lp1a8aPH8+5c+f4CvgQcHd3Z+7cuUZZ28zMTE6ePImDoyMA57/8kuAWLejUqRNhYWFG49dR8I+PYVGZgvdU/3Ps6uHBMoB163BxceGFF17AxcUFb29vqlSpgp+fn9VVRmfOnMlzzz1HkyZNrLpOCCGEEKKykoDQhD4401u0aBG+vr4cPnyYdu3aqeednZ3vVk00kZ6ezsKFC1m2bBkdO3YE8veDq1WrFlu2bKFz586cPHmSDRs2sH//flq2bAnAF198QWhoKKdPn6Z+/fpl9IQPB39//xKrWJqys7MjJSXFKCBMSUkxmnZ6z0VlLKgyqjEMNK0NCIubKqo2uTuuPJ0OfU1ORaczCopzc3MJCwvj5MmTxMTE8PXXXwP5QfIjjzyirhcEeOaZZ+jRowcuLi7s2bOHzMxMmjRpwujRo+nVqxdvvPEGrq6uOAKfAcNr1CiUtZ08eXL+lM+Ce+qLyhhlB0ENCPXvhz4QVP9b8HN0NLgkNzeXxo0bc+TIET755BN27tzJ8uXLCQ0NLfH9MjR8+HBcXFy4ffu2VdcJIYQQQlRWEhCWID09HaDQWrTt27fj6+tLtWrVCAsL48MPP1T3vzt8+DA5OTlERESo7QMDA2nYsCF79+6lc+fO7Nu3D09PTzUYBGjVqhWenp7s3bvX5gPC0liwYAHDhw8nOTkZRVHQaDQEBASwYMGCu40KghF7SrcxvSVrCE2njBoFhEUEfEUFmEbbNegZBKVGm97rdEZBsYODA3Z2dvz2229GQXFKSgp+fn5GezYuWrSIGsA1nQ43Nzfc3Nzo0KEDH3zwAQAODg75WduAABIBnVar7j2oz9p269bNeJjZ2QDG2cGC90QdteHG9AXvgf7nmAG0AjShobi6uvLZZ58B+WsKn3zySYYPH06tWrXMvm9F8QRuG1Q/FUIIIYSwdRIQFkNRFOLi4nj22Wdp2LChej4yMpJXX32VoKAgzp07x/jx43nuuec4fPgwzs7OJCcn4+TkVGjan5+fH8nJyUD+B33TDdQBfH191TbmZGVlkWXwgTYjI+NeH7PSCAkJYe3atcW2UXQ6ywPCAobBmn4NYbEZvWICwpKykqb3M9quwWQ8+imjKp2uUFB8584devXqha+vL61atUKj0fDII4+gKArBwcFoNBq8vb1x0WgIAP6Xk5O/Kby9vRroZWdnU7169fysrb6v/fuLfw6AotbDGgaEiqIuZNY/l/pz1K/H27ePyZMnGwXGHTt2JCAggOHDh5c8DsMhASstyMI+iE6dOsXWrVt59913K3ooQgghhKhEJCAsxpAhQ/jll1/YvXu30fkePXqo3zds2JBnnnmGoKAg1q9fT/fu3Yu8nz5rpWeuAIVpG1NTpkxh4sSJ1jyGMKDk5aHTaPIDtRICA32AohSTIVQM1sCpSrGGsBP5QWrGpUt4FGzdoCgKZ86cKdzYoKhMnkmG8EmDoFhfmdPf39+oMudzzz3HX3/9RWpqKq6urnzyySes+ewzNgB+Dg7qGle4m6Fcs2aN2XEXq6hfVhhOGdXpsCsoMmNfzM9jzJgxhc41aNCg0BRvS/QsuUmpKWb+zNwvzz33HFeuXJGAUAghhBD3lVQZLcLQoUP5/vvv+emnn9SqjUUJCAggKChI/fDu7+9PdnY2aWlpRu2uXbuGn5+f2ubq1auF7qWfzleU9957j/T0dPXr0qVL1j6abcvLUytcaizM1hlVJjVZQ2hUdVR/v1IEhDeAvcCnNWty8OBBDh48SGJiIs3N7cGnLypTwr1jY2PVCqGGlTkVRSEoKIg7d+6o7bo+8wyRQLZJ1rRv375mx2sJ/ZTRQkymjGqAHCrHP0Y6S/e2LIXsot5PIYQQQoh7IBlCE4qiMHToUNauXcv27dt59NFHS7zm+vXrXLp0iYCAAACaNWuGo6MjmzdvJiYmBoArV67w66+/8tFHHwEQGhpKeno6Bw8eVDfzPnDgAOnp6bRu3brIvpydnXF2dr7Xx7QpRuvw8vLI02cIS7Exvem2E3m5uaj5NJ0O7OxKFRCOBzK5u45Or1BBFu4GspqCKaMxBefTv/oKz19+KehW4datWzgWVPzUr7uLjIwkNTWVGzdu0L59e/XP0s9Hj2IPZCuK+uexyAylhfJycsyeV/LyUN8FRUED6DSaQs9u6OjRo7z33nu4uroSHx+v/h0ZOHAgCxcuLPUY77eyDAhlSwshhBBClAUJCE28++67rFy5kv/+97+4u7ur6/k8PT1xdXXlxo0bJCQk8PLLLxMQEMD58+cZM2YMPj4+alENT09PBg4cyPDhw6levTre3t6MGDGCRo0aqVVHQ0JCeP755xk0aBDz588H8rediI6OloIy95nhOjzFYLpiqaqMmmw7YRQg6nTg6FjovpYEhC8CHhQuLlOoIIvBuO0KpowmAtuA3zp25Im4uILhKSQmJnL+/HmCg4PJzMw0Wnd3584dDh8+jIND/j8BLk5OZADVHRzYtWsXx48fJzU1lbFjx5KdnV1oW5WS5ALZBRlIUxpFuTttt2DKaI5GowbW6ib0QAwwmvyANicnh88//5z4+Hj2799PXFwcZ8+etWpcZa08AsKSppULIYQQQlijMszSuq/mzZtHeno67du3JyAgQP3Sl+y3t7cnKSmJrl27Uq9ePfr160e9evXYt2+f0XYHs2bN4qWXXiImJoY2bdrg5ubGunXrjNZnrVixgkaNGhEREUFERARPPfUUy5YtK/dnrixatGhR6Eu/Mbqeos8QYnmVUXNTRs0e67833Zjeim0nitvOQqXPEBZkH+MBdyDQ3Z0dO3YQHR1N9+7dad26NcHBwQB07doVuLvuLiUlhVdeeYWYmBhiYmJwtLfnZfKnjIaHh7NkyRJ27NhBjRo1jDafN6dXr14AJCUl0bZtW7wAb6DtuHF4eXkRFhZGUlKSwVuiFMoQ5hpkCOfNm5c/1RVwA1555RUURcHV1ZXg4GBWr15NRkYGgwYNIteSqq/lqCwDQr0H7ZmFEEII8XCTDKGJkopBuLq6snHjxhLv4+Liwty5c5k7d26Rbby9vYv9oC2sk5mZSVJSkpr10uvUqZP6vVpUhqKDMz2zlUTvcQ1hUfsMljYgzMvNZXDB6T91OubNm8e2bdt45JFH+OSTT/D29uaxxx7jt99+M5oKmpGRwaxZs9TtKHoGB9Nk+nQa2Nmxe/duo20q9JvP/1IwHRWAkSPVe+3duxeAwYMHk5WVxVEgGDgyfjw+ffrw8ssvM3jwYHbt2qW+B/oMoX4NYZ5Go+47aGdnd3eqK/Dk22/zt7/9zWjrl4SEBJYvX/7A/QKlPDKEOTk56vsjhBBCCHGvJEMoKg39xuimDNfhaQwCQou3gChm24lCU0ZN72vBGkKlIEsGlgWE6rYTpvcu2IdQXwU3NjaWqlWr4ubmRlBQkFGxmnr16uHu7k5QUBBBQUH4u7sTDPg7ObFjxw6jsek3n1+xYgVRQBT5+2pu3bqVCxcu4OjoSNOmTfnll1+4efMmHvr3JicHDw8PNBqNcaCUl4diOGYg185OnTIaFRXF+fPn1eYNGzY0u563d+/eamGcspJ96BDa8eMtbl9eAaEQQgghxP0iAaGoNLp161Zo70cwXodnNGXUwgyh0ZTRggBQf8YwIFTXF5oEgCUFhHl5eepfxOIKqxhcoI7LaNuJvDyioqK4deuWem7OnDlMnTqVGjVqGN1i/vz5+Pj4FBr77Dp1+O9//0ubNm1o1aoV7dq144cffmD58uUMGDCAECAMWLlyJd999x3jx4/n6tWrrFu3jhUrVnDhwgUeA3yBTh99xKOPPkp2djbTpk2727mioGg0+Ws5C/Yh1BWsIVQUhTFjxqhTXQE2bdxIdnY2Dg4OdOvWTc1IQn5RmbLk1Lw51f75T+P9HotRHgGhVBsVQgghxP0kU0aFTTEMCLFwDaFRURmTKaOGawiV3Nz8INIwqFMUNCZBW+FuFDU7Zs2UUTuTgBCdjjFjxvDOO++op/SFjkz36zMtVqMPCKvb2zN79myz3U6aNAn++U8gv9ptrVq1qFWrFs2aNaNmzZrUrFmTli1b8u22bVwHfu7Th8g5c3BxcTG6j0ZRUCgIqguC4Tw7u/z/5uUZrbMFqPnrrwyYPZtq1arh5OTE2LFj6dKlC3Fxcfz4448lvl3qMxpkYq2lvXQJb4MgtSj6gLAs9iGUDKEQQgghyoIEhMK25OWhWDhlVJ+tMwrSiikqk5eTgx0UCgCVEgLCvLw89S+iXUnTWMGo2I257KO5LGmJt9RnPi3pH/Dx8UGn02Fvb8+2bduA/LWGeXl5uACPAVerVi0UDALqzyCvoD977k4Zzc3NLRQQuty8ydmzZ9WqqPHx8WzcuJGTJ09y+/Zty59Rpyt1QJhjZiqyOTJlVAghhBAPG5kyKh54hlUV9RUtS61g/ZqOkoMf/V+OYjemN/hwrn5v2D4vD8wVnjEcUm6u2b6Kou5DCMZTRu8hGDly7hwdgZmXLrFp0yaaNm1K+/bt2bdvn9n2n8+YUShwc3BwYPPmzXfXBxYVuCgKaDRqhtAeyLW3xx7zAZWTszO5ubk0bdqUtm3bUr9+fQ4dOsSqVatIT0+3+BlN95C0xh0L+zHMEOZZGFxbSwJCIYQQQtxPkiEUD6TXX3+dHTt2kJWVhZ2dHTqdDldX13svImKQnbI0Q2h2H0L97cwEhBrTrF1JGUKDe1i0htCwqEzBvbOAk1evkrplC97e3jRs2LDYvQPVvf4cHYmJieHzLVuoCRzNyOCn114jMDCQ3NxcBg8ezNGjRwtdr8vIMHtfBwcH9E9T1Mb0FEwZzQPQF5Wxt8//r5lr8ry9ycrK4ocffqB69eq0bduW8ePHExgYyIABA4p8xkJjzs4u9T942VZmCJcvX87y5cvv69RRyRAKIYQQoixIhlA8kFauXMm0adNYuXIly5cv56uvvmLKlClkFBGIFMcoq2hFQGhfTECoP5OblVXoNdMqo4YZwpICQosyhAZZyry8PJYB4cAPp06xY8cOFi1aVOLegepef0eO4ObmxmWtli8BXwcHbt68yYYNG/j++++Nqn1+8803NAV6A19/8w3169enefPmfP/99wBs3ryZJ554gkeAesCW06eB/KqhUVFRd59XpwM7u/yfQcGz6wqyjbrsbHbs2EHHjh0ZBmwCev/rXwB4enrSvHlzXnnlFXJycti7dy+enp4lvl96unsoxvIgTRmVojJCCCGEuJ8kQyjui169erFixQqzr+Xm5hbaG7AkjzzyCE8//TSPP/64ek6r1RpVxjQ1smBvPEOG++RBwZo+g+mKxSluyijWTBktqahMKTOE9gUZwvnAbuBoq1Y0mzQJuLt3YK1atZg0aRKXL1/mk08+YdSoUXh6enLz5s27e/3FxjImPp43srPJVhTatGlDzZo1C22APmPGDPYAmUCj+fM5c/YsLi4udOzYkRdffJH3338fDw8PjgFzgOXHjvHXkCHcvHnTKIjR5OaSp/8ZFDx7XkFAmJuVxahRo1i9ejUptWsTBfzrpZcYsWkTw4YN48CBA2qgu3jxYr788suS368C9xQQ3rhhWR+yhlAIIYQQDxkJCIVVLAm6AJKSkhg1ahRarTZ/GmFODj4+PkyePJlGjRqV2M/KlSt5/fXXcXJywsPDg/T0dHJzc1m6dGmR16xYsYKVK1cWOv/TTz/dPcjLy1+/ptGUbsqoPqgo+HBuGGToM4RGU0YVxbgQjZmAzzCo1Fmy7kyfISzo0xXYAbjrdIwcORLl8mUufvUVl2rW5G9/+xtdunTh5MmT9OvXj8TERNzc3GjWrBnnz59Xt3doUaMGs8+d402DIjEAjRs3Vr93dXXFDXADHq9Rg4iICOzt7dFqtQDY29tz6tQpfgEigWRfX3788UeuXr0KwI8//sgLL7wAOh060wxhwS8MdNnZuLi4UKtWLfyAEMDHyYmzZ8/SoUMHdSxarZb+/fvTv3//kt+vAkbvc0FBHEvl3LxpUTsJCIUQQgjxsJGAUFjFoqALGDx4MCtXrqRWrVrquYsXL9KrVy927dpVYj/t2rVj586d3L59G61Wi5eXl/mKlQYGDBhASEgIvr6+Ruf79u2rfq9RFPIMKlwWx8Fc8FbcGkL9awbX6XJzS8wQJiUlMRlIA7K0WpxDQ4sNnvX30CgKSk4Oy4CpwE8//MBJrZZgR0caAwn9+jHnhx/o2bMnhw4dwtPTk5o1awLw2GOPGe31N6FtW546d44ZBu+dg4MDW7ZsUY+bNGmCbscO7IGsrCy27dwJQPPmzRk6dCiNGzfmzJkzDAJaAn6OjrRr1Yq1a9dy+/ZtDh06xAsvvIBdbi559vb5GcKC9yyvICDMy8nB398fnU5HHrAN2J6dzYYNG0hMTKR169bExsayYMECtm3bRlRUFOvXry/0Hplj+LM6cuQIzZs3t+g6gNxSZggVRVEDuXtlTUC4YcMG/Pz8aNq0qdnXc3JyOHLkCC1btrwvYxNCCCHEw0vWEAqr6IOusLAwoy/DoAvyPxibru/y8PCwOoPi6upKQEBAicEg5O+TZxoMQv6USD07w+xUaaaMmnwYLylDaElAOGLCBOYDW4BF1aqxb98++vTpQ9u2bYmLiytc9bPgfvYF4/EHZgP/joxk1KhRTK1Vi9WAT5UqXLt2jdGjR5Oens7t27fp0qULR48eLVwBU18d0+TnYzjVd/bs2Xf3Syz4b7Vq1Thz5gzNmjXjwoUL1KpVi9+AtsDF9HR69uxJeno6HTt2ZMKECfnX6nTkmWQIlYJ+crOyWLVqFfb6gBHIy84mNjaWoKAgateuzaJFi9i1axfNmzfn4sWLhd7Pohj+rKpYUZ0UILeUGULTabf3w+XLl0tsExkZydNPP13k6x9++CGtWrXiypUrZl9XFIUsg/WxQgghhKi8JEMorDKpYI2aKcOgC2Dq1KlER0cXmvI5bdq08hhmkewKghGL1hCWssqo4X1zc3KMp4ya6TM3NxdPIJu7wef06dN5/PHHef3114mIiFCnenbv3p2JJhlClU7HpEmT2Prf/wIwcfFiDhw4YDZLa5rRVZ+rmIDdcB+/JwIDiYyMVLel6N+/P0FBQbzzzju4A+8BjRo14u233+aZZ55Rp5VCQUBob08e+esJAXQF6xkNM7D6d12Xnc2VK1e4evUqmZmZNGnShClTprBt2zaLss16hj8rV9OAMDcXmjSBhQvBTNZMV8qAMDs7W12rea/s7PJ/RdGrVy969ux5T/fSB5UpKSkEBAQUen3mzJmMGDGCvLy8+5bhFEIIIcSDSQJCUSZKM+XTnNTUVFJTU/H29sbb25uIiAg2bdpU6nHZ5+aic3Cwag2hYYZQ3Vqi4NhchtAwC5in0xkFIqYBJcCoN98kesgQAJwyMlA6dODMmTOsW7eORo0aERISok71tLe3V+9vD2b3OMwr+ACfV0yWtlCRn4JAxs5kfIbvd152tpohHN29O7HffmvUNjw8nFOnTpFb0L+rRkNQUBD//ve/OXXqlNpOHxAq3A0IlYKgyfD91L/HSkFQ1bx5c5o2bcqjjz7KF198gUajsaripuG9c02DHK0Wjh8nb8IE7DZuLHztrVuW9WESEGZlZVGlShWLx1icogKzQ4cO0axZM6sCN2dnZ6Do6adz584FICMjw6pKruVJURR+++036tevX9FDEUIIIR5qEhCKMuXq6oqrq6vV14WFhXH8+HGcnf+/vTuPj+H84wD+2c3mlosgIkiC1lXUVVddUbQUpY62/Gi1iqKOalXVVa26ejgajeqBKqXuq+64CQlCiAiCHBKR+9hrvr8/dmfsZDebDSEq3/frtS925pmZZ57NJvOZ55kZR+mmNBqNxqbnuhUMkaZMe6eKfOyEuIzpNsXhmhbuMmqpl02n1cpDoIUD8KZ16+IwgFiFArecnNBqxw4MHToUrVu3BgDpJi86nc4w1LOQHkJxuKcYCCf27GlzL+3M48cRDCA1IwMV+vc3rI8IoaGhD6qeny+1iaBWY2OBQCiSxqHr9di4cSMUCgVatGjxYL7JkFGFeJdRC4EwA0A8gIycHDg4OODkyZPIzc1F48aNceXKFSiVSgQEBFisgyWmvY8Fg1tOZiZcAURHRqKuWEane7C/eXk2bcNSD2FJsfSzf/DgQXTq1AlbtmxBz549bV6XeEKgsGGhXl5eiIuLQ1JS0lMbCJcuXYoxY8bg5s2bqFGjRmlXhzHGGPvP4kDIHoq10FUSTp06hbCwMLi7u0vTMjMz0aZNm0KX2b9/P6ZNmwZvb2+4u7sjPT0daWlpmDlzpnSHSqVeD7K3Nzx6wkq4JCJYugelGCqUFgKh+H870+Ch08kCocLCkEwxBDnY2aEiACcnJ6xdu9asnEqlwt69e3H0uecM20GBaxqNQZGUStwHUNHREZs3b4azszNu3LgBIkKVKlUsfl6n7t5FJwD5goBcY2+YIAiyNtLl5z/YlFoNLy8v2Tqkh90D6A+guVYLLy8vdOrUSXbnUqVeD3JwAJnUX2nssdJrNNLnWAGAB4CrZ84gLz8fp0+fRlBQEIKCgqSQUpzeIdPPQTDZFwDINwZCrclQUk12NsRTGXoLgVBsG9OeuccZCC1dfysO/bx9+3ax1iUGwrxCgq74M5KUlPTU9sBFRkYCANLS0jgQMsYYY4+AAyErFltCV0nw8/ODWq2WHejFxsbC19e30GWmTZuG3bt3w83NTZqWmZmJV199VRYIBZWqyB5CnU734MthGhzFACMOz7TQQ2in1yMPgDMAfYEeQn2BIAIAemMvjc7OrsheS5VKJZVRQt6jJuh02L9/PyZcvYraAGjnTqQcOoRLly6hQYMGqFmzZqGfl4NSiVl6PRIdHfGC8UHwRIRu3bo9aBOTupNGA7VajUuXLkknBn766SecPnkSzuXKYRGAqRERqBQZaRaKlIIAMvbSio/xUBiHEwtaLabNno1dO3bA3Rg4dzRqhB21auHLL79EUFCQ9BxCjUaDa9euQZOXh+vHjqFO585W2860rQoGPI3xwfMOJu2vycqSAiFZCE6NGzdGeno64uLipGkFh2CW5I1ZxCHX9evXl6aJoVS8vtBW4iM3cgsZCluxYkUAkO2baOnSpfDy8nrk6xgZY4wx9nTgQMiKxZbQZY2t1wBu27YNU6ZMQVJSknTr/ipVqmDTpk2FLqNUKpGSkiKrW0pKiuxg2U6vB6lUhuvXrIQvrVZrcciodCdR4zS9hUCo0umQq1DAmQj6/Hx5ILQQEMRpgp2d1TqJFCZDRk3Xp9dqMW3aNMx8/nn0Cw/HpVdfxfAjR3D58mX0798fq1atAmD583o3MBA1oqOhBGQhfObMmdL/dfn5UAO4BODHf//Fuc2b8fLLL8PLywvxcXE4f+oU5nz6KdoDWAcgU6tF586dkZeXh1atWmH27NkICgqCnV4PrThsVwzYJoFQqVTibkICpL5hrRbHjh3D9evXZUNPiQj5+fk42KkTup48CXVGBhxNepQLkoX3Ap+D+JxBe5P21xpDIgCQhSB/4cIFs2kFA2B4eDhq165daJ2KQwzWptckWuqltIVpD2GTJk3QtGlTLF++3Gx+SkqK2bKjjde7lnYgFPfZlmHkjDHGGCscB0JWLLaELgDob7wOzRQRScO8ilK3bl2r4c+SkJAQTJw40SxEhoSEPKi/IIBUKsN1dkUEQrF3yFIgFIeMmoY90x7CbDs7VNDpIOTlycroLPQ0HQsLw3sANGo13lEoIPb/dO/eHatWrTIfmmtyUxnBGBL0MPRqKpVKpIvP9svJgVKpxNWrV2Wfj6XP640qVeAdHY1447rT09Ph6emJAQMGSGX+2rABfwFoDmD3pUvoN2QIIiIiMHLkSPT29ETgqlVYunw5FgKoBaC1pyfG7dqFiRMnIjc3F9OmTUNQUBAUxs8ACoU0dNPOxcWwHxoNQkJC8MmkSUiG4U6j6WfO4KZWi2rVqkGn06F///6YPHkyAMNjLzyuXQMAZN+4AcdGjczaVyQb3lsg4GmNzxl0NSmjMQmEChuvISwYCAcOHChrQ7GMXq+Hi3GfbSWuO9+0p7aIQEhE2LZtG7p37y71CgLyQBgREYGIiAhZIBS3lVHMx3OUBluey8gYY4yxwnEgZMViS+gCgLCwMBw4cEAWPIgIgwcPfmx1syVEij2EAIoMhOUsTCcbbiqjEgTkqlSAMRCa3mTGUg/h0n/+QSiAS97eWJGcjDFjxqBnz544evQo3n33XbOhuQ7iHUFN1qcx1iUkJATvt2mDXwFk/fUXVH5+eOedd1CpUiW0bNkSCoUC169fx6FDh+SVMKk7APTp00d23R8ArNqwASeN2z3p6YnevXtj4cKFCAoKwsI+fdAKwLd6PV4EsBLA9wCmDh+Of/76C0H9+0uPX1DqdFA4OBgCobH+diY9hHXr1sW6X3+FU+XKAIBt9erhk/R0HDlyBJUqVcKiRYvw5ptvYuXKlYbrHI1BJyc5GRUsfGYiq4HQ2EPoYxL+TQOhvY13Gc0vsF5L17Y1adIEUVFRxe7ZEnsITUOnuI4tW7bgww8/NFtm79696NWrF4KDgzFixAiz+ZaGjGq1WmzYsAGAPBCuWbMG9+7dK1adHycxBPPzEhljjLFHw4GQFYutPXeTJk2Cm5sbvL29ZdPF4Wa2KHiNWoMGDeDg4FDsOpuyEwRo7e2hUyqhtPLMPa3JIxZkdxm1clMZMSyq9HpDIIRhqKFCq0U2gHKwfA2hHRE8ASjKlcPMlBTsb9oUAwYMQM2aNbHF+ExB4MFQzwUmD6YXewi1CgX0xjD1TZ06aH/iBDrZ28P7uefwnPEmNIAhQNy8eRN169aFKfFmN3bijWmM+5eUlAQfHx8AgKO9PUIBdAQwvX17TOreHbcFAVoXF3yYkICOAKqrVFiu0WAigKupqRBu30Zlf3/Yubnh5MmThvXo9ch1cgKUStgZ20NpHOoptqcsOOt0SEhIQI8ePaRJKSkpqFy5siHQGIdQaorozbI2ZNTSg+e1DxEIk5OTUa5cOWQbexzbtWtnViYqKsqmdRWkVqvh5ORkMRDu2rVLOkFj2mMmnoAp+DB7MVxauqmM6bMd09LSpP+/8847D1Xvx61gCH9YDzv89kk6f/48nJyczG70s2jRIuh0OkyYMKGUasYYY+y/rHh3ImDMRqNGjTILgwDMhs8VZtWqVejYsSP++OMPhIaG4rfffkPHjh2xZMmSR6qXkyBA7+gIjUIhuxtoQRqTAGBtyKil5xDaCwLU4oPW8/Kg0miQZTzItNRD+FzFirgJQO3mBmciDB06FH5+frKHuQMPhnqqLPUQKpVSOFQY/72cloa5c+di/vz5sletWrXM6iDe7VNl3C/xkRL/+9//pDILJk7EFgBtAHz6778op9FgsE6H6OhoBL//Pr4H0MnJCc4ANgFYGhiIywAOE6FVq1ZSCHXS60EuLoBCAUexh9DT09Be4oPqTdtJq4WzszPWrFmD06dP4/Tp0wgICMDJkycNz2U0tq22iEAoG95rJRBqjCFJHEZ6T6GAo41DRu/fv4+qVatK7wu7acvD0Gg0cHd3lwVC0/CXY9wH05CXnJwMwHDHWFPiOiZOnGi2HbEnF8BT1SNYkBjcunTpUiJ3c/3mm2+KfXOeJ61x48aoU6eO2fSPP/7Y4mfJGGOM2YJ7CNlT6eeff8bRo0dlB2g6nQ4VK1YsVi8jIO/lctHrkebqCo1SCZWVQKg29owUPMwsGAi1ptdzGec56PXINz5GQcjPh0qtRradHaDTWewhnPDyy/APC8N1Ly84G9e7bt06TJkyBa1atTIbmpvfqpWhDgBgPBDOVamgFNdtDAkDKle2uZd2RFQU3ABodDo4GG/cQkSIiYmRypR3dcUPxv+f6NIFrdasMbzx8UGMMTy9b2cHf2MZO2MYagJg9+7d0npcBAHk4oJce3t4iYHQeEdRMWCrTQIa6XTw8PBA3759pQeqX758GQMGDICDg8ODQJiZabZfpqwFQtMHz2fHx6N8rVpSIExXqWBvJXCcO3cOjRs3NpRNT0flypURHR0N4EFIe1REBI1GAzc3N1mvnWnvWGpqKsqVK2cxhBYMOpZ6Bu/evYvKlSvLAqelm8o8Co1Gg8TERJsfE7F161YAsPiMRdN9Ks46C7Nw4UIAhpBtGoptQURQKpVYtWoVBg0a9Ej1YIwxxp60p/t0KHsqqdVqhIeHY9++fQgPDy/RZ62JIiMjUa9ePbRo0QItWrRA8+bNUb9+fWSZDOOzlWkvlysRyM2tyECYf/8+ACC3wJ0/xWvepB5Ck4NvMcy46PXIM950h/LyoNJqkWu8zk1voa30xiCj8PaGKwASBGlo7okTJ3Dy5EmcOHECGzduRN26dWFnMmRUkZODfAA5KhVU4vBLYyDsWa6cFAZN223AgAFISkqS1SFXp8NxALsUCqkXLiwsDM2bN39QT9MQVWA/9Mbw5GgSVuwLCUMuRCBXV2Q7OKCKcV/cjb1qpNNh5cqVeLlPHzQB8C0AhU4HlUoFLy8vqW4VPDww6tIlNGnUCDAGwuN//GFxeyJrQ0ZNP8dc4/BKcVqOvT1UVm5cMm3aNOn/YiAUlVQgFIOfl5eXLLCZBkKxR9lS2DMdBikIAn7++WezMm+++aaszq1atUJiYqI037TnEwDOnj1b3N3A2LFj4e/vb/P1k7169UKvXr0szjMNhLb2ZJ44caLQbYshcPjw4RZ/p+3fv9+sp1UkXmu51PjIFsYYY+y/hAMhK5bChnKKz4Yz9SjBsVKlSujSpQvs7e2hVCrh5OSE1157Da1bty50GTE8mr6aN2+O06dPAzD0MJaD4Vq9ogKhxnhwneXoCHvTMCDeFVMMhMYgBDwYaugmCFAan5eYf/8+lHl5yDfeNMXS4wsoPR1ZAByM4S3PJFRZotLpIK5FmZWFHIUCGpUKKrUaK1euxJDYWDQB8JdJ6Ct4UG0akgHgfW9vQx0KbGvkyJHS/wsO4zQlGEOE+JTIHADXc3KwD0A4TK5Zy8qCKwD78uWR6+QkDVFwMj73Tq/RIDg4GFuXLkU4ABcA38bHY/r06dCZfF6pd+9iFIDh9epBZwwGjc+ft9BaD5Dpz1/BQGsSCPMTEgAAOuNnm+fkBAcrgdA0JKSnp0u90UDhD34HDD16thJ7/awFQjH0m25TfETF7NmzpeXMbihkJJ4kEK9/HDBgABITE6VhqQV7GVu0aAG9Xo8hQ4ZIPaJFCQ0NBWC4HvZRmf4+KXiCw5KTJ0+idevW+PPPPy3OFwPh77//LruOEgDOnDmDzp07y+7EakoMpKZ3crUmISEBvXv3LrETBqKSup6SPZtyc3Ol7yBjjJniIaOsWAobytmhQwfZUKlVq1YhODgYzZs3l+6SGR4ejpEjR9o0pGrevHno0KEDvIxDCREdDXz6KUKnTy90maysLERGRkq31Be98sorAIDc5GS4A1B4eUHv4ACFlbsTaoyhLNfVVdbrJQ7LlA77TA7otPn5yMvIgDMA15o1kRcaCk1iIhzy8pDj7o68jAwoClwXCADK9HSkKxRwMF5Hl3X3LlwqVJANdTWl0uuRYWcHJ70eiuRk5NrZQWNvD3u1GsHBwfjNxwftbt3CGJ0O5cuXR2BgIK5evSo9w6/gUFAAaO/kBC8Amcage+XKFdSpUwfLli1Dnz59AMiHcZoGwvioKOnB7R4AVgFYAuC5vDz4A0gHEN6xI0aOHIlOdevCF4DKzw+5zoYHe6QplVCKj2DQaKBUKqUevLEA0l1dERwcLLvjZW03NyAtDfXLl0eO8fPWmPTMWSKYhHdrPYSapCQgOxvlLl0CAOSUK4dKFoZOurm5ISsrCzt27IDO2IuZnp6OSpUq4fz58wgJCcHBgwcLrU+/fv3M7uRaGDHkeXl5QafTQRAEKJVKWfgTA6EYHj08PGRtlpiYCH9/f1mwNiV+b7Kzs6FUKtGwYUMIgoCYmBjUq1fPbCiqIAi4e/cuVq5cicTERJueLypu4+7du/Dw8MDOnTvRvXt3pKamPnisio1M9/3u3btFlheHv16/ft3ifNNhogXbSGzHmzdvWlxWDPe2BsLg4GBs2bIFhw4dQvfu3c3m//rrr9iyZYt0UymdTiern9jLuXnzZnTp0kWa7uzsDLVa/cg332LPpk8//RRLly5FdHS07GZjjDHGPYSsWJydnWVnGIkIoaGhcDL2gInE4Pjjjz/iq6++wuLFixEaGoply5bZtJ033njjQRgEgJkzga1b0d7Xt9BlvvnmG4tDSqdOnQoAyDcezJGPDxTOzoCVG35ojcFN4+kJZ5O7kdoVGDJKBQJh2tWrAACXatWQqlBAuHsXbnl50FeogHSFAnoLwcIuMxOZdnZwMh4QZxt7OwYNGmSxh9VeEJBpvJbOPiUF+SoVtA4OsDeGKbHns5+DA8qVKwcXFxfUqFFDGm554MAB2VBQABhx+zZaAAgCLPauAoDGOIwWkPe25V+4ADJpy58BbLC3xxxBwFcAFgPYs3kzli1bhmzjMwOdAwKgMA5BvC0IsDMGX2VqKrp37444Y2DVAmhib4+ffvpJNmRxzksvAQByU1NhZwynrlYeIwIAgunPRoEeP61JWNQlJ+NWu3aot369Yb89PKRHfZgy7aES7xwqPr+xYcOG8PDwsHpTmeI8dkIMP57GkwaWnklYsIew4LWjYq9cYcOuxfpkZWXB1dUVgYGBAIDbt29L0ysae3JFYlA6ePAgEow9q9aI9RZvWrRu3TrZNkyZ9rxmm3w+ouIGQrF8UUNGAfMeTPFzLCxMi4Hw8OHD+Ouvv4qsS3x8vGy9BQ0bNgxbt25FYGAg8vLyzO4Sm5ubi/Pnz6NPnz7SMzlFtnwOj0qn00GhUMjugsxK3muvvYbvv/++0PmJiYkoV64c0tLScOzYMezfv9/q+s6dOwfgwfevKMHBwVAoFI+lV1G8Nr5JkyYADL3shQ3Jtub69evS9+lJS05OhkKhsLk9GXuacSBkxbJq1Sps2bIFbdq0QcuWLdGuXTts377dbMiorcHRVhnGA67MuLhCyxQMkVeuXAEAtG/fHgBw39jj41GnDrSennC1dgdI490ZNVWrGq55Mx5EKsVQJgbC3FyIh6ra/HzkGofOOdaujQx7e9C9e/DUakHe3shSqUAmoUo07Px59BUEvLNsGVoA6P3++wgMDMShQ4csDs31FASkGR/TUDE9HVlOToCrK+zy89G9e3ckGQ9892RnQ6FQ4O7du7Jhhr169ZJCsihPEHAcQBiAkydOoFWrVmbXEOqMdc+B/PEZeYmJsnDtDGCnkxOqiG0EYOuff8LJyQnndu4EALgEBsKhbVsAwFUA7gEB0AHIvX4dU6ZMQRVjT0uqgwOS8vNRv3592Y1p7I374752rfR/eys9vsCDQJgOmA0Z1WZnIxeAGoA+JQVOERHSPKWnJxwLBEK9Xi9r06ysLOTn50OtVkuhzdnZ2eyA33QZXysnNwoS1yOuWwyC+fn5ePHFFwE8CDFi2QoV5E9lFOeL1xoWvN4tOjoaOp0O9+/fR4UKFeBu/BnLysqCRqOBRqMxe9zBfePPhE6nw0vGkA4YeuP69etXaLD6/PPPIQgCVq5cCcByoDO9zlG8M+6VK1ekdZoGQluGjG7fvh2A4bOzxLR3L6PAHWvF/VywYIHF8Go6/Pftt9+2eoC6Z88e/PbbbwBQ5IHsjRs3sHz5culusaINGzagb9++AGB252VrbbF9+/YSCYw3btwAAPTu3bvQMlqtttDwvXv3bqSmpkrrsWTTpk1Ww/XevXtLfIjslStXCg39xREaGooff/zxoZYVTzSlpqZi165dmDBhApYsWYLw8HCzsj169EBOTg4qVaqEtm3bonPnztLvGK1Wa36tuPH7t3btWgwbNkx2wk8UGxuLmjVr4vr16xg1ahQAoEOHDtKNrUrK5s2bAQARERGYO3cuKlasiPfee69Y6+jVqxdq1qwJPz+/EqtXcQwZMgQA0LdvX6SlpWH8+PFQKBRSr32TJk2gUChK5FmpYoBWKBSF/g6zlSAIqFq1Kt566y2r5f79918MGDAAsbGxj7Q99h9B7D8tIyODAFBGRkZpV0UmMTGRPv74Y2rdujW99NJL1LZtWxo3bhwlJiY+1PrOBQQQARQ1b57Ny3Ts2FH2/sTo0UQApcXF0eGOHSleoSBBECwue3jwYNIBdHrYMNIBlHHvHhERhbq5EQFEAOnUatrZuDElqFREAJ344AOKnDaNCKDYM2fodMWKdNHTkwigfcOGUbirK52oXdtsW7WUSlpdvjwlRkYSAXR68mRq06YNBQUFycpptVpq3aoVEUAHGjeW6nGwenU60bQpRdnbG/bT3Z0IoAYKBV24cIGIiH788Ufq27cvhYeHU4cOHczq8IOLC903ri8/I4OO7dlD/4SE0KFDh6Qyh4YNIwIoXqWivY0aSds//emndLB1a+l9PEB9vbyoNUAvAdQWoEFdulBiYiKtadSIMgDKz80l0mgoqn9/Sjt9moiI7trb09YmTYiI6NSkSUQAXShfnpqoVGb1DW3alAigGHt7OleuHBFA0U5OFj9L0al33yUtQLcBOtmtm2zejvbtKV2ppASAzvbuTSnGfSGA9r32GmUW+FWZkJBAMGRdAkAfffQRJSYmEgDatm0bERF999135OrqKlvu5s2bBICcnJzotddek6YLgkB6vb7Quu/du5cA0KJFiwgAxcXFERHRwIEDqVOnTuTq6krfffcdERH9888/BIB69OhBAMjFxYUA0I4dO4iIaPbs2VSxYkXKz8+X6j9w4EACQK1bt6Zhw4ZRixYtSKvVEgD69ddf6d69ewSA/v77b3rnnXek5SpUqCBrB9EPP/xAAGjVqlWy/fD29pbK3rp1S7bs6dOnKS0tjfLz8+nixYuyeQBo//79BIBatmxJRETt27eX5g0YMMDqZx8TEyNbV1JSklmZmjVrSvPnz58vm7dgwQJp3rvvvmu27Pfffy9b/86dO4mIKCsry6zszz//LCu7adMmOnv2rKyMSqWS5s+cOZO2bdtm1h6Fvf755x+LbXD16lUCQL6+vpSSkkKVKlWiY8eOUXJystW2s+T06dPS9s6fP0+pqamUmpoqzdfr9QSAZs2aZbZsdnY2AaDq1asTAFqxYgWtXr2atmzZQikpKXT79m1peQCUl5dnto64uDgCQO+//36x656Tk0MajcZsempqKgGgzz//nLKzs4u9XlNi3Qv7+2JJenq69DM4cOBA2r59u9lnW5D4vVUoFFKZHj16UJcuXaT3Li4uUnnT75/pa8OGDVKZ7t27WyzTu3dvAkARERFWf1dZ+rz0er1ZW/j5+VncTlpaGgmCQMuXL6fU1FSz5a5du0YA6MSJE7Llrl27RpmZmXTjxg1bm7xYduzYQS+//LL0Xq1WW/0eLl26VPY+JyeH7t27RxcuXCC1Wi1bd2hoKAGgf//9t9Dt37hxQ1pXaGioNH3x4sVUo0YNunr1apH7oNPpKDk5mTw9PS1+9nFxcdSiRQtq3bq12e/M/Pz84jRXiXlaj3GfRRwI/+Oeii9Lw4ZEEyY81k1E+PkRAXT+k09sXqZLly6y9yfataNbSiUREZ0ZPpy0AO0xHrgVdLp9e7qpUND5BQuIALq2d69hukpF2UolEUCpMTG039eXLpYvT4kAnXz1VTrVuTPFA3Q/NZV2NWsmhYolo0bRoSpV6LyXl3xD+fn0t0JB39etSzqtlnIB+r1RI+rcuTN9//33UjFBEGjfvn3U1rjOY+PHS+v+p1kzOtqzJ6UDJOj1dMHRkQighgqFLBTv3buXPDw8qEGDBmb7e9XFhRIUCsN+XblCx43rNrW/Vy/KAyjK1ZUO+/hI2z82dCgdbdhQen9fqaTQoCDpPQF0ZMoUIiIKr1KFznp4WGzzi5Uq0UbjH871bdpQDkDHatemFhYOhI4GBhIBFGdvT1fs7Q3/t7OzuF5pme7dKRWgG3Z2FNqqlWze7hdfpNsODhSlVNKZtm0pwbhOAujQwIGkM7at6OzZswSAvvzyS+kP5uXLlwkAHTlyhIiI1qxZY/bd/PTTT6VQ08qkDu3ataOAgIBC6x4cHEx2dnYUGRkpbe/OnTvUqVMn6tevn+yAcd68eeTi4kITJkwgAFS3bl0CQGvWrCGdTkcffvghNWrUiIgeHLiaHmy0bduWevbsSURESqWS5s2bJ2338OHDlJWVZfEAqH79+tLB27JlywgATTF+7kSGExqmB66urq5m66hQoQIFBAQUGXqIiPz9/WnMmDHUqlUrs4PlmJgYcnNzo+joaCJ6cMAlvubOnSsrL4YU8fXOO++QVquV5o8ePVqaN3nyZCIiunv3rrS/X3zxhWz5vn370qVLlwgAbdy4UTqAvnDhAgUFBRW6T0Rk1r59+vShX3/9lQDQypUrZfMsteGMGTMIALVv3562bt0qrXft2rVW27Moa9eulQ46La1LoVBQt27d6Pr16xQdHS1N37x5s7SOuLg4mjVrVpGf77lz52Tv16xZQ0SGsAGAOnbsWKy6ExEtX76cAgMDCYDsZIxIPJEivi5dulTouubPn0/Tpk0jIqLz589T3759KTk5mf7++28SBEFax+DBgwkA/fXXX0XWb9WqVUW2y+TJk2Vh7Pnnny9yGVtfkyZNsjhdPBlk+nrxxRet7kOPHj3ol19+oa+//lp28kw8CfDmm2/aXK/evXuTr68vubu7kyAIshNB4rYsLbd06VIiMpwAW716NeXm5pJOp5N+d0dGRtL58+fNlvPy8qIVK1bQd999Ry4uLlS3bl2aNm2aNL9fv37SySnAcALBdPmPPvrIpv365JNPCAC1adOmyLLt2rUzmxYSEmJ2Qu6NN96gM2fOUFRUFP3xxx+0adMmiouLo+TkZDp27JjVbVSqVMnq/OKc3ChJT8UxbhnBgfApsHTpUvL39ydHR0dq0qQJHT582OZlS/3Lkp//4MDfGp2OaOVKIpODrOK46O1NBNCZwYMfankiohsVKtC/xkB2f9s2IoCaFFLvi76+FOrhQYlHjhABdHjqVMrPz6d4gK5WrkwE0JXNmynK2ZlOPP88hTk6UmjVqhTt6Eh/AaTX62nT9OmkB+gCQDt37KDD3bpRGkDpxt5GIiLt7t1EAP08fDgREYUCtB6Gg31LPayHvvzS0Bu2YwddNLb7r6NHU/jUqYZ6rl9PccbAOhaQndEkImrdujV17drVbH9TFQo6Zmzj6PXrpc805fJlqcyhevUoxtGRDlSpQrft7B4Epu7d6USNGtL7AwBd/fFHWSBcAND8Pn1IB9CSF16w2OZXhgyhbID8APoHoBMA7XzpJUoFKDM9XVb2pLGueQDdASgfoHtF/NE63agRnXdwoAg3Nzpco4Zs3oZy5eiciwuFOTvTiYoViQDa2a4d6XQ6OmNs21vGnkwiks7e37lzR/qDuXnzZgIg9coeP36cANDJkyel5cSyo0ePpipVqphNnzFjBl27do0mT54s25du3bqRp6en7Ky0v78/1axZkyZOnEiDBg0iAJSamkrdu3enDh06UNeuXQkAOTs7k3hw2qxZMwIg9T6L69LpdLI//m3btpXNF5dLN34O8+fPt3jQMGnSJCIy9I6K08T2EA8Mp06dKlvG19fX6oHIjz/+aDbtl19+IQA0dOhQatSoEQGG3kvR3LlzpbKJiYm0ePFi2fJvvfUW3b9/Xyr/559/EmAIcmKZhQsXEpGhd+PVV1+Vpg8aNIgyMzOl96dOnaJq1aoRAOrWrZusDcX/T58+XdaegYGB9P7778vqNGTIEBIEgXbt2kWAoZeyYC8KEVFERIT0/u7du3Tnzh0KCQkp9CBbDBCmJy8Kvvz8/Cg+Pl5qj/z8fHr77bfp0qVLlJubSykpKVJZ094nS68FCxbQwoULLR5Mvvzyy1aXLezl7+9PRA96hyxtMy4uzqznxVTBZcLCwig7O5uysrIsHnC//vrrFBUVJetxjYyMlHrpAdC+ffts3od169bRmjVrLP6OSktLs7jMZ599Rl999RX9/fffsukhISH0wQcfFLnNguEJeBBEatWqVehyQ4cOpc6dO1NKSgoREY0aNcrqdoYPH04vvfRSsT/Xn3/+WTp5VHDUha0v097q0njl5uZSfn4+eXt708CBA4mIqFevXgSAmjRpQsnJySW2rYkTJ5bYugqedLH0qlq1Kt26dYvCwsIK/V49bqV+jFuGcCAsZWvXriV7e3tavnw5RUVF0ccff0yurq7SkLCilOaXZfPmzfQSHhz0Z2RkkEajodzcXPPCq1YZyq1b91DbumTcxulXX7V9ofx8IuNwKN2mTUQAfdumjWGeWk33APoJhp4NU/qLF0kD0KqWLYn0ekpUKGgZQM/hQY+YHqCfAdIDtO7VV+mXKlWkdngZhq/V/fv3qaWHB8039ijEbd5MBNB7AM2bN4/+DgmhIwBFAfTn6tVERLSzVSvKAmggQKG//05paWmyuu2oWpVuAZSbk0P+AHUG6P79+5R87hzpAZoLkAagZGdnSgVIr9MV2UzJR48ahkYOHCjVT9yX/aNGkV6vp4SoKLoF0N6aNWlT+/bS/FyAdsEwTHRrlSo0H6BZAwaQLjeX/gFoW+fOtNRkfccAOnP8uOWKpKbSLWP9CaB1QUF0/fffiQD6DaDX27ShsLAw2rR+PcUAlGjs0SSAIn18SA/Q0lmzZENbkpOT6d69exS2bx/dBmhnQADtrlmTbgJ0Ys8eyszMpIuhoRQN0D/u7nSsUqUHwdY4BDP55EkigD4E6IcffqDgL76g8cY/mFqtVuqRgck0IkOPmJOTkzT922+/JQD04YcfUkhICIkHZwWH5rRs2VL6f0ZGhuxAnohkB6QAaNq0aWZDLLt27UpXrlwhGOtc8A/9ypUriYgoOjqabt26ZfiOmIRCcRhRweVEf/zxhzTtr7/+kh2cfv3112YHMdeuXZPOZhc8U01E9MYbbxR6UCLuh6XXxo0bKSwsTHovhinTV40aNQgANWjQQBZsxJdpqDft3Sn4GjdunBRmX3nlFYtliMhiuADkZ+C7dOlCubm5suBa8JWeni4NjSzY/v7+/lJIMlXUAV6/fv3Mwr/pq0WLFvTWW28VuR7xJZ5ssOU1b948s2l//PEHvf3223Ty5EmLyxSsixj+i3rNnTu30J6jJ/Vq2LAhAYbhzLYu07dvX8rOzqZVq1ZJ31FRbGysxWXy8/PpwoULJAgCxcbG0sGDByksLIwOHDhARERHjx6lhQsX0qBBgygmJkb+uz85maKioqR1NW7cmF4t4m9swd72gq+CJ3wKvuzt7Ql40OtrKjIykl555RXauXMnnTx5stAA9PPPP9Nzzz1Hn3/+OREZAnXnzp0pJiaG1q1bJw2Tt+XVuHFj6f/169eXTuwB8t6+ihUrmu27paHHItO/Q4Ig0LZt26STM5s2baIhQ4bQkiVLaNmyZdS3b1+KiIggjUYjq/vs2bPJ39+fGjRoQMuXLye9Xk/p6enSzxYAabi5OCKhqNeIESPo+vXrUr1Mfx+XL1/e6j6VBg6ETw4HwlLWokULGjFihGxanTp1pGFJRSnNL8vaXr3oKh4c7C8D6DuA5gA0A6DPAfoUoCkw9PYQQFsBGgBQb4B6OzrSK0ol9fb0pJ6envT1q6/S+JYtacXw4bT03Xfp6759advs2dTT1ZW0xuXXA9TuuefIHaBPx46l5cuW0fBhw2h5cDB1Cwqi//XvT93r16dmAIUbl9kAQ8jYCtBqk2uarowcKdVpCkATAFoMUA5A0QAdNw4TXWW8Xi8foDiA7sfH0xYnJ8MQVoCuX7pEm1avpmkA9QTo6NGjhbbZKmOd7hrrlAVQG+DBtUYpKZRoLJMB0LvG11SANhmnL/T1tbju0y+9JC13duxYIoCCAZoMUBBAvd3cqC9Ag2AIfSONn9VVgBIAirtyhbaafJ4EUDJAYcZ6pgP0748/0r4tW2glQDNh6IUkGHrp9i9bZrFe8Xfu0AgYAtW5Eyes/kwJCQl0cuBA+qFdO9LrdCTo9fQVQNnG7WQBpIMhiO8eNoxijfW/vGEDZQGUBlAkQGcAOmn8fGKNn10WQMd/+YXCVqygbIDUMPQqEgzB9mxwMJ2eMcNwoqDAsNrVxvB5x6Rtehg/h/j4eOkP6nvvvSdbzvTaM/F1+fJli8GkqNdXX30lrVe83gkAxcTEmAWZXbt2yerx008/SfP++OOPQts/ISGBDh48KL0Xr3kEQLt375am5+TkUN26demHH34gIkOYrFOnjk37QfQguJw7d87wuQsCTZo0iSpXrkzr1q2jlJQUSk1NpXvG3vSEhATKzc0ltVotO0gUD7qWLFlS5Hbd3d2JiKhTp05W6xYdHU3jx483m3f16lXpOjxLr19//ZWIDL+TxYDr7+9vVq5///7SQZcgCBZ7vUyHD4sh9/z584V+biJxaG/nzp3pwIEDZusVr289ePAgLV68mIKCgorsoS3sJV4zuGXLFlq5ciX16NGDvLy8pPljx461OKRxzJgxFBUVZXYdmngd7ZYtW2j48OGkM57MKiwsbty4kTIyMsyGelp7jRkzhkaOHGl1nw4cOEAXLlywuh7TazwB0PLlywmAtO4tW7aQRqORrkW05eezefPmVns4xe+ZaU/c/v37i/yZsFVxhgQKgkBHjhyR9TJVqFCBZs+eTUSG4dTivmRkZFBOTg7duXPH4rW7RUlNTZUCTHGIdczMzCSdTkfnzp2jQ4cOSfupVqstXuNrC+1DjnR63BITEykiIoKIDMPgH/Va2KcBB8InhwNhKVKr1WRnZ0cbN26UTR87diy1a9fOpnWU5pdF8+efdDQggCb4+dF2Dw86A9AlgK7BcOOOZBgOuBMBug7QWRgOwukhXrcAWvKQy54BaCJAAVWryv/oCQIdHz6cDgOUAkNgiIEhJDWvU+fBfqrVtO299yhy8GA6YDyY1ms09Pu4cXTVOByOyPINJMzo9XR66lRaVLEiDQfouMkwN0l8PO3s2ZMumOzDXYAOA/QRQPeMw3jMCALdWreOIrZuJUGvp988PSkJhmGVltpFA9BNgNYBNNN4U47DO3bQWIBWduxI26dMoRUAhQA0CaDhFs4cC4JAS2fPpvVr1xa9748g7tQpGuHoSOMB+gCgpkolCYJA27dupZPGkHnwp59oKkA/wNDzuxygRQB9bWy39155RVrfb9On00gYTgS8BdDvX39tdft6jYZW9u1LXwH0u7H98k2uC0pKSpKGRha0YcMG6ty5MwGG60VEe/bskQ6mZs+eLTvDu2LFCnJ1daXy5ctT69ataa/x5ISpggdwMTEx9O233xY6uuD27dt05swZq/v5qMShouvXr6fMzExKSEiQrgls2rQpZWZmlsh28vPzzQKF6bU8lStXpri4OIqMjCQ/Pz965ZVXKCEhQSqbnp4uO5h97rnnpAMp0ZYtW2jOnDl06tQp2YGsGK7F6xPFaywL0pn0zu/fv58GDhxo1usjEoPha6+9JgveJWHLli30/PPP0/bt2wsto9fr6eLFi9SkSRMCQD/99BNFRkbSggULaPr06QRAGjaWmZlp8cYhRIYD5evXr8vm379/nxo0aEAApF6r4tq1axe1aNGi0JtuaLVaUqvVtHPnTpo7dy516dKFOnToQEePHqXMzEw6e/Ys3bx5Uyqv0Whkodya7OxsioiIIJ1OJ/tMH4YgCLR//36KjY2lM2fO0Pr16yk1NdXyqBor9Hr9U9eTw9jjwIHwyVEQEYGVioSEBFStWhXHjh1D69atpenffPMN/vjjD0QbH2FgSq1Wy25hnJmZiWrVqiEjI0O6TfzTRrxF8o0bN+Dl7o6ce/cw/bPP0KR+fWSlpiKgRg3cuHYN9nZ2SLxzBx5ubtj0zz9o36YNrl29itcHDMA7M2ZAp1QieNQopJw+jbbNmyPyzBl4u7sjKSkJ8YmJaNiwIWrWqgW1lxdeCApCVsWKyHd0RO3atZGXl4eAgACr9SQi6ZbOtj5g+rHTaHD4wAHYubmhWbNmcDQ+f9BWer0e6sxMhEyfDjuVCq5Vq0JwdER6bi4qV6mCHj16yJ/3WIBWq5U9n+2/RPw8S5wgAPb2QIMGQCnd7pwxxhh7IpRKYNu2Utl0ZmYmPDw8nupj3GeFqrQrwGB20GrtQHbOnDmYOXPmk6hWiRHDlfgssQqVKuG3In65TC9k+hST51L1LZHaPSC2+VMTBgHAwQHtunV76MXt7Ozg4uWFcYsWPdTy/9UwCJh/r0qMUgl88QVw8eLjWT9jjDH2tFDyI8vLAg6Epcjb2xt2dnZmD49NTk5G5cqVLS7z+eefY8KECdJ7sYeQ2U4xUwGazh3j7BHMmlXaNWCMMcYYKxEc+0uRg4MDmjZtir1798qm7927VzaE1JSjoyPc3d1lL/bfd+L2CWy8vLG0q8EYY4wxxsoY7iEsZRMmTMDgwYPRrFkztGrVCiEhIbh16xZGjBhR2lVjT9DK8ytxKv4U+tTtU9pVYYwxxhhjZQgHwlI2YMAApKamYtasWUhMTESDBg2wc+dO1KhRo7Sr9kzT6rWwt3t6ro8jEJQK7rBnjDHGGGNPFgfCp8CoUaMwatSo0q5GmZKny3uqAqFAwuO7Ccp/QEJWAnzdfEu7GowxxhhjZQ53SbAyKUeT81jXf+3+tWKVJyIoUDYDIRGh6ndVS7sajDHGGGNlEgdCViZp9Joiy0TejUS9pfUeav21F9eWvb+edt1qeYEEZKgzoNaprZZ7VkQkRuBe7j0AgFbQlnJtGGOMMcbKLg6ErEzqt75fkb2EGeoMXL53uUS2V3NRTSRmJRY6X4CAq6lXsfDEQpvWt/jUYugEHQDgywNf4ov9X5RIPZ+UJiFNsCJ8BQAgT5tXyrVhjDHGGCu7OBCyR/ZP1D+ISY0p7WoUS1hCmNRDVRhHO0eL09v+2tambfRf31/23ve7wq+RIzI8FzFXm2vTusfuHovU3FQAwJ+Rf+Kbo9/I5h+8cdCm9ZSm5JxkAMC6S+tKuSaMMcYYY2UXB0L2yN5c/yYOxx0ustz8Y/Mfehun7pxCnSV1Hnp5S+7n3bc6X+yBK+jY7WOy9xq9BtmabLNy66PW21SP9ZfW44/zf1jdpiWZ6sxC53Va2Ql6QW/zugBg0MZBUjB9FO9uedfqMxXFbXx38jsAwIW7FyyWW3J6CeYcmfPI9bFVen662bTDcYfR9+++Ngd1xhhjjLH/Gg6E7JGplKoiD5hj78fi032fSr1aloIHERUaYk7cOYHo1Gik5KTYXK9dMbsQcjYE2ZpsDN08FIqZCtm1fal5qRaXi0mNwYrwFTh++7jZPHGY6bFbhlCo1WvhONsRbnPcsDNmJxQzFVDMfHBzmC1Xtsje/33pb9n6krKT0H/Dg57EXdd2QSABGr1GFg7Fax71gh5X7l0BAESnRuOr0K9wI/2Gxf2Iy4izOF0ktrVO0CE+Mx5/Rv6JxOxE2WeTlpcGgQToBT00eg1eCH4Bu2J2IVOdCbVOjQt3L0An6KDVa6HWqXE24Sx+P/c7+v7dV9pGrjYXAgnI1+Xj1J1TiE2LldavE3RYGrYUgOFnREREGLNrDKYcmIKb6Tdl9Ravs0zNTcW93HvQCTpE3o2EQIJUdyJCljoLOkEHgQQkZCUgT5uHAzcOwO87P4vhz2uuFxQzFSAixN6PRZ0ldTDv2DxsvLxR2h+RQILVtmWMMcYY+69QUEl0CbBSk5mZCQ8PD2RkZMDd3f2JbpuI0H9Df2yI2gAA8HbxRrsa7aCAAv9c/sesfLda3bD72u6H3l6v53thS/SWh15+ZoeZOHjzIA7dPCS9P5d0DpuubAIAVPeojlsZtwAALvYuZiG3uW9zhCWEFbmdau7VcDvzts31auXXCifunJDeB3oFSjeh6V67O3bE7LB5XTU8ahQZBG1haf+fhJkdZmL3td2y9nha0XT+1ckYY4w9LqV5jFvWcCD8jyvNL0t8Zjz8vvdD9OhorL+0HglZCYi5H4PqHtXh5eQFbxdvNK/aHLH3Y+Hv6Y+OAR2x6vwq+Hv6w6ecD1RKFVRKFbI12XC2d4a3izfuZN6Bn7ufdKMRDycPZGuykZSdhIaVG+JyymWcTTyLFRErMO6lcfBy9sL5pPOo410He6/vRSXXSqjhUQO52lz4e/qjbsW6KOdQDi72LgCAD7Z+gF8ifjHblwktJ6BjQEe86PMiqrhVgVKhhNscN2koaINKDRCVEiX1DLWo2gId/TuibfW2eP2v1wE8CAgrwlfg/W3vY3KbyZjZcSYWHl+IKQemoHW11mhXvR2CzwRjZLOR6BzYGU19m8LTyVPWiyiqXb42sjRZqFexHoK7B6OmV00oFAr0/bsvNl/ZjNbVWmPbW9tQYV4FAEDXml0RmxYrPfIiY3IGYu/HwlHliKO3jqJplaZwd3SHu6M7lAol7O3s4WrvCns7eyRkJUiPfggfHg6C4TEYrg6uqOxaGeUcyiEtPw0V51cEAFwfex2BiwLR8/meGN9yPKq5V0OtxbUwoukILDu7DAAwqOEgrL6wGmv7roWboxu0ei2aVGmC6j9Ul/bR0c4Rar3lO6u2q9EOh+MOY+rLUzGx9UQsP7scXWt1hVavRaY6E93+7IbQoaE4EncEAV4BiL4XjXoV6+G12q/hXu49uDq44n7efdzJvIMXKr2APF2etI8nh51EdY/qyNPlwdfNFxuiNmDwpsGwU9hh+9vbUc29GlZdWAU7hR2+OfoN/ur7F8ITw6ETdFBAgdMJp3Hk3SO2fVEYY4wxVmwcCJ8gYv9pGRkZBIAyMjJKuyr/CZ/8+wlhBggzQDfSbpBWry20bO1FtQkzICuz//p+wgzQpsubpGmYAXr515el96vOryLMAH19+GsiIorPjJe2WRhxfmZ+ZpH78Pm+zwkzQIM2DiJBEAgzQBujNkrz9YKeErMSi1yPKY1OQ5gB+ir0K6vleqzpIe1HjiaHBEGQrUNkbT03027K2mPghoFU7btqpNapzcrui91XrP0oSlGfg606/t5Rtu+MMcYYK1l8jPvkqEo7kDL2JHk5e0n/9/f0t1rWp5wPZneaDZXywdekU0AnAPJryIY0GiK7Ls7BzgGAYegnAPi6FX530YLEnkxrZneajdbVWks9hgDQ2KexNF+pUMKnnI/N2wQAezt7AMDktpOtlts6cKt0A6GCdRXXAQBT200tdB01PGvI3jvaOaK6R3Wp3UwFBQZZr3gx7Xx7J573fv6R19MpoBNuZ95GdY/qRRdmjDHGGHuKcSBkZYqHo4fNZX3K+Vh89ETUqChZmFQqlLKAqIBCml5cdkq7IssoFUr0eK6H9D79s3R4ONm+X4XRTNXIwq8lCoUC7f3bP/K2TI1vOR4Z6owSXWdhXq39aomsx1rgZYwxxhj7L+G7jLIypajAY6pKuSpwVJkHwroV68LZ3ll6r4BCdmfOFlVbSNNFbg5uGNJoSKHb2jt4r831KqgkwiAg7+F7EmZ3nA0AaOTTCO1qtHui22aMMcYYYwbcQ8jKlDxdHlRKlU3P+/Nz90M5h3JFlhvSeIj0OA3gwZBIcTgnAOhJLxvWWVBVt6pFbudZkvZZGjydPEu7GowxxhhjZR4HQlam9Hy+JwI8A3D01tEiy05oNcGmYZ+29G6pdWo4qZxsqmNZwGGQMcYYY+zpwIGQlSmBXoEI9ApErzq9iixry/V81piGST3pLV6PyBhjjDHGWGniawgZe0xMryEEYPF6RMYYY4wxxkoTB0LGHhPTawi/7vQ1Wvq1LMXaMMYYY4wxZo6HjDL2mJj2EE55eYrVshVdK+L1515/3FVijDHGGGNMhnsIGXtMTHsIi+Lt4o2tb219jLVhjDHGGGPMHAdCxh6TgtcQMsYYY4wx9rThQMjYY1KcHkLGGGOMMcZKA19DyNhjEDMmBjU8apR2NRhjjDHGGLOKAyFjj0Gt8rVKuwqMMcYYY4wViYeMMsYYY4wxxlgZxYGQMcYYY4wxxsooDoSMMcYYY4wxVkZxIGSMMcYYY4yxMooDIWOMMcYYY4yVURwIGWOMMcYYY6yM4kDIGGOMMcYYY2UUB0ITN2/exLBhwxAQEABnZ2fUrFkT06dPh0ajkZVTKBRmr2XLlsnKREZGon379nB2dkbVqlUxa9YsEJGsTGhoKJo2bQonJycEBgaarYMxxhhjjDHGHid+ML2JK1euQBAE/Pzzz6hVqxYuXryIDz74ADk5OViwYIGs7G+//YZu3bpJ7z08PKT/Z2Zm4pVXXkHHjh0RFhaGq1evYujQoXB1dcXEiRMBADdu3MBrr72GDz74AKtXr8axY8cwatQoVKxYEX379n0yO8wYY4wxxhgr0xRUsNuKycyfPx/BwcG4fv26NE2hUGDTpk3o3bu3xWWCg4Px+eef4+7du3B0dAQAfPvtt1i8eDHu3LkDhUKBzz77DFu3bsXly5el5UaMGIHz58/jxIkTNtcvMzMTHh4eyMjIgLu7+8PtJGOMMcYYY08RPsZ9cnjIaBEyMjJQvnx5s+mjR4+Gt7c3mjdvjmXLlkEQBGneiRMn0L59eykMAkDXrl2RkJCAmzdvSmW6dOkiW2fXrl1x5swZaLXaQuujVquRmZkpezHGGGOMMcbYw+Aho1bExsZi8eLFWLhwoWz6V199haCgIDg7O2P//v2YOHEi7t27h6lTpwIAkpKS4O/vL1umcuXK0ryAgAAkJSVJ00zL6HQ63Lt3D1WqVLFYpzlz5mDmzJlm0zkYMsYYY4yxZ4V4bMuDGR+/MhEIZ8yYYTFEmQoLC0OzZs2k9wkJCejWrRv69euH999/X1ZWDH4A0LhxYwDArFmzZNMVCoVsGfGH2XS6LWUK+vzzzzFhwgTpfXx8POrVq4dq1apZ3T/GGGOMMcb+a7KysmT36mAlr0wEwtGjR2PgwIFWy5j26CUkJKBjx45o1aoVQkJCilx/y5YtkZmZibt376Jy5crw8fFBUlKSrExycjKABz2FhZVRqVSoUKFCodtydHSUDUUtV64cbt++DTc3N6tBsizLzMxEtWrVcPv2bR6DXkK4TUset2nJ4vYsedymJYvbs+Rxm5as0m5PIkJWVhZ8fX2f+LbLmjIRCL29veHt7W1T2fj4eHTs2BFNmzbFb7/9BqWy6MssIyIi4OTkBE9PTwBAq1atMGXKFGg0Gjg4OAAA9uzZA19fXyl4tmrVCtu2bZOtZ8+ePWjWrBns7e1t3jelUgk/Pz+by5dl7u7u/AeihHGbljxu05LF7VnyuE1LFrdnyeM2LVml2Z7cM/hk8E1lTCQkJKBDhw6oVq0aFixYgJSUFCQlJcl68rZt24bly5fj4sWLiI2NxS+//IIvvvgCw4cPl3ru3n77bTg6OmLo0KG4ePEiNm3ahG+++QYTJkyQevFGjBiBuLg4TJgwAZcvX8avv/6KFStW4JNPPimVfWeMMcYYY4yVPWWih9BWe/bswbVr13Dt2jWzXjfx+j57e3v89NNPmDBhAgRBQGBgIGbNmoWPPvpIKuvh4YG9e/fio48+QrNmzeDl5YUJEybIrv0LCAjAzp07MX78eCxduhS+vr5YtGgRP4OQMcYYY4wx9sRwIDQxdOhQDB061GqZbt26yR5IX5gXXngBhw8ftlqmffv2CA8PL04V2UNwdHTE9OnTZddeskfDbVryuE1LFrdnyeM2LVncniWP27RkcXuWHfxgesYYY4wxxhgro/gaQsYYY4wxxhgrozgQMsYYY4wxxlgZxYGQMcYYY4wxxsooDoSMMcYYY4wxVkZxIGTPjDlz5qB58+Zwc3NDpUqV0Lt3b0RHR8vKEBFmzJgBX19fODs7o0OHDrh06VIp1fi/Zc6cOVAoFBg3bpw0jduz+OLj4zFo0CBUqFABLi4uaNy4Mc6ePSvN5za1nU6nw9SpUxEQEABnZ2fpMUCCIEhluD2tO3z4MF5//XX4+vpCoVBg8+bNsvm2tJ9arcaYMWPg7e0NV1dX9OzZE3fu3HmCe/H0sNaeWq0Wn332GV544QW4urrC19cX//vf/5CQkCBbB7enXFE/o6Y+/PBDKBQK/PDDD7Lp3KZytrTp5cuX0bNnT3h4eMDNzQ0tW7bErVu3pPncps8WDoTsmREaGoqPPvoIJ0+exN69e6HT6dClSxfk5ORIZebNm4fvvvsOS5YsQVhYGHx8fPDKK68gKyurFGv+9AsLC0NISAgaNmwom87tWTxpaWlo06YN7O3tsWvXLkRFRWHhwoXw9PSUynCb2m7u3LlYtmwZlixZgsuXL2PevHmYP38+Fi9eLJXh9rQuJycHjRo1wpIlSyzOt6X9xo0bh02bNmHt2rU4evQosrOz0aNHD+j1+ie1G08Na+2Zm5uL8PBwfPnllwgPD8fGjRtx9epV9OzZU1aO21OuqJ9R0ebNm3Hq1Cn4+vqazeM2lSuqTWNjY9G2bVvUqVMHhw4dwvnz5/Hll1/CyclJKsNt+owhxp5RycnJBIBCQ0OJiEgQBPLx8aFvv/1WKpOfn08eHh60bNmy0qrmUy8rK4tq165Ne/fupfbt29PHH39MRNyeD+Ozzz6jtm3bFjqf27R4unfvTu+9955sWp8+fWjQoEFExO1ZXABo06ZN0ntb2i89PZ3s7e1p7dq1Upn4+HhSKpW0e/fuJ1b3p1HB9rTk9OnTBIDi4uKIiNuzKIW16Z07d6hq1ap08eJFqlGjBn3//ffSPG5T6yy16YABA6Tfo5Zwmz57uIeQPbMyMjIAAOXLlwcA3LhxA0lJSejSpYtUxtHREe3bt8fx48dLpY7/BR999BG6d++Ozp07y6Zzexbf1q1b0axZM/Tr1w+VKlXCiy++iOXLl0vzuU2Lp23btti/fz+uXr0KADh//jyOHj2K1157DQC356Oypf3Onj0LrVYrK+Pr64sGDRpwG9sgIyMDCoVCGiXA7Vl8giBg8ODBmDRpEurXr282n9u0eARBwI4dO/Dcc8+ha9euqFSpEl566SXZsFJu02cPB0L2TCIiTJgwAW3btkWDBg0AAElJSQCAypUry8pWrlxZmsfk1q5di/DwcMyZM8dsHrdn8V2/fh3BwcGoXbs2/v33X4wYMQJjx47FypUrAXCbFtdnn32Gt956C3Xq1IG9vT1efPFFjBs3Dm+99RYAbs9HZUv7JSUlwcHBAV5eXoWWYZbl5+dj8uTJePvtt+Hu7g6A2/NhzJ07FyqVCmPHjrU4n9u0eJKTk5GdnY1vv/0W3bp1w549e/DGG2+gT58+CA0NBcBt+ixSlXYFGHscRo8ejQsXLuDo0aNm8xQKhew9EZlNY8Dt27fx8ccfY8+ePbLrBgri9rSdIAho1qwZvvnmGwDAiy++iEuXLiE4OBj/+9//pHLcprZZt24dVq9ejTVr1qB+/fo4d+4cxo0bB19fXwwZMkQqx+35aB6m/biNrdNqtRg4cCAEQcBPP/1UZHluT8vOnj2LH3/8EeHh4cVuH25Ty8SbcvXq1Qvjx48HADRu3BjHjx/HsmXL0L59+0KX5Tb97+IeQvbMGTNmDLZu3YqDBw/Cz89Pmu7j4wMAZmevkpOTzc6AM8Mf2uTkZDRt2hQqlQoqlQqhoaFYtGgRVCqV1GbcnrarUqUK6tWrJ5tWt25d6c5t/DNaPJMmTcLkyZMxcOBAvPDCCxg8eDDGjx8v9Whzez4aW9rPx8cHGo0GaWlphZZhclqtFv3798eNGzewd+9eqXcQ4PYsriNHjiA5ORnVq1eX/k7FxcVh4sSJ8Pf3B8BtWlze3t5QqVRF/q3iNn22cCBkzwwiwujRo7Fx40YcOHAAAQEBsvkBAQHw8fHB3r17pWkajQahoaFo3br1k67uUy8oKAiRkZE4d+6c9GrWrBneeecdnDt3DoGBgdyexdSmTRuzR6FcvXoVNWrUAMA/o8WVm5sLpVL+Z8zOzk46w83t+Whsab+mTZvC3t5eViYxMREXL17kNrZADIMxMTHYt28fKlSoIJvP7Vk8gwcPxoULF2R/p3x9fTFp0iT8+++/ALhNi8vBwQHNmze3+reK2/QZVEo3s2GsxI0cOZI8PDzo0KFDlJiYKL1yc3OlMt9++y15eHjQxo0bKTIykt566y2qUqUKZWZmlmLN/ztM7zJKxO1ZXKdPnyaVSkVff/01xcTE0J9//kkuLi60evVqqQy3qe2GDBlCVatWpe3bt9ONGzdo48aN5O3tTZ9++qlUhtvTuqysLIqIiKCIiAgCQN999x1FRERId720pf1GjBhBfn5+tG/fPgoPD6dOnTpRo0aNSKfTldZulRpr7anVaqlnz57k5+dH586dk/2dUqvV0jq4PeWK+hktqOBdRom4TQsqqk03btxI9vb2FBISQjExMbR48WKys7OjI0eOSOvgNn22cCBkzwwAFl+//fabVEYQBJo+fTr5+PiQo6MjtWvXjiIjI0uv0v8xBQMht2fxbdu2jRo0aECOjo5Up04dCgkJkc3nNrVdZmYmffzxx1S9enVycnKiwMBA+uKLL2QH19ye1h08eNDi780hQ4YQkW3tl5eXR6NHj6by5cuTs7Mz9ejRg27dulUKe1P6rLXnjRs3Cv07dfDgQWkd3J5yRf2MFmQpEHKbytnSpitWrKBatWqRk5MTNWrUiDZv3ixbB7fps0VBRPR4+yAZY4wxxhhjjD2N+BpCxhhjjDHGGCujOBAyxhhjjDHGWBnFgZAxxhhjjDHGyigOhIwxxhhjjDFWRnEgZIwxxhhjjLEyigMhY4wxxhhjjJVRHAgZY4wxxhhjrIziQMgYY4wxxhhjZRQHQsYYY4wxxhgrozgQMsYYY4wxxlgZxYGQMcYYY4wxxsooDoSMMcYYY4wxVkZxIGSMMcYYY4yxMooDIWOMMcYYY4yVURwIGWOMMcYYY6yM4kDIGGOMMcYYY2UUB0LGGGOMMcYYK6M4EDLGGGOMMcZYGcWBkDHGGGOMMcbKKA6EjDHGGGOMMVZGcSBkjDHGGGOMsTKKAyFjjDHGGGOMlVH/ByjVn3M/+RlgAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "px.SetMaxSinThetaOvLambda(0.3)\n", "px.quick_fit_profile(auto_background=True,plot=False, init_profile=True,verbose=True)\n", "px.quick_fit_profile(plot=False, init_profile=False, asym=True, displ_transl=True, verbose=False)\n", "\n", "# Plot in new figure\n", "px.plot(diff=True, fig=None, hkl=True)\n", "print(\"Fit result: Rw=%6.2f%% Chi2=%10.2f GoF=%8.2f LLK=%10.3f\" %\n", " (px.rw * 100, px.chi2, px.chi2/px.GetNbPointUsed(), px.llk))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Find the spacegroup\n", "The SpaceGroupExplorer can be used to find the optimal spacegroup. \n", "\n", "What `RunAll()` does is try all spacegroups and settings which are compatible with the unit cell (in this case all monoclinic and triclinic), and perform a profile fit (Le Bail only, we don't refine profile parameters or background since these parameters should be OK).\n", "\n", "From this several values are extracted for each spacegroup setting:\n", "* **Rw** - the standard full-profile weighted R factor $R_{wp}$\n", "* **GoF**: the chi2 (full profile $\\chi^2=\\Sigma\\frac{(obs-calc)^2}{\\sigma^2}$) divided by the number of points used\n", "* **nGoF**: this is the Goodness-of-Fit, but computed on integration intervals defined by P1 reflections, and then multiplied by the number of reflections used divided by the number of reflections for the P1 spacegroup. This is more discriminating and allows to put forward spacegroups which yield a good fit with more extinctions.\n", "* **reflections** is the number of reflections actually taken into account for this spacegroup up to the maximum sin(theta)/lambda\n", "* **extinct446** gives the number of extinct reflections for 0<=H<=4 0<=K<=4 0<=L<=6 (which is used internally as a unique fingerprint for the extinctions)\n", "\n", "Some C++ verbose output does not appear here but will be in the jupyter server log if you see it.\n", "\n", "The results are sorting by ascending **nGOF**\n", "\n", "Unfortunately in this case the correct spacegroup (Pcmn, or Pnma if the axis were exchanged) is only one among possible choices (P21cn has the same extinctions), so we'll select it but in a real case, the different possible spacegroups would need to be tested." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "P 21 c n nGoF= 0.6682 GoF= 6.438 Rw= 9.95 [ 49 reflections, extinct446= 27]Beginning spacegroup exploration... 348 to go...\n", "\n", "P m c n nGoF= 0.6682 GoF= 6.438 Rw= 9.95 [ 49 reflections, extinct446= 27]\n", "P 21 m n nGoF= 0.7431 GoF= 7.453 Rw=10.69 [ 58 reflections, extinct446= 12]\n", "P m 21 n nGoF= 0.7431 GoF= 7.453 Rw=10.69 [ 58 reflections, extinct446= 12]\n", "P m m n :1 nGoF= 0.7431 GoF= 7.453 Rw=10.69 [ 58 reflections, extinct446= 12]\n", "P m m n :2 nGoF= 0.7431 GoF= 7.453 Rw=10.69 [ 58 reflections, extinct446= 12]\n", "P 21 21 2 nGoF= 0.7575 GoF= 7.435 Rw=10.67 [ 62 reflections, extinct446= 4]\n", "P 21 21 21 nGoF= 0.7727 GoF= 6.459 Rw= 9.95 [ 59 reflections, extinct446= 7]\n", "P 21 2 2 nGoF= 0.7771 GoF= 7.129 Rw=10.44 [ 64 reflections, extinct446= 2]\n", "P m c 21 nGoF= 0.7777 GoF= 7.476 Rw=10.70 [ 57 reflections, extinct446= 15]\n", "P 2 c m nGoF= 0.7777 GoF= 7.476 Rw=10.70 [ 57 reflections, extinct446= 15]\n", "P m c m nGoF= 0.7777 GoF= 7.476 Rw=10.70 [ 57 reflections, extinct446= 15]\n", "P 2 21 2 nGoF= 0.8000 GoF= 7.497 Rw=10.71 [ 64 reflections, extinct446= 2]\n", "P 2 21 21 nGoF= 0.8162 GoF= 6.520 Rw= 9.99 [ 61 reflections, extinct446= 5]\n", "P 21 2 21 nGoF= 0.8201 GoF= 7.462 Rw=10.69 [ 61 reflections, extinct446= 5]\n", "P 2 2 2 nGoF= 0.8202 GoF= 7.192 Rw=10.48 [ 66 reflections, extinct446= 0]\n", "P m m 2 nGoF= 0.8202 GoF= 7.192 Rw=10.48 [ 66 reflections, extinct446= 0]\n", "P 2 m m nGoF= 0.8202 GoF= 7.192 Rw=10.48 [ 66 reflections, extinct446= 0]\n", "P m 2 m nGoF= 0.8202 GoF= 7.192 Rw=10.48 [ 66 reflections, extinct446= 0]\n", "P m m m nGoF= 0.8202 GoF= 7.192 Rw=10.48 [ 66 reflections, extinct446= 0]\n", "P 2 2 21 nGoF= 0.8650 GoF= 7.526 Rw=10.73 [ 63 reflections, extinct446= 3]\n", "P 1 1 n nGoF= 0.9768 GoF= 6.931 Rw=10.26 [ 84 reflections, extinct446= 12]\n", "P 1 1 2/n nGoF= 0.9768 GoF= 6.931 Rw=10.26 [ 84 reflections, extinct446= 12]\n", "P 1 1 21/n nGoF= 1.0128 GoF= 5.934 Rw= 9.50 [ 81 reflections, extinct446= 15]\n", "P 1 21/c 1 nGoF= 1.0460 GoF= 6.099 Rw= 9.62 [ 82 reflections, extinct446= 17]\n", "P 1 1 2 nGoF= 1.0782 GoF= 6.667 Rw=10.04 [ 96 reflections, extinct446= 0]\n", "P 1 1 m nGoF= 1.0782 GoF= 6.667 Rw=10.04 [ 96 reflections, extinct446= 0]\n", "P 1 1 2/m nGoF= 1.0782 GoF= 6.667 Rw=10.04 [ 96 reflections, extinct446= 0]\n", "P 1 c 1 nGoF= 1.0998 GoF= 7.112 Rw=10.38 [ 84 reflections, extinct446= 15]\n", "P 1 2/c 1 nGoF= 1.0998 GoF= 7.112 Rw=10.38 [ 84 reflections, extinct446= 15]\n", "P 1 21 1 nGoF= 1.1596 GoF= 7.159 Rw=10.40 [ 97 reflections, extinct446= 2]\n", "P 1 21/m 1 nGoF= 1.1596 GoF= 7.159 Rw=10.40 [ 97 reflections, extinct446= 2]\n", "P 1 1 21 nGoF= 1.1633 GoF= 6.993 Rw=10.29 [ 93 reflections, extinct446= 3]\n", "P 1 1 21/m nGoF= 1.1633 GoF= 6.993 Rw=10.29 [ 93 reflections, extinct446= 3]\n", "P 1 2 1 nGoF= 1.1767 GoF= 6.850 Rw=10.16 [ 99 reflections, extinct446= 0]\n", "P 1 m 1 nGoF= 1.1767 GoF= 6.850 Rw=10.16 [ 99 reflections, extinct446= 0]\n", "P 1 2/m 1 nGoF= 1.1767 GoF= 6.850 Rw=10.16 [ 99 reflections, extinct446= 0]\n", "P 21 1 1 nGoF= 1.1896 GoF= 7.025 Rw=10.31 [ 99 reflections, extinct446= 2]\n", "P 21/m 1 1 nGoF= 1.1896 GoF= 7.025 Rw=10.31 [ 99 reflections, extinct446= 2]\n", "P 2 1 1 nGoF= 1.2487 GoF= 7.121 Rw=10.37 [101 reflections, extinct446= 0]\n", "P m 1 1 nGoF= 1.2487 GoF= 7.121 Rw=10.37 [101 reflections, extinct446= 0]\n", "P 2/m 1 1 nGoF= 1.2487 GoF= 7.121 Rw=10.37 [101 reflections, extinct446= 0]\n", "P -1 nGoF= 1.7960 GoF= 6.503 Rw= 9.82 [164 reflections, extinct446= 0]\n", "P 1 nGoF= 1.7960 GoF= 6.503 Rw= 9.82 [164 reflections, extinct446= 0]\n", "Chosen spacegroup (smallest nGoF): P m c n\n", " (# 1) P 1 : Rwp= 9.82% GoF= 6.50 nGoF= 1.80 (164 reflections, 0 extinct)\n", " (# 2) P -1 : Rwp= 9.82% GoF= 6.50 nGoF= 1.80 (164 reflections, 0 extinct) [same extinctions as:P 1]\n", " (# 3) P 1 2 1 : Rwp= 10.16% GoF= 6.85 nGoF= 1.18 ( 99 reflections, 0 extinct)\n", " (# 3) P 1 1 2 : Rwp= 10.04% GoF= 6.67 nGoF= 1.08 ( 96 reflections, 0 extinct)\n", " (# 3) P 2 1 1 : Rwp= 10.37% GoF= 7.12 nGoF= 1.25 (101 reflections, 0 extinct)\n", " (# 4) P 1 21 1 : Rwp= 10.40% GoF= 7.16 nGoF= 1.16 ( 97 reflections, 2 extinct)\n", " (# 4) P 1 1 21 : Rwp= 10.29% GoF= 6.99 nGoF= 1.16 ( 93 reflections, 3 extinct)\n", " (# 4) P 21 1 1 : Rwp= 10.31% GoF= 7.03 nGoF= 1.19 ( 99 reflections, 2 extinct)\n", " (# 5) C 1 2 1 : Rwp= 67.21% GoF= 303.80 nGoF= 73.57 ( 47 reflections, 84 extinct)\n", " (# 5) A 1 2 1 : Rwp= 84.58% GoF= 475.12 nGoF= 131.08 ( 49 reflections, 85 extinct)\n", " (# 5) I 1 2 1 : Rwp= 72.33% GoF= 338.02 nGoF= 95.93 ( 48 reflections, 87 extinct)\n", " (# 5) A 1 1 2 : Rwp= 84.41% GoF= 472.15 nGoF= 125.00 ( 47 reflections, 85 extinct)\n", " (# 5) B 1 1 2 : Rwp= 71.09% GoF= 327.08 nGoF= 90.41 ( 48 reflections, 85 extinct)\n", " (# 5) I 1 1 2 : Rwp= 72.10% GoF= 335.86 nGoF= 91.74 ( 46 reflections, 87 extinct)\n", " (# 5) B 2 1 1 : Rwp= 71.03% GoF= 325.79 nGoF= 94.20 ( 50 reflections, 85 extinct)\n", " (# 5) C 2 1 1 : Rwp= 67.37% GoF= 305.42 nGoF= 75.30 ( 48 reflections, 84 extinct)\n", " (# 5) I 2 1 1 : Rwp= 72.35% GoF= 338.01 nGoF= 97.98 ( 49 reflections, 87 extinct)\n", " (# 6) P 1 m 1 : Rwp= 10.16% GoF= 6.85 nGoF= 1.18 ( 99 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", " (# 6) P 1 1 m : Rwp= 10.04% GoF= 6.67 nGoF= 1.08 ( 96 reflections, 0 extinct) [same extinctions as:P 1 1 2]\n", " (# 6) P m 1 1 : Rwp= 10.37% GoF= 7.12 nGoF= 1.25 (101 reflections, 0 extinct) [same extinctions as:P 2 1 1]\n", " (# 7) P 1 c 1 : Rwp= 10.38% GoF= 7.11 nGoF= 1.10 ( 84 reflections, 15 extinct)\n", " (# 7) P 1 n 1 : Rwp= 38.27% GoF= 96.35 nGoF= 46.21 ( 84 reflections, 17 extinct)\n", " (# 7) P 1 a 1 : Rwp= 43.45% GoF= 124.43 nGoF= 51.91 ( 83 reflections, 14 extinct)\n", " (# 7) P 1 1 a : Rwp= 33.13% GoF= 72.23 nGoF= 27.48 ( 84 reflections, 10 extinct)\n", " (# 7) P 1 1 n : Rwp= 10.26% GoF= 6.93 nGoF= 0.98 ( 84 reflections, 12 extinct)\n", " (# 7) P 1 1 b : Rwp= 33.20% GoF= 72.53 nGoF= 27.49 ( 84 reflections, 10 extinct)\n", " (# 7) P b 1 1 : Rwp= 33.53% GoF= 73.78 nGoF= 25.85 ( 83 reflections, 14 extinct)\n", " (# 7) P n 1 1 : Rwp= 33.67% GoF= 74.39 nGoF= 33.08 ( 84 reflections, 17 extinct)\n", " (# 7) P c 1 1 : Rwp= 38.44% GoF= 96.88 nGoF= 39.45 ( 82 reflections, 15 extinct)\n", " (# 8) C 1 m 1 : Rwp= 67.21% GoF= 303.80 nGoF= 73.57 ( 47 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", " (# 8) A 1 m 1 : Rwp= 84.58% GoF= 475.12 nGoF= 131.08 ( 49 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", " (# 8) I 1 m 1 : Rwp= 72.33% GoF= 338.02 nGoF= 95.93 ( 48 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", " (# 8) A 1 1 m : Rwp= 84.41% GoF= 472.15 nGoF= 125.00 ( 47 reflections, 85 extinct) [same extinctions as:A 1 1 2]\n", " (# 8) B 1 1 m : Rwp= 71.09% GoF= 327.08 nGoF= 90.41 ( 48 reflections, 85 extinct) [same extinctions as:B 1 1 2]\n", " (# 8) I 1 1 m : Rwp= 72.10% GoF= 335.86 nGoF= 91.74 ( 46 reflections, 87 extinct) [same extinctions as:I 1 1 2]\n", " (# 8) B m 1 1 : Rwp= 71.03% GoF= 325.79 nGoF= 94.20 ( 50 reflections, 85 extinct) [same extinctions as:B 2 1 1]\n", " (# 8) C m 1 1 : Rwp= 67.37% GoF= 305.42 nGoF= 75.30 ( 48 reflections, 84 extinct) [same extinctions as:C 2 1 1]\n", " (# 8) I m 1 1 : Rwp= 72.35% GoF= 338.01 nGoF= 97.98 ( 49 reflections, 87 extinct) [same extinctions as:I 2 1 1]\n", " (# 9) C 1 c 1 : Rwp= 64.29% GoF= 276.98 nGoF= 60.10 ( 40 reflections, 93 extinct)\n", " (# 9) A 1 n 1 : Rwp= 85.31% GoF= 481.19 nGoF= 113.30 ( 41 reflections, 93 extinct)\n", " (# 9) I 1 a 1 : Rwp= 72.32% GoF= 338.70 nGoF= 79.93 ( 40 reflections, 93 extinct)\n", " (# 9) A 1 a 1 : Rwp= 85.31% GoF= 481.19 nGoF= 113.30 ( 41 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 9) C 1 n 1 : Rwp= 64.29% GoF= 276.98 nGoF= 60.10 ( 40 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 9) I 1 c 1 : Rwp= 72.32% GoF= 338.70 nGoF= 79.93 ( 40 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", " (# 9) A 1 1 a : Rwp= 62.66% GoF= 259.44 nGoF= 61.15 ( 41 reflections, 91 extinct)\n", " (# 9) B 1 1 n : Rwp= 71.10% GoF= 326.28 nGoF= 79.15 ( 42 reflections, 91 extinct)\n", " (# 9) I 1 1 b : Rwp= 73.15% GoF= 344.60 nGoF= 81.97 ( 40 reflections, 91 extinct)\n", " (# 9) B 1 1 b : Rwp= 71.10% GoF= 326.28 nGoF= 79.15 ( 42 reflections, 91 extinct) [same extinctions as:B 1 1 n]\n", " (# 9) A 1 1 n : Rwp= 62.66% GoF= 259.44 nGoF= 61.15 ( 41 reflections, 91 extinct) [same extinctions as:A 1 1 a]\n", " (# 9) I 1 1 a : Rwp= 73.15% GoF= 344.60 nGoF= 81.97 ( 40 reflections, 91 extinct) [same extinctions as:I 1 1 b]\n", " (# 9) B b 1 1 : Rwp= 72.77% GoF= 340.69 nGoF= 83.67 ( 42 reflections, 93 extinct)\n", " (# 9) C n 1 1 : Rwp= 72.34% GoF= 350.52 nGoF= 75.02 ( 39 reflections, 93 extinct)\n", " (# 9) I c 1 1 : Rwp= 73.91% GoF= 351.19 nGoF= 80.65 ( 39 reflections, 93 extinct)\n", " (# 9) C c 1 1 : Rwp= 72.34% GoF= 350.52 nGoF= 75.02 ( 39 reflections, 93 extinct) [same extinctions as:C n 1 1]\n", " (# 9) B n 1 1 : Rwp= 72.77% GoF= 340.69 nGoF= 83.67 ( 42 reflections, 93 extinct) [same extinctions as:B b 1 1]\n", " (# 9) I b 1 1 : Rwp= 73.91% GoF= 351.19 nGoF= 80.65 ( 39 reflections, 93 extinct) [same extinctions as:I c 1 1]\n", " (# 10) P 1 2/m 1 : Rwp= 10.16% GoF= 6.85 nGoF= 1.18 ( 99 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", " (# 10) P 1 1 2/m : Rwp= 10.04% GoF= 6.67 nGoF= 1.08 ( 96 reflections, 0 extinct) [same extinctions as:P 1 1 2]\n", " (# 10) P 2/m 1 1 : Rwp= 10.37% GoF= 7.12 nGoF= 1.25 (101 reflections, 0 extinct) [same extinctions as:P 2 1 1]\n", " (# 11) P 1 21/m 1 : Rwp= 10.40% GoF= 7.16 nGoF= 1.16 ( 97 reflections, 2 extinct) [same extinctions as:P 1 21 1]\n", " (# 11) P 1 1 21/m : Rwp= 10.29% GoF= 6.99 nGoF= 1.16 ( 93 reflections, 3 extinct) [same extinctions as:P 1 1 21]\n", " (# 11) P 21/m 1 1 : Rwp= 10.31% GoF= 7.03 nGoF= 1.19 ( 99 reflections, 2 extinct) [same extinctions as:P 21 1 1]\n", " (# 12) C 1 2/m 1 : Rwp= 67.21% GoF= 303.80 nGoF= 73.57 ( 47 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", " (# 12) A 1 2/m 1 : Rwp= 84.58% GoF= 475.12 nGoF= 131.08 ( 49 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", " (# 12) I 1 2/m 1 : Rwp= 72.33% GoF= 338.02 nGoF= 95.93 ( 48 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", " (# 12) A 1 1 2/m : Rwp= 84.41% GoF= 472.15 nGoF= 125.00 ( 47 reflections, 85 extinct) [same extinctions as:A 1 1 2]\n", " (# 12) B 1 1 2/m : Rwp= 71.09% GoF= 327.08 nGoF= 90.41 ( 48 reflections, 85 extinct) [same extinctions as:B 1 1 2]\n", " (# 12) I 1 1 2/m : Rwp= 72.10% GoF= 335.86 nGoF= 91.74 ( 46 reflections, 87 extinct) [same extinctions as:I 1 1 2]\n", " (# 12) B 2/m 1 1 : Rwp= 71.03% GoF= 325.79 nGoF= 94.20 ( 50 reflections, 85 extinct) [same extinctions as:B 2 1 1]\n", " (# 12) C 2/m 1 1 : Rwp= 67.37% GoF= 305.42 nGoF= 75.30 ( 48 reflections, 84 extinct) [same extinctions as:C 2 1 1]\n", " (# 12) I 2/m 1 1 : Rwp= 72.35% GoF= 338.01 nGoF= 97.98 ( 49 reflections, 87 extinct) [same extinctions as:I 2 1 1]\n", " (# 13) P 1 2/c 1 : Rwp= 10.38% GoF= 7.11 nGoF= 1.10 ( 84 reflections, 15 extinct) [same extinctions as:P 1 c 1]\n", " (# 13) P 1 2/n 1 : Rwp= 38.27% GoF= 96.35 nGoF= 46.21 ( 84 reflections, 17 extinct) [same extinctions as:P 1 n 1]\n", " (# 13) P 1 2/a 1 : Rwp= 43.45% GoF= 124.43 nGoF= 51.91 ( 83 reflections, 14 extinct) [same extinctions as:P 1 a 1]\n", " (# 13) P 1 1 2/a : Rwp= 33.13% GoF= 72.23 nGoF= 27.48 ( 84 reflections, 10 extinct) [same extinctions as:P 1 1 a]\n", " (# 13) P 1 1 2/n : Rwp= 10.26% GoF= 6.93 nGoF= 0.98 ( 84 reflections, 12 extinct) [same extinctions as:P 1 1 n]\n", " (# 13) P 1 1 2/b : Rwp= 33.20% GoF= 72.53 nGoF= 27.49 ( 84 reflections, 10 extinct) [same extinctions as:P 1 1 b]\n", " (# 13) P 2/b 1 1 : Rwp= 33.53% GoF= 73.78 nGoF= 25.85 ( 83 reflections, 14 extinct) [same extinctions as:P b 1 1]\n", " (# 13) P 2/n 1 1 : Rwp= 33.67% GoF= 74.39 nGoF= 33.08 ( 84 reflections, 17 extinct) [same extinctions as:P n 1 1]\n", " (# 13) P 2/c 1 1 : Rwp= 38.44% GoF= 96.88 nGoF= 39.45 ( 82 reflections, 15 extinct) [same extinctions as:P c 1 1]\n", " (# 14) P 1 21/c 1 : Rwp= 9.62% GoF= 6.10 nGoF= 1.05 ( 82 reflections, 17 extinct)\n", " (# 14) P 1 21/n 1 : Rwp= 38.14% GoF= 95.58 nGoF= 45.09 ( 82 reflections, 19 extinct)\n", " (# 14) P 1 21/a 1 : Rwp= 43.48% GoF= 124.47 nGoF= 50.66 ( 81 reflections, 16 extinct)\n", " (# 14) P 1 1 21/a : Rwp= 33.20% GoF= 72.38 nGoF= 26.58 ( 81 reflections, 13 extinct)\n", " (# 14) P 1 1 21/n : Rwp= 9.50% GoF= 5.93 nGoF= 1.01 ( 81 reflections, 15 extinct)\n", " (# 14) P 1 1 21/b : Rwp= 33.04% GoF= 71.70 nGoF= 26.54 ( 81 reflections, 13 extinct)\n", " (# 14) P 21/b 1 1 : Rwp= 39.94% GoF= 104.54 nGoF= 31.96 ( 81 reflections, 16 extinct)\n", " (# 14) P 21/n 1 1 : Rwp= 33.65% GoF= 74.22 nGoF= 32.26 ( 82 reflections, 19 extinct)\n", " (# 14) P 21/c 1 1 : Rwp= 43.67% GoF= 124.94 nGoF= 44.44 ( 80 reflections, 17 extinct)\n", " (# 15) C 1 2/c 1 : Rwp= 64.29% GoF= 276.98 nGoF= 60.10 ( 40 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 15) A 1 2/n 1 : Rwp= 85.31% GoF= 481.19 nGoF= 113.30 ( 41 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 15) I 1 2/a 1 : Rwp= 72.32% GoF= 338.70 nGoF= 79.93 ( 40 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", " (# 15) A 1 2/a 1 : Rwp= 85.31% GoF= 481.19 nGoF= 113.30 ( 41 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 15) C 1 2/n 1 : Rwp= 64.29% GoF= 276.98 nGoF= 60.10 ( 40 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 15) I 1 2/c 1 : Rwp= 72.32% GoF= 338.70 nGoF= 79.93 ( 40 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", " (# 15) A 1 1 2/a : Rwp= 62.66% GoF= 259.44 nGoF= 61.15 ( 41 reflections, 91 extinct) [same extinctions as:A 1 1 a]\n", " (# 15) B 1 1 2/n : Rwp= 71.10% GoF= 326.28 nGoF= 79.15 ( 42 reflections, 91 extinct) [same extinctions as:B 1 1 n]\n", " (# 15) I 1 1 2/b : Rwp= 73.15% GoF= 344.60 nGoF= 81.97 ( 40 reflections, 91 extinct) [same extinctions as:I 1 1 b]\n", " (# 15) B 1 1 2/b : Rwp= 71.10% GoF= 326.28 nGoF= 79.15 ( 42 reflections, 91 extinct) [same extinctions as:B 1 1 n]\n", " (# 15) A 1 1 2/n : Rwp= 62.66% GoF= 259.44 nGoF= 61.15 ( 41 reflections, 91 extinct) [same extinctions as:A 1 1 a]\n", " (# 15) I 1 1 2/a : Rwp= 73.15% GoF= 344.60 nGoF= 81.97 ( 40 reflections, 91 extinct) [same extinctions as:I 1 1 b]\n", " (# 15) B 2/b 1 1 : Rwp= 72.77% GoF= 340.69 nGoF= 83.67 ( 42 reflections, 93 extinct) [same extinctions as:B b 1 1]\n", " (# 15) C 2/n 1 1 : Rwp= 72.34% GoF= 350.52 nGoF= 75.02 ( 39 reflections, 93 extinct) [same extinctions as:C n 1 1]\n", " (# 15) I 2/c 1 1 : Rwp= 73.91% GoF= 351.19 nGoF= 80.65 ( 39 reflections, 93 extinct) [same extinctions as:I c 1 1]\n", " (# 15) C 2/c 1 1 : Rwp= 72.34% GoF= 350.52 nGoF= 75.02 ( 39 reflections, 93 extinct) [same extinctions as:C n 1 1]\n", " (# 15) B 2/n 1 1 : Rwp= 72.77% GoF= 340.69 nGoF= 83.67 ( 42 reflections, 93 extinct) [same extinctions as:B b 1 1]\n", " (# 15) I 2/b 1 1 : Rwp= 73.91% GoF= 351.19 nGoF= 80.65 ( 39 reflections, 93 extinct) [same extinctions as:I c 1 1]\n", " (# 16) P 2 2 2 : Rwp= 10.48% GoF= 7.19 nGoF= 0.82 ( 66 reflections, 0 extinct)\n", " (# 17) P 2 2 21 : Rwp= 10.73% GoF= 7.53 nGoF= 0.87 ( 63 reflections, 3 extinct)\n", " (# 17) P 21 2 2 : Rwp= 10.44% GoF= 7.13 nGoF= 0.78 ( 64 reflections, 2 extinct)\n", " (# 17) P 2 21 2 : Rwp= 10.71% GoF= 7.50 nGoF= 0.80 ( 64 reflections, 2 extinct)\n", " (# 18) P 21 21 2 : Rwp= 10.67% GoF= 7.44 nGoF= 0.76 ( 62 reflections, 4 extinct)\n", " (# 18) P 2 21 21 : Rwp= 9.99% GoF= 6.52 nGoF= 0.82 ( 61 reflections, 5 extinct)\n", " (# 18) P 21 2 21 : Rwp= 10.69% GoF= 7.46 nGoF= 0.82 ( 61 reflections, 5 extinct)\n", " (# 19) P 21 21 21 : Rwp= 9.95% GoF= 6.46 nGoF= 0.77 ( 59 reflections, 7 extinct)\n", " (# 20) C 2 2 21 : Rwp= 67.46% GoF= 303.94 nGoF= 45.55 ( 29 reflections, 87 extinct)\n", " (# 20) A 21 2 2 : Rwp= 84.58% GoF= 470.71 nGoF= 82.95 ( 31 reflections, 87 extinct)\n", " (# 20) B 2 21 2 : Rwp= 71.13% GoF= 324.96 nGoF= 58.45 ( 31 reflections, 87 extinct)\n", " (# 21) C 2 2 2 : Rwp= 67.49% GoF= 304.79 nGoF= 50.24 ( 32 reflections, 84 extinct)\n", " (# 21) A 2 2 2 : Rwp= 84.59% GoF= 471.25 nGoF= 88.31 ( 33 reflections, 85 extinct)\n", " (# 21) B 2 2 2 : Rwp= 71.14% GoF= 325.42 nGoF= 62.22 ( 33 reflections, 85 extinct)\n", " (# 22) F 2 2 2 : Rwp= 76.55% GoF= 388.57 nGoF= 35.98 ( 16 reflections, 127 extinct)\n", " (# 23) I 2 2 2 : Rwp= 72.54% GoF= 338.13 nGoF= 64.30 ( 32 reflections, 87 extinct)\n", " (# 24) I 21 21 21 : Rwp= 72.54% GoF= 338.13 nGoF= 64.30 ( 32 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", " (# 25) P m m 2 : Rwp= 10.48% GoF= 7.19 nGoF= 0.82 ( 66 reflections, 0 extinct) [same extinctions as:P 2 2 2]\n", " (# 25) P 2 m m : Rwp= 10.48% GoF= 7.19 nGoF= 0.82 ( 66 reflections, 0 extinct) [same extinctions as:P 2 2 2]\n", " (# 25) P m 2 m : Rwp= 10.48% GoF= 7.19 nGoF= 0.82 ( 66 reflections, 0 extinct) [same extinctions as:P 2 2 2]\n", " (# 26) P m c 21 : Rwp= 10.70% GoF= 7.48 nGoF= 0.78 ( 57 reflections, 15 extinct)\n", " (# 26) P c m 21 : Rwp= 38.51% GoF= 96.48 nGoF= 26.53 ( 55 reflections, 15 extinct)\n", " (# 26) P 21 m a : Rwp= 33.23% GoF= 72.02 nGoF= 19.37 ( 59 reflections, 10 extinct)\n", " (# 26) P 21 a m : Rwp= 43.68% GoF= 124.63 nGoF= 35.55 ( 57 reflections, 14 extinct)\n", " (# 26) P b 21 m : Rwp= 33.76% GoF= 74.22 nGoF= 17.64 ( 56 reflections, 14 extinct)\n", " (# 26) P m 21 b : Rwp= 33.30% GoF= 72.32 nGoF= 19.38 ( 59 reflections, 10 extinct)\n", " (# 27) P c c 2 : Rwp= 38.49% GoF= 96.35 nGoF= 23.65 ( 49 reflections, 27 extinct)\n", " (# 27) P 2 a a : Rwp= 50.26% GoF= 164.56 nGoF= 43.85 ( 52 reflections, 22 extinct)\n", " (# 27) P b 2 b : Rwp= 43.68% GoF= 123.89 nGoF= 29.64 ( 51 reflections, 22 extinct)\n", " (# 28) P m a 2 : Rwp= 43.68% GoF= 124.63 nGoF= 35.55 ( 57 reflections, 14 extinct) [same extinctions as:P 21 a m]\n", " (# 28) P b m 2 : Rwp= 33.76% GoF= 74.22 nGoF= 17.64 ( 56 reflections, 14 extinct) [same extinctions as:P b 21 m]\n", " (# 28) P 2 m b : Rwp= 33.30% GoF= 72.32 nGoF= 19.38 ( 59 reflections, 10 extinct) [same extinctions as:P m 21 b]\n", " (# 28) P 2 c m : Rwp= 10.70% GoF= 7.48 nGoF= 0.78 ( 57 reflections, 15 extinct) [same extinctions as:P m c 21]\n", " (# 28) P c 2 m : Rwp= 38.51% GoF= 96.48 nGoF= 26.53 ( 55 reflections, 15 extinct) [same extinctions as:P c m 21]\n", " (# 28) P m 2 a : Rwp= 33.23% GoF= 72.02 nGoF= 19.37 ( 59 reflections, 10 extinct) [same extinctions as:P 21 m a]\n", " (# 29) P c a 21 : Rwp= 61.81% GoF= 248.06 nGoF= 62.06 ( 46 reflections, 29 extinct)\n", " (# 29) P b c 21 : Rwp= 33.60% GoF= 73.35 nGoF= 14.86 ( 47 reflections, 29 extinct)\n", " (# 29) P 21 a b : Rwp= 50.29% GoF= 164.54 nGoF= 42.16 ( 50 reflections, 24 extinct)\n", " (# 29) P 21 c a : Rwp= 33.33% GoF= 72.28 nGoF= 16.53 ( 50 reflections, 25 extinct)\n", " (# 29) P c 21 b : Rwp= 46.59% GoF= 140.72 nGoF= 34.46 ( 48 reflections, 25 extinct)\n", " (# 29) P b 21 a : Rwp= 48.24% GoF= 150.90 nGoF= 32.31 ( 49 reflections, 24 extinct)\n", " (# 30) P n c 2 : Rwp= 33.94% GoF= 74.91 nGoF= 19.48 ( 49 reflections, 29 extinct)\n", " (# 30) P c n 2 : Rwp= 59.85% GoF= 232.16 nGoF= 62.13 ( 48 reflections, 29 extinct)\n", " (# 30) P 2 n a : Rwp= 46.50% GoF= 140.36 nGoF= 39.44 ( 51 reflections, 25 extinct)\n", " (# 30) P 2 a n : Rwp= 43.70% GoF= 124.34 nGoF= 31.81 ( 51 reflections, 24 extinct)\n", " (# 30) P b 2 n : Rwp= 40.62% GoF= 107.08 nGoF= 19.91 ( 50 reflections, 24 extinct)\n", " (# 30) P n 2 b : Rwp= 43.70% GoF= 123.91 nGoF= 32.21 ( 50 reflections, 25 extinct)\n", " (# 31) P m n 21 : Rwp= 38.34% GoF= 95.70 nGoF= 30.87 ( 56 reflections, 17 extinct)\n", " (# 31) P n m 21 : Rwp= 33.96% GoF= 75.04 nGoF= 21.89 ( 55 reflections, 17 extinct)\n", " (# 31) P 21 m n : Rwp= 10.69% GoF= 7.45 nGoF= 0.74 ( 58 reflections, 12 extinct)\n", " (# 31) P 21 n m : Rwp= 38.34% GoF= 95.70 nGoF= 30.87 ( 56 reflections, 17 extinct) [same extinctions as:P m n 21]\n", " (# 31) P n 21 m : Rwp= 33.96% GoF= 75.04 nGoF= 21.89 ( 55 reflections, 17 extinct) [same extinctions as:P n m 21]\n", " (# 31) P m 21 n : Rwp= 10.69% GoF= 7.45 nGoF= 0.74 ( 58 reflections, 12 extinct) [same extinctions as:P 21 m n]\n", " (# 32) P b a 2 : Rwp= 54.71% GoF= 194.42 nGoF= 43.86 ( 47 reflections, 28 extinct)\n", " (# 32) P 2 c b : Rwp= 33.17% GoF= 71.61 nGoF= 16.51 ( 50 reflections, 25 extinct)\n", " (# 32) P c 2 a : Rwp= 50.65% GoF= 166.32 nGoF= 37.87 ( 48 reflections, 25 extinct)\n", " (# 33) P n a 21 : Rwp= 61.14% GoF= 242.72 nGoF= 63.64 ( 46 reflections, 31 extinct)\n", " (# 33) P b n 21 : Rwp= 51.58% GoF= 172.27 nGoF= 39.53 ( 46 reflections, 31 extinct)\n", " (# 33) P 21 n b : Rwp= 46.42% GoF= 139.73 nGoF= 37.88 ( 49 reflections, 27 extinct)\n", " (# 33) P 21 c n : Rwp= 9.95% GoF= 6.44 nGoF= 0.67 ( 49 reflections, 27 extinct)\n", " (# 33) P c 21 n : Rwp= 44.05% GoF= 125.70 nGoF= 26.12 ( 47 reflections, 27 extinct)\n", " (# 33) P n 21 a : Rwp= 43.68% GoF= 123.69 nGoF= 30.91 ( 48 reflections, 27 extinct)\n", " (# 34) P n n 2 : Rwp= 59.17% GoF= 226.98 nGoF= 64.15 ( 48 reflections, 31 extinct)\n", " (# 34) P 2 n n : Rwp= 38.20% GoF= 94.70 nGoF= 27.56 ( 50 reflections, 27 extinct)\n", " (# 34) P n 2 n : Rwp= 33.95% GoF= 74.74 nGoF= 19.50 ( 49 reflections, 27 extinct)\n", " (# 35) C m m 2 : Rwp= 67.49% GoF= 304.79 nGoF= 50.24 ( 32 reflections, 84 extinct) [same extinctions as:C 2 2 2]\n", " (# 35) A 2 m m : Rwp= 84.59% GoF= 471.25 nGoF= 88.31 ( 33 reflections, 85 extinct) [same extinctions as:A 2 2 2]\n", " (# 35) B m 2 m : Rwp= 71.14% GoF= 325.42 nGoF= 62.22 ( 33 reflections, 85 extinct) [same extinctions as:B 2 2 2]\n", " (# 36) C m c 21 : Rwp= 64.36% GoF= 276.37 nGoF= 40.65 ( 27 reflections, 93 extinct)\n", " (# 36) C c m 21 : Rwp= 72.52% GoF= 350.68 nGoF= 50.24 ( 26 reflections, 93 extinct)\n", " (# 36) A 21 m a : Rwp= 62.85% GoF= 259.63 nGoF= 43.46 ( 29 reflections, 91 extinct)\n", " (# 36) A 21 a m : Rwp= 85.31% GoF= 478.01 nGoF= 77.38 ( 28 reflections, 93 extinct)\n", " (# 36) B b 21 m : Rwp= 72.89% GoF= 340.67 nGoF= 55.83 ( 28 reflections, 93 extinct)\n", " (# 36) B m 21 b : Rwp= 71.15% GoF= 324.80 nGoF= 54.70 ( 29 reflections, 91 extinct)\n", " (# 37) C c c 2 : Rwp= 70.67% GoF= 332.61 nGoF= 45.35 ( 24 reflections, 99 extinct)\n", " (# 37) A 2 a a : Rwp= 73.18% GoF= 351.38 nGoF= 54.22 ( 26 reflections, 97 extinct)\n", " (# 37) B b 2 b : Rwp= 72.91% GoF= 340.45 nGoF= 51.86 ( 26 reflections, 97 extinct)\n", " (# 38) A m m 2 : Rwp= 84.59% GoF= 471.25 nGoF= 88.31 ( 33 reflections, 85 extinct) [same extinctions as:A 2 2 2]\n", " (# 38) B m m 2 : Rwp= 71.14% GoF= 325.42 nGoF= 62.22 ( 33 reflections, 85 extinct) [same extinctions as:B 2 2 2]\n", " (# 38) B 2 m m : Rwp= 71.14% GoF= 325.42 nGoF= 62.22 ( 33 reflections, 85 extinct) [same extinctions as:B 2 2 2]\n", " (# 38) C 2 m m : Rwp= 67.49% GoF= 304.79 nGoF= 50.24 ( 32 reflections, 84 extinct) [same extinctions as:C 2 2 2]\n", " (# 38) C m 2 m : Rwp= 67.49% GoF= 304.79 nGoF= 50.24 ( 32 reflections, 84 extinct) [same extinctions as:C 2 2 2]\n", " (# 38) A m 2 m : Rwp= 84.59% GoF= 471.25 nGoF= 88.31 ( 33 reflections, 85 extinct) [same extinctions as:A 2 2 2]\n", " (# 39) A b m 2 : Rwp= 84.63% GoF= 473.64 nGoF= 75.08 ( 28 reflections, 91 extinct)\n", " (# 39) B m a 2 : Rwp= 71.17% GoF= 325.88 nGoF= 54.72 ( 29 reflections, 91 extinct)\n", " (# 39) B 2 c m : Rwp= 71.17% GoF= 325.88 nGoF= 54.72 ( 29 reflections, 91 extinct) [same extinctions as:B m a 2]\n", " (# 39) C 2 m b : Rwp= 69.12% GoF= 319.10 nGoF= 48.46 ( 29 reflections, 88 extinct)\n", " (# 39) C m 2 a : Rwp= 69.12% GoF= 319.10 nGoF= 48.46 ( 29 reflections, 88 extinct) [same extinctions as:C 2 m b]\n", " (# 39) A c 2 m : Rwp= 84.63% GoF= 473.64 nGoF= 75.08 ( 28 reflections, 91 extinct) [same extinctions as:A b m 2]\n", " (# 40) A m a 2 : Rwp= 85.31% GoF= 478.01 nGoF= 77.38 ( 28 reflections, 93 extinct) [same extinctions as:A 21 a m]\n", " (# 40) B b m 2 : Rwp= 72.89% GoF= 340.67 nGoF= 55.83 ( 28 reflections, 93 extinct) [same extinctions as:B b 21 m]\n", " (# 40) B 2 m b : Rwp= 71.15% GoF= 324.80 nGoF= 54.70 ( 29 reflections, 91 extinct) [same extinctions as:B m 21 b]\n", " (# 40) C 2 c m : Rwp= 64.36% GoF= 276.37 nGoF= 40.65 ( 27 reflections, 93 extinct) [same extinctions as:C m c 21]\n", " (# 40) C c 2 m : Rwp= 72.52% GoF= 350.68 nGoF= 50.24 ( 26 reflections, 93 extinct) [same extinctions as:C c m 21]\n", " (# 40) A m 2 a : Rwp= 62.85% GoF= 259.63 nGoF= 43.46 ( 29 reflections, 91 extinct) [same extinctions as:A 21 m a]\n", " (# 41) A b a 2 : Rwp= 85.45% GoF= 481.44 nGoF= 63.89 ( 23 reflections, 99 extinct)\n", " (# 41) B b a 2 : Rwp= 72.91% GoF= 341.08 nGoF= 47.88 ( 24 reflections, 99 extinct)\n", " (# 41) B 2 c b : Rwp= 71.23% GoF= 325.70 nGoF= 47.24 ( 25 reflections, 97 extinct)\n", " (# 41) C 2 c b : Rwp= 66.43% GoF= 293.90 nGoF= 38.64 ( 24 reflections, 97 extinct)\n", " (# 41) C c 2 a : Rwp= 73.47% GoF= 359.36 nGoF= 45.80 ( 23 reflections, 97 extinct)\n", " (# 41) A c 2 a : Rwp= 67.31% GoF= 299.08 nGoF= 39.85 ( 24 reflections, 97 extinct)\n", " (# 42) F m m 2 : Rwp= 76.55% GoF= 388.57 nGoF= 35.98 ( 16 reflections, 127 extinct) [same extinctions as:F 2 2 2]\n", " (# 42) F 2 m m : Rwp= 76.55% GoF= 388.57 nGoF= 35.98 ( 16 reflections, 127 extinct) [same extinctions as:F 2 2 2]\n", " (# 42) F m 2 m : Rwp= 76.55% GoF= 388.57 nGoF= 35.98 ( 16 reflections, 127 extinct) [same extinctions as:F 2 2 2]\n", " (# 43) F d d 2 : Rwp= 80.95% GoF= 445.23 nGoF= 28.01 ( 11 reflections, 137 extinct)\n", " (# 43) F 2 d d : Rwp= 81.66% GoF= 453.34 nGoF= 30.93 ( 12 reflections, 136 extinct)\n", " (# 43) F d 2 d : Rwp= 80.96% GoF= 433.60 nGoF= 30.56 ( 12 reflections, 136 extinct)\n", " (# 44) I m m 2 : Rwp= 72.54% GoF= 338.13 nGoF= 64.30 ( 32 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", " (# 44) I 2 m m : Rwp= 72.54% GoF= 338.13 nGoF= 64.30 ( 32 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", " (# 44) I m 2 m : Rwp= 72.54% GoF= 338.13 nGoF= 64.30 ( 32 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", " (# 45) I b a 2 : Rwp= 74.13% GoF= 353.50 nGoF= 47.79 ( 23 reflections, 99 extinct)\n", " (# 45) I 2 c b : Rwp= 73.52% GoF= 348.04 nGoF= 51.53 ( 25 reflections, 97 extinct)\n", " (# 45) I c 2 a : Rwp= 74.95% GoF= 359.44 nGoF= 51.01 ( 24 reflections, 97 extinct)\n", " (# 46) I m a 2 : Rwp= 72.53% GoF= 339.35 nGoF= 56.25 ( 28 reflections, 93 extinct)\n", " (# 46) I b m 2 : Rwp= 74.10% GoF= 351.89 nGoF= 56.07 ( 27 reflections, 93 extinct)\n", " (# 46) I 2 m b : Rwp= 73.52% GoF= 346.76 nGoF= 59.78 ( 29 reflections, 91 extinct)\n", " (# 46) I 2 c m : Rwp= 72.53% GoF= 339.35 nGoF= 56.25 ( 28 reflections, 93 extinct) [same extinctions as:I m a 2]\n", " (# 46) I c 2 m : Rwp= 74.10% GoF= 351.89 nGoF= 56.07 ( 27 reflections, 93 extinct) [same extinctions as:I b m 2]\n", " (# 46) I m 2 a : Rwp= 73.52% GoF= 346.76 nGoF= 59.78 ( 29 reflections, 91 extinct) [same extinctions as:I 2 m b]\n", " (# 47) P m m m : Rwp= 10.48% GoF= 7.19 nGoF= 0.82 ( 66 reflections, 0 extinct) [same extinctions as:P 2 2 2]\n", " (# 48) P n n n :1 : Rwp= 59.17% GoF= 226.48 nGoF= 58.81 ( 44 reflections, 39 extinct)\n", " (# 48) P n n n :2 : Rwp= 59.17% GoF= 226.48 nGoF= 58.81 ( 44 reflections, 39 extinct) [same extinctions as:P n n n :1]\n", " (# 49) P c c m : Rwp= 38.49% GoF= 96.35 nGoF= 23.65 ( 49 reflections, 27 extinct) [same extinctions as:P c c 2]\n", " (# 49) P m a a : Rwp= 50.26% GoF= 164.56 nGoF= 43.85 ( 52 reflections, 22 extinct) [same extinctions as:P 2 a a]\n", " (# 49) P b m b : Rwp= 43.68% GoF= 123.89 nGoF= 29.64 ( 51 reflections, 22 extinct) [same extinctions as:P b 2 b]\n", " (# 50) P b a n :1 : Rwp= 54.82% GoF= 194.80 nGoF= 40.27 ( 43 reflections, 36 extinct)\n", " (# 50) P b a n :2 : Rwp= 54.82% GoF= 194.80 nGoF= 40.27 ( 43 reflections, 36 extinct) [same extinctions as:P b a n :1]\n", " (# 50) P n c b :1 : Rwp= 43.71% GoF= 123.90 nGoF= 28.37 ( 44 reflections, 37 extinct)\n", " (# 50) P n c b :2 : Rwp= 43.71% GoF= 123.90 nGoF= 28.37 ( 44 reflections, 37 extinct) [same extinctions as:P n c b :1]\n", " (# 50) P c n a :1 : Rwp= 62.60% GoF= 253.36 nGoF= 61.02 ( 43 reflections, 37 extinct)\n", " (# 50) P c n a :2 : Rwp= 62.60% GoF= 253.36 nGoF= 61.02 ( 43 reflections, 37 extinct) [same extinctions as:P c n a :1]\n", " (# 51) P m m a : Rwp= 33.23% GoF= 72.02 nGoF= 19.37 ( 59 reflections, 10 extinct) [same extinctions as:P 21 m a]\n", " (# 51) P m m b : Rwp= 33.30% GoF= 72.32 nGoF= 19.38 ( 59 reflections, 10 extinct) [same extinctions as:P m 21 b]\n", " (# 51) P b m m : Rwp= 33.76% GoF= 74.22 nGoF= 17.64 ( 56 reflections, 14 extinct) [same extinctions as:P b 21 m]\n", " (# 51) P c m m : Rwp= 38.51% GoF= 96.48 nGoF= 26.53 ( 55 reflections, 15 extinct) [same extinctions as:P c m 21]\n", " (# 51) P m c m : Rwp= 10.70% GoF= 7.48 nGoF= 0.78 ( 57 reflections, 15 extinct) [same extinctions as:P m c 21]\n", " (# 51) P m a m : Rwp= 43.68% GoF= 124.63 nGoF= 35.55 ( 57 reflections, 14 extinct) [same extinctions as:P 21 a m]\n", " (# 52) P n n a : Rwp= 61.94% GoF= 248.04 nGoF= 62.36 ( 43 reflections, 39 extinct)\n", " (# 52) P n n b : Rwp= 61.94% GoF= 248.04 nGoF= 62.35 ( 43 reflections, 39 extinct)\n", " (# 52) P b n n : Rwp= 51.62% GoF= 172.14 nGoF= 36.13 ( 42 reflections, 39 extinct)\n", " (# 52) P c n n : Rwp= 59.83% GoF= 231.31 nGoF= 54.38 ( 42 reflections, 39 extinct)\n", " (# 52) P n c n : Rwp= 33.93% GoF= 74.60 nGoF= 17.09 ( 43 reflections, 39 extinct)\n", " (# 52) P n a n : Rwp= 61.14% GoF= 242.17 nGoF= 58.11 ( 42 reflections, 39 extinct)\n", " (# 53) P m n a : Rwp= 46.50% GoF= 140.36 nGoF= 39.44 ( 51 reflections, 25 extinct) [same extinctions as:P 2 n a]\n", " (# 53) P n m b : Rwp= 43.70% GoF= 123.91 nGoF= 32.21 ( 50 reflections, 25 extinct) [same extinctions as:P n 2 b]\n", " (# 53) P b m n : Rwp= 40.62% GoF= 107.08 nGoF= 19.91 ( 50 reflections, 24 extinct) [same extinctions as:P b 2 n]\n", " (# 53) P c n m : Rwp= 59.85% GoF= 232.16 nGoF= 62.13 ( 48 reflections, 29 extinct) [same extinctions as:P c n 2]\n", " (# 53) P n c m : Rwp= 33.94% GoF= 74.91 nGoF= 19.48 ( 49 reflections, 29 extinct) [same extinctions as:P n c 2]\n", " (# 53) P m a n : Rwp= 43.70% GoF= 124.34 nGoF= 31.81 ( 51 reflections, 24 extinct) [same extinctions as:P 2 a n]\n", " (# 54) P c c a : Rwp= 50.72% GoF= 166.64 nGoF= 33.25 ( 42 reflections, 37 extinct)\n", " (# 54) P c c b : Rwp= 46.61% GoF= 140.77 nGoF= 30.21 ( 42 reflections, 37 extinct)\n", " (# 54) P b a a : Rwp= 58.60% GoF= 222.45 nGoF= 46.79 ( 42 reflections, 36 extinct)\n", " (# 54) P c a a : Rwp= 64.28% GoF= 267.50 nGoF= 60.32 ( 41 reflections, 37 extinct)\n", " (# 54) P b c b : Rwp= 43.63% GoF= 123.30 nGoF= 24.50 ( 42 reflections, 37 extinct)\n", " (# 54) P b a b : Rwp= 58.73% GoF= 223.44 nGoF= 46.96 ( 42 reflections, 36 extinct)\n", " (# 55) P b a m : Rwp= 54.71% GoF= 194.42 nGoF= 43.86 ( 47 reflections, 28 extinct) [same extinctions as:P b a 2]\n", " (# 55) P m c b : Rwp= 33.17% GoF= 71.61 nGoF= 16.51 ( 50 reflections, 25 extinct) [same extinctions as:P 2 c b]\n", " (# 55) P c m a : Rwp= 50.65% GoF= 166.32 nGoF= 37.87 ( 48 reflections, 25 extinct) [same extinctions as:P c 2 a]\n", " (# 56) P c c n : Rwp= 44.25% GoF= 126.78 nGoF= 22.98 ( 41 reflections, 39 extinct)\n", " (# 56) P n a a : Rwp= 63.61% GoF= 262.03 nGoF= 61.32 ( 41 reflections, 39 extinct)\n", " (# 56) P b n b : Rwp= 56.15% GoF= 203.56 nGoF= 42.89 ( 41 reflections, 39 extinct)\n", " (# 57) P b c m : Rwp= 33.60% GoF= 73.35 nGoF= 14.86 ( 47 reflections, 29 extinct) [same extinctions as:P b c 21]\n", " (# 57) P c a m : Rwp= 61.81% GoF= 248.06 nGoF= 62.06 ( 46 reflections, 29 extinct) [same extinctions as:P c a 21]\n", " (# 57) P m c a : Rwp= 33.33% GoF= 72.28 nGoF= 16.53 ( 50 reflections, 25 extinct) [same extinctions as:P 21 c a]\n", " (# 57) P m a b : Rwp= 50.29% GoF= 164.54 nGoF= 42.16 ( 50 reflections, 24 extinct) [same extinctions as:P 21 a b]\n", " (# 57) P b m a : Rwp= 48.24% GoF= 150.90 nGoF= 32.31 ( 49 reflections, 24 extinct) [same extinctions as:P b 21 a]\n", " (# 57) P c m b : Rwp= 46.59% GoF= 140.72 nGoF= 34.46 ( 48 reflections, 25 extinct) [same extinctions as:P c 21 b]\n", " (# 58) P n n m : Rwp= 59.17% GoF= 226.98 nGoF= 64.15 ( 48 reflections, 31 extinct) [same extinctions as:P n n 2]\n", " (# 58) P m n n : Rwp= 38.20% GoF= 94.70 nGoF= 27.56 ( 50 reflections, 27 extinct) [same extinctions as:P 2 n n]\n", " (# 58) P n m n : Rwp= 33.95% GoF= 74.74 nGoF= 19.50 ( 49 reflections, 27 extinct) [same extinctions as:P n 2 n]\n", " (# 59) P m m n :1 : Rwp= 10.69% GoF= 7.45 nGoF= 0.74 ( 58 reflections, 12 extinct) [same extinctions as:P 21 m n]\n", " (# 59) P m m n :2 : Rwp= 10.69% GoF= 7.45 nGoF= 0.74 ( 58 reflections, 12 extinct) [same extinctions as:P 21 m n]\n", " (# 59) P n m m :1 : Rwp= 33.96% GoF= 75.04 nGoF= 21.89 ( 55 reflections, 17 extinct) [same extinctions as:P n m 21]\n", " (# 59) P n m m :2 : Rwp= 33.96% GoF= 75.04 nGoF= 21.89 ( 55 reflections, 17 extinct) [same extinctions as:P n m 21]\n", " (# 59) P m n m :1 : Rwp= 38.34% GoF= 95.70 nGoF= 30.87 ( 56 reflections, 17 extinct) [same extinctions as:P m n 21]\n", " (# 59) P m n m :2 : Rwp= 38.34% GoF= 95.70 nGoF= 30.87 ( 56 reflections, 17 extinct) [same extinctions as:P m n 21]\n", " (# 60) P b c n : Rwp= 40.76% GoF= 107.58 nGoF= 16.57 ( 41 reflections, 39 extinct)\n", " (# 60) P c a n : Rwp= 61.85% GoF= 247.55 nGoF= 54.04 ( 40 reflections, 39 extinct)\n", " (# 60) P n c a : Rwp= 43.69% GoF= 123.68 nGoF= 27.07 ( 42 reflections, 39 extinct)\n", " (# 60) P n a b : Rwp= 63.61% GoF= 262.01 nGoF= 61.32 ( 41 reflections, 39 extinct)\n", " (# 60) P b n a : Rwp= 56.10% GoF= 203.21 nGoF= 42.84 ( 41 reflections, 39 extinct)\n", " (# 60) P c n b : Rwp= 62.60% GoF= 253.04 nGoF= 58.20 ( 41 reflections, 39 extinct)\n", " (# 61) P b c a : Rwp= 48.24% GoF= 150.61 nGoF= 26.51 ( 40 reflections, 39 extinct)\n", " (# 61) P c a b : Rwp= 64.33% GoF= 267.64 nGoF= 57.46 ( 39 reflections, 39 extinct)\n", " (# 62) P n m a : Rwp= 43.68% GoF= 123.69 nGoF= 30.91 ( 48 reflections, 27 extinct) [same extinctions as:P n 21 a]\n", " (# 62) P m n b : Rwp= 46.42% GoF= 139.73 nGoF= 37.88 ( 49 reflections, 27 extinct) [same extinctions as:P 21 n b]\n", " (# 62) P b n m : Rwp= 51.58% GoF= 172.27 nGoF= 39.53 ( 46 reflections, 31 extinct) [same extinctions as:P b n 21]\n", " (# 62) P c m n : Rwp= 44.05% GoF= 125.70 nGoF= 26.12 ( 47 reflections, 27 extinct) [same extinctions as:P c 21 n]\n", " (# 62) P m c n : Rwp= 9.95% GoF= 6.44 nGoF= 0.67 ( 49 reflections, 27 extinct) [same extinctions as:P 21 c n]\n", " (# 62) P n a m : Rwp= 61.14% GoF= 242.72 nGoF= 63.64 ( 46 reflections, 31 extinct) [same extinctions as:P n a 21]\n", " (# 63) C m c m : Rwp= 64.36% GoF= 276.37 nGoF= 40.65 ( 27 reflections, 93 extinct) [same extinctions as:C m c 21]\n", " (# 63) C c m m : Rwp= 72.52% GoF= 350.68 nGoF= 50.24 ( 26 reflections, 93 extinct) [same extinctions as:C c m 21]\n", " (# 63) A m m a : Rwp= 62.85% GoF= 259.63 nGoF= 43.46 ( 29 reflections, 91 extinct) [same extinctions as:A 21 m a]\n", " (# 63) A m a m : Rwp= 85.31% GoF= 478.01 nGoF= 77.38 ( 28 reflections, 93 extinct) [same extinctions as:A 21 a m]\n", " (# 63) B b m m : Rwp= 72.89% GoF= 340.67 nGoF= 55.83 ( 28 reflections, 93 extinct) [same extinctions as:B b 21 m]\n", " (# 63) B m m b : Rwp= 71.15% GoF= 324.80 nGoF= 54.70 ( 29 reflections, 91 extinct) [same extinctions as:B m 21 b]\n", " (# 64) C m c a : Rwp= 66.43% GoF= 293.90 nGoF= 38.64 ( 24 reflections, 97 extinct) [same extinctions as:C 2 c b]\n", " (# 64) C c m b : Rwp= 73.47% GoF= 359.36 nGoF= 45.80 ( 23 reflections, 97 extinct) [same extinctions as:C c 2 a]\n", " (# 64) A b m a : Rwp= 67.31% GoF= 299.08 nGoF= 39.85 ( 24 reflections, 97 extinct) [same extinctions as:A c 2 a]\n", " (# 64) A c a m : Rwp= 85.45% GoF= 481.44 nGoF= 63.89 ( 23 reflections, 99 extinct) [same extinctions as:A b a 2]\n", " (# 64) B b c m : Rwp= 72.91% GoF= 341.08 nGoF= 47.88 ( 24 reflections, 99 extinct) [same extinctions as:B b a 2]\n", " (# 64) B m a b : Rwp= 71.23% GoF= 325.70 nGoF= 47.24 ( 25 reflections, 97 extinct) [same extinctions as:B 2 c b]\n", " (# 65) C m m m : Rwp= 67.49% GoF= 304.79 nGoF= 50.24 ( 32 reflections, 84 extinct) [same extinctions as:C 2 2 2]\n", " (# 65) A m m m : Rwp= 84.59% GoF= 471.25 nGoF= 88.31 ( 33 reflections, 85 extinct) [same extinctions as:A 2 2 2]\n", " (# 65) B m m m : Rwp= 71.14% GoF= 325.42 nGoF= 62.22 ( 33 reflections, 85 extinct) [same extinctions as:B 2 2 2]\n", " (# 66) C c c m : Rwp= 70.67% GoF= 332.61 nGoF= 45.35 ( 24 reflections, 99 extinct) [same extinctions as:C c c 2]\n", " (# 66) A m a a : Rwp= 73.18% GoF= 351.38 nGoF= 54.22 ( 26 reflections, 97 extinct) [same extinctions as:A 2 a a]\n", " (# 66) B b m b : Rwp= 72.91% GoF= 340.45 nGoF= 51.86 ( 26 reflections, 97 extinct) [same extinctions as:B b 2 b]\n", " (# 67) C m m a : Rwp= 69.12% GoF= 319.10 nGoF= 48.46 ( 29 reflections, 88 extinct) [same extinctions as:C 2 m b]\n", " (# 67) C m m b : Rwp= 69.12% GoF= 319.10 nGoF= 48.46 ( 29 reflections, 88 extinct) [same extinctions as:C 2 m b]\n", " (# 67) A b m m : Rwp= 84.63% GoF= 473.64 nGoF= 75.08 ( 28 reflections, 91 extinct) [same extinctions as:A b m 2]\n", " (# 67) A c m m : Rwp= 84.63% GoF= 473.64 nGoF= 75.08 ( 28 reflections, 91 extinct) [same extinctions as:A b m 2]\n", " (# 67) B m c m : Rwp= 71.17% GoF= 325.88 nGoF= 54.72 ( 29 reflections, 91 extinct) [same extinctions as:B m a 2]\n", " (# 67) B m a m : Rwp= 71.17% GoF= 325.88 nGoF= 54.72 ( 29 reflections, 91 extinct) [same extinctions as:B m a 2]\n", " (# 68) C c c a :1 : Rwp= 71.81% GoF= 342.90 nGoF= 40.95 ( 21 reflections, 103 extinct)\n", " (# 68) C c c a :2 : Rwp= 71.81% GoF= 342.90 nGoF= 40.95 ( 21 reflections, 103 extinct) [same extinctions as:C c c a :1]\n", " (# 68) C c c b :1 : Rwp= 71.81% GoF= 342.90 nGoF= 40.95 ( 21 reflections, 103 extinct) [same extinctions as:C c c a :1]\n", " (# 68) C c c b :2 : Rwp= 71.81% GoF= 342.90 nGoF= 40.95 ( 21 reflections, 103 extinct) [same extinctions as:C c c a :1]\n", " (# 68) A b a a :1 : Rwp= 75.25% GoF= 376.53 nGoF= 45.61 ( 21 reflections, 103 extinct)\n", " (# 68) A b a a :2 : Rwp= 75.25% GoF= 376.53 nGoF= 45.61 ( 21 reflections, 103 extinct) [same extinctions as:A b a a :1]\n", " (# 68) A c a a :1 : Rwp= 75.25% GoF= 376.53 nGoF= 45.61 ( 21 reflections, 103 extinct) [same extinctions as:A b a a :1]\n", " (# 68) A c a a :2 : Rwp= 75.25% GoF= 376.53 nGoF= 45.61 ( 21 reflections, 103 extinct) [same extinctions as:A b a a :1]\n", " (# 68) B b c b :1 : Rwp= 72.97% GoF= 341.22 nGoF= 43.94 ( 22 reflections, 103 extinct)\n", " (# 68) B b c b :2 : Rwp= 72.97% GoF= 341.22 nGoF= 43.94 ( 22 reflections, 103 extinct) [same extinctions as:B b c b :1]\n", " (# 68) B b a b :1 : Rwp= 72.97% GoF= 341.22 nGoF= 43.94 ( 22 reflections, 103 extinct) [same extinctions as:B b c b :1]\n", " (# 68) B b a b :2 : Rwp= 72.97% GoF= 341.22 nGoF= 43.94 ( 22 reflections, 103 extinct) [same extinctions as:B b c b :1]\n", " (# 69) F m m m : Rwp= 76.55% GoF= 388.57 nGoF= 35.98 ( 16 reflections, 127 extinct) [same extinctions as:F 2 2 2]\n", " (# 70) F d d d :1 : Rwp= 80.95% GoF= 445.23 nGoF= 28.01 ( 11 reflections, 139 extinct)\n", " (# 70) F d d d :2 : Rwp= 80.95% GoF= 445.23 nGoF= 28.01 ( 11 reflections, 139 extinct) [same extinctions as:F d d d :1]\n", " (# 71) I m m m : Rwp= 72.54% GoF= 338.13 nGoF= 64.30 ( 32 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", " (# 72) I b a m : Rwp= 74.13% GoF= 353.50 nGoF= 47.79 ( 23 reflections, 99 extinct) [same extinctions as:I b a 2]\n", " (# 72) I m c b : Rwp= 73.52% GoF= 348.04 nGoF= 51.53 ( 25 reflections, 97 extinct) [same extinctions as:I 2 c b]\n", " (# 72) I c m a : Rwp= 74.95% GoF= 359.44 nGoF= 51.01 ( 24 reflections, 97 extinct) [same extinctions as:I c 2 a]\n", " (# 73) I b c a : Rwp= 74.99% GoF= 361.16 nGoF= 42.54 ( 20 reflections, 103 extinct)\n", " (# 73) I c a b : Rwp= 74.99% GoF= 361.16 nGoF= 42.54 ( 20 reflections, 103 extinct) [same extinctions as:I b c a]\n", " (# 74) I m m a : Rwp= 73.52% GoF= 346.76 nGoF= 59.78 ( 29 reflections, 91 extinct) [same extinctions as:I 2 m b]\n", " (# 74) I m m b : Rwp= 73.52% GoF= 346.76 nGoF= 59.78 ( 29 reflections, 91 extinct) [same extinctions as:I 2 m b]\n", " (# 74) I b m m : Rwp= 74.10% GoF= 351.89 nGoF= 56.07 ( 27 reflections, 93 extinct) [same extinctions as:I b m 2]\n", " (# 74) I c m m : Rwp= 74.10% GoF= 351.89 nGoF= 56.07 ( 27 reflections, 93 extinct) [same extinctions as:I b m 2]\n", " (# 74) I m c m : Rwp= 72.53% GoF= 339.35 nGoF= 56.25 ( 28 reflections, 93 extinct) [same extinctions as:I m a 2]\n", " (# 74) I m a m : Rwp= 72.53% GoF= 339.35 nGoF= 56.25 ( 28 reflections, 93 extinct) [same extinctions as:I m a 2]\n", "Restoring best spacegroup: P 21 c n\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f7cd138af1374dee930cdd0ff5c12010", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAz4ZJREFUeJzs3Xd8U9X7B/BP9mq66YJC2ZQtewkiCCLriyjyYyPi4CuoICLKKKKIi62IiyWI4ldcILJkyIaClmmZZbR0ZrTZyfn9Ee416SJp0yalz/v14kV7c5OcJDe39znPc84RMMYYCCGEEEIIIYRUO0J/N4AQQgghhBBCiH9QQEgIIYQQQggh1RQFhIQQQgghhBBSTVFASAghhBBCCCHVFAWEhBBCCCGEEFJNUUBICCGEEEIIIdUUBYSEEEIIIYQQUk1RQEgIIYQQQggh1RQFhIQQQgghhBBSTVFASAghhBBCCCHVFAWEhBBCCCGEEFJNUUBICCGEEEIIIdUUBYSEEEIIIYQQUk1RQEgIIYQQQggh1RQFhIQQQgghhBBSTVFASAghhBBCCCHVFAWEhBBCCCGEEFJNUUBICCGEEEIIIdUUBYSEEEIIIYQQUk1RQEgIIYQQQggh1RQFhIQQQgghhBBSTVFASAghhBBCCCHVFAWEhBBCCCGEEFJNUUBICCGEEEIIIdUUBYSEEEIIIYQQUk1RQEgIIYQQQggh1RQFhIQQQgghhBBSTVFASAghhBBCCCHVFAWEhBBCCCGEEFJNUUBICCGEEEIIIdUUBYSEEEIIIYQQUk1RQEgIIYQQQggh1RQFhIQQQgghhBBSTVFASAghhBBCCCHVFAWEhBBCCCGEEFJNUUBICCGEEEIIIdUUBYSEEEIIIYQQUk1RQEgIIYQQQggh1RQFhIQQQgghhBBSTVFASAghhBBCCCHVFAWEhBBCCCGEEFJNUUBICCGEEEIIIdUUBYSEEEIIIYQQUk1RQEgIIYQQQggh1RQFhIQQQgghhBBSTVFASAghhBBCCCHVlNjfDSBlxxiDTqeDXq+HWq2GQCDwd5MIIYQQQggpN8YY9Ho94uLiIBRSDqsiUUBYhen1eoSGhvq7GYQQQgghhFSIGzduoFatWv5uxn2NAsIqTK1W48aNG4iPj8eNGzcQHBzs7yYRQgghhBBSbjqdDvHx8VCr1f5uyv2PkSpNq9UyAEyr1TLGGFu8eDETiURs7NixjDHGQkJCWHBwMFMqlWzkyJFu99XpdKxDhw5MpVKxlJQUfvsjjzzC2rZtyxhjrEePHqxbt27MZrOxP/74g02bNs3jto0ePZqJRCLWo0cPFhkZyaKjo9nNmzfZ1atX2dChQ932TU9PZ3PmzOGfU6/Xu93OtaNbt27s//7v/5jdbi/xeZ999lnGGGNjx47lX9fKlSvZ6tWrS21rzZo17/mafvvtNzZ37twSb58+fToLCQkp0n5CCCGEEOK5wte4pOJQQe59qHXr1lizZg3/+8WLF3Hjxg1s2rQJBoOB365QKPDrr7/iiSeecLv/jh073H7/7bffIBKJvG7HunXrIJPJsHfvXvTv3x916tQpcd+YmBjMmzev1Mf77bffcODAASgUChw+fLjE/VatWlWmtsbExHh9v8Lef/99tG7dutyPQ8j95tSpUxgwYACGDBmCQ4cO8dsnTJjgx1YRQgghhEpGq4nw8HAoFApcuXIFzZs3BwD8+eefWLBgAS5cuIDDhw/jnXfewbp165Ceng6r1ep2/6ysLLzxxhu4ceMGMjIy8PXXXwMAtm/fjunTp+PGjRuoX78+7HY71q9fjxYtWrjdnzEGm80GuVyO27dvY//+/ejevTuioqLw7bffYuvWrXjmmWfQuHFj3L59u0j7T58+jenTpyM5ORkGgwFGoxFTp05FXl4eYmNjYbFY4HA4IBKJcP36ddy6dQsFBQUYPXo0YmNjERoaij59+mDcuHE4e/YsUlNToVAo8Pjjj+PMmTNo1aoVAGed+tixY2G1WtG8eXOsXLkSGo0Gw4YNg1AoRM2aNREfHw8AWLNmDb788kvY7Xa8/fbbePjhh33+uRFyv5gyZQpWr14NsViM6dOn48iRI5g6dSquXLni76YRQggh1RplCKuJixcvwmQyoUmTJm7bGWN4+OGHMXLkSGzYsAE///wzRo0aBY1G47bfggUL0K9fPzz11FNYt24dAMDhcOCtt97CokWL0LZtWwQFBWHhwoVYvXo1fz+73Y6HHnoIP/74I+Li4hAREYGQkBA8+OCD2L9/P2rXro09e/bgvffeQ6dOnXDgwAFotVpkZmYWeQ2HDh2CyWRCamoqXn31VRw6dAgymQz79u2DTqdD//79cfDgQej1ely7dg1nzpzBCy+8gG3btvEzsObl5UEul0Oj0aBOnTo4efIk9u3bh0OHDsHhcGDhwoV47bXXcODAAVgsFuzbtw9ffPEFnnjiCWzfvp3PImZnZ+Obb77B/v37sWvXLrzzzju+/LgIue8IBAI0aNAACQkJ2Lx5M3Q6HSZOnAibzebvphFCCCHVGmUIq4HGjRtDIBDg9ddfh1js/pG3bNkSOTk5iIqKQsuWLQEANWvWhN1ud9vvwoULeP7553HgwAF+6t/s7GykpqZi+vTpyMnJQXBwMFQqFfLy8vj7iUQi7N27F+PGjcPt27dx4MAByOVyHD58GD169EB6ejpatWqFixcvQiAQ4KGHHoLJZMLNmzdRr149tzZs374dsbGxiI2NxZkzZ/hsYvfu3XH16lUwxiAQCKBSqXD58mXodDo0bdoUANChQwcAgFarxfXr1/HQQw/hypUraNCgAQBnyeqNGzdw+fJltG/fHgDQvn17XLp0CZcuXcLEiRP5xzl16hSuXLmCc+fOoWfPngCcGVRCSMmioqJw7do1JCQkAACSkpLw9ddfY/369f5tGCHkvuVwOGCxWPzdDFICiURSpiFJxPcoIKwGLl68WOL4ONe1C0tbxzAxMREpKSkAnCdYoVCIyMhIJCYmYs6cOdi+fTveffddXL58GYyxYh8jKCgIubm5OHbsGKKjo7Fv3z5MnToVjDE0adIEERER+Omnn9CjRw888MADJbZVLBYjLy8P27dvh0Qiwf79+9GsWTNkZmaCMYaCggLUr18fwcHBOH/+PLp164YTJ06gV69eCAkJQbt27fDDDz9g+PDhmD9/vttzNGjQAMePH8ejjz6K48ePY+zYscjLy8OpU6fQtm1bnDhxAiKRCPXq1UPLli3x66+/QiAQFCmxJYS4+/7774tsGzVqFEaNGuWH1hBC7ncWiwVXr16Fw+Hwd1NIKUJDQxETE0NrafsZBYTV3A8//ACTyYSjR4+icePGJe43c+ZMDBw4EKdPn8aGDRvQrFkzjBkzBm+++SamTZuG3NxcpKWl4a233nK7H1cyev78ebRs2RL9+vWDRCLBe++9hxo1akAkEuHWrVuYMWMGJkyYgJ49eyIlJQUmk6nINMOPP/44JBIJdDodRo8eDaPRCJ1Oh8ceewyNGjXCzz//jFOnTkGtViMhIQHNmzfHJ598gv/973/8eo1hYWEICwtDjx49cP78ecTHx+ODDz7gn2PGjBkYO3Ys3nnnHTRv3hzdu3dHy5YtMWzYMGzevBlxcXGoU6cOIiMjMXz4cPTo0QMikQgtWrTAsmXLfPfBEEIIIaRMGGNIT0+HSCRCfHw8LWoegBhjMBgM/BCh2NhYP7eoehOwktI5pErQ6XQICQmBVqtFcHAwvvjiC0yePBlPPfWU20yj3ujTpw/kcjl+/vlnDB8+HOnp6dizZ4/Xaf0xY8bgwoULOHbsGF599VUcPnwY3333HWrWrFmmdlUk17aWx2uvvYaff/4ZycnJUCqVPmodIYQQQjxltVpx6dIlxMXFISQkxN/NIaXIyclBZmYmGjVqVOQ6s/A1Lqk4FBBWcfRlIYQQQgj5l8lkwtWrV5GQkACFQuHv5pBSGI1GXLt2DXXr1oVcLne7ja5xKw/l0AkhhPhNnz59/N0EQsh9isalBT76jAIDjSEkhBBS4YYNG1ZkG2OMn6yKEEIIIf5BASEhhJAKd/z4cezZs4ef3CEzMxNffPEFv/QLIYSQ0u3duxc9e/ZEXl4eP1keIb5AASEhhJAKN336dKjVakRGRgIA5syZg3Xr1mHx4sV+bhkhhBBSvdEYQkIIqUJOnTqFAQMGYMiQITh06BC/fcKECX5s1b1NmjSJDwYB8LPJPfLII/5qEiGEEEJQDQPC/fv3Y+DAgYiLi4NAIMCPP/7odvu4ceMgEAjc/nXq1MltH7PZjMmTJyMyMhIqlQqDBg3CzZs33fbJy8vD6NGjERISgpCQEIwePRoajcZtn7S0NAwcOBAqlQqRkZGYMmUKLBZLRbxsQiqNzWbzdxPua1OmTMGSJUuwePFiLF68GIsWLQIAXLlyxc8t845EIgHgnB6eEFKxRo4c6e8mEA+ZzWZMmTIFUVFRkMvl6NatG44fP+62z8GDB9GqVSvI5XJ07NjRbSz29evXMXDgQISFhUGlUqFZs2bYtm1bZb8MUsVUu5LRgoICtGrVCuPHj8fQoUOL3efRRx/F6tWr+d+lUqnb7S+//DJ++eUXbNq0CREREZg2bRoGDBiAkydP8r3eI0aMwM2bN7F9+3YAwLPPPovRo0fjl19+AeBcsL1///6oUaMG/vzzT+Tk5GDs2LFgjGH58uUV8dIJqTApKSmYMWMGNBoNxGIxrFYrIiMjsWDBArRo0cLfzbuvCAQCftzd5s2bkZSUhIkTJ1a5QJwLCKkTjBDfee2114psY4y5VROQwPbaa6/hf//7H9auXYs6derg/fffR9++fXHp0iV+n+nTp2Pp0qWIiYnBG2+8gUGDBuGff/6BRCLBf//7X1gsFuzfvx8qlQrnzp1DUFCQH18RqQqqXUDYr18/9OvXr9R9ZDIZYmJiir1Nq9Xiyy+/xPr169G7d28AwNdff434+Hjs2rULffv2xfnz57F9+3YcOXIEHTt2BAB8/vnn6Ny5My5evIjGjRtjx44dOHfuHG7cuIG4uDgAwEcffYRx48bhnXfeofVWSJUyadIkbNy4EfHx8fy2tLQ0jBw5EgcOHPBjy+4/UVFRuHbtGhISEgAASUlJ+Prrr7F+/Xr/NsxLXEdbRkaGn1tCyP1jw4YN2LhxY5Htf/zxhx9aE1gMBgMuXLhQ6c/bpEkTKJVKj/YtKCjAypUrsWbNGv5a9fPPP8fOnTvx5Zdfon379gCAuXPn8uX2a9euRa1atbBlyxYMGzYMaWlpGDp0KN8ZW69evQp4VeR+U+0CQk/s3bsXUVFRCA0NRY8ePfDOO+8gKioKAHDy5ElYrVa3tbPi4uLQvHlzHDp0CH379sXhw4cREhLCB4MA0KlTJ4SEhODQoUNo3LgxDh8+jObNm/PBIAD07dsXZrMZJ0+eRM+ePYttm9lshtls5n/X6XS+fvmEeM1utyMkJMRtW3BwMOx2u59adP/6/vvvi2wbNWoURo0a5YfWlB2XIXzrrbcwaNAgP7eGkPvD008/jcTERP6ahTNmzBg/tShwXLhwAW3btq305z158iTatGnj0b6XL1+G1WpF165d+W0SiQQdOnTA+fPn+YCwc+fO/O3h4eFo3Lgxzp8/D8A5rOCFF17Ajh070Lt3bwwdOhQtW7b04Ssi9yMKCAvp168fnnzySdSpUwdXr17F7Nmz8fDDD+PkyZOQyWTIyMiAVCpFWFiY2/2io6P5nu6MjIwiJ2PA2bPvuk90dLTb7WFhYZBKpaX2mL/77ruYN29eeV8mIT61cOFCDBgwAFKpFMHBwdBqtbDZbHjvvff83TQSIDp06OD2Ozfu2h899oTcr+bPn1/s9ilTplRySwJPkyZNcPLkSb88r6cYYwCKLtbOGLvnAu7c7c888wz69u2LrVu3YseOHXj33Xfx0UcfYfLkyV62nFQnFBAW8tRTT/E/N2/eHO3atUOdOnWwdetWPP744yXer/CXtbgvbln2KWzmzJmYOnUq/7tOp3Mr0yPEH7p37479+/fDaDRCo9EgLCwMcrnc380iAUSv1yMlJQVisfPPzrx585CUlIT69ev7uWWEkOpAqVR6nKnzlwYNGkAqleLPP//EiBEjADgn3jpx4gRefvllfr8jR46gdu3aAJyTGP7zzz9ugWd8fDyef/55PP/885g5cyY+//xzCghJqSggvIfY2FjUqVMHqampAICYmBhYLBbk5eW5ZQkzMzPRpUsXfp87d+4UeaysrCw+KxgTE4OjR4+63Z6Xlwer1Vokc+hKJpNBJpOV+3URUhEUCgUUCoW/m1Et5ObmIjc3F+Hh4QgPD/d3c+5pwYIF0Ov1/HmTKxkdMGCAP5tFCCEBQ6VS4YUXXsD06dMRHh6O2rVr4/3334fBYMCECRPw119/AXCW2kdERCA6OhpvvvkmIiMj8Z///AeAc+LDfv36oVGjRsjLy8OePXuQmJjox1dFqoJqt+yEt3JycnDjxg3ExsYCANq2bQuJRIKdO3fy+6Snp+PMmTN8QNi5c2dotVocO3aM3+fo0aPQarVu+5w5cwbp6en8Pjt27IBMJvNLjTshpGrYvXs3unbtivHjx2PevHkYO3YsunXrht27d/u7aaUaMmSIWycalynkJschhFQcWnai6li4cCGGDh2K0aNHo02bNrh06RJ+//13t/PnwoUL8dJLL6Ft27ZIT0/Hzz//zE/UZbfb8d///heJiYl49NFH0bhxY3zyySf+ejmkiqh2GcL8/Hy3qXuvXr2K06dP873sSUlJGDp0KGJjY3Ht2jW88cYbiIyMxJAhQwAAISEhmDBhAqZNm4aIiAiEh4fj1VdfRYsWLfhZR7kv4cSJE7Fq1SoAzmUnBgwYgMaNGwMA+vTpg6ZNm2L06NH44IMPkJubi1dffRUTJ06kGUYJISWaM2cOtm/fDrVazW/T6XTo168fevXq5ceWecfhcAAAjEajn1tCyP1j0KBBOHr0KCIiIpCQkIAjR45AKpXyY9NI4JPL5Vi2bBmWLVtW5LaHHnqI/yxLqq6gpctIWVS7gPDEiRNuM3hy4/HGjh2LlStXIiUlBevWrYNGo0FsbCx69uyJb7/91u3ia/HixRCLxRg2bBiMRiN69eqFNWvW8GsQAs6pn6dMmcLPRjpo0CCsWLGCv10kEmHr1q2YNGkSunbtCoVCgREjRuDDDz+s6LeAkErTp08f7Nixw9/NuK8IhUJkZWW5nZOysrIgFFatgg9u3USTyeTnlhBy/9i+fTt++eUXGAwGPPPMM1i/fj2kUmmpcyAQQki1Cwhde1eK8/vvv9/zMeRyOZYvX15qL0x4eDi+/vrrUh+ndu3a+PXXX+/5fIQEumHDhhXZxhhDSkqKH1pzf/vss88wbdo0ZGRk8JNQxcbG4rPPPvN307zCBYTc/4SQ8ouNjcUDDzyAqKgo/O9//0P//v0BoMS1lQkhBKiGASEhxPeOHz+OPXv2uGWpGGMYPXq0H1t1f0pMTMSWLVv83Yxy49aotFqtfm4JIfePIUOGICIiAgD4TmmLxYJWrVr5s1mEkABHASEhpNymT58OtVqNyMhIt+0vvviin1pEAh1lCAnxvSVLlhTZJpVK8f3331d+YwghVQYFhISQcps0aVKx213X9STEFWUICSGEkMBQtWYhIIQQUqyMjAx/N8ErlCEkhBBCAgMFhIQQch8YM2aMv5vgFcoQEuJ7O3fuRMeOHdGlSxds2rSJ384ti0UIIcWhklFCSIXJyMig2e18rEOHDkW2McaQmprqh9aUHWUICfG9uXPn4vfff4dUKsWsWbNw8OBBLF26FMnJyf5uGiEkgFFASAipMGPGjKF1CH1Mr9cjJSUFYrHz9L1371707NnTbX3VqoALBClDSIjvpKSk8OsfA0B2djbWr1+P/Px8P7aKVJakpCT8+OOPOH36tL+bQqoYCggJIeV2v2StqoIFCxZAr9cjLCwMALB582YAVW8CHyoZJcT3JBIJNm7ciAYNGvDb/vjjDwwYMMCPrSKEBDoKCAkh5VY4a8V55JFH/NSi+9eQIUPcfo+NjQUAxMXF+aM5ZUYlo4T43pdffsmvQ8jp2bMntm3b5qcWEUKqAppUhhBSblzWqrBZs2b5oTXVS3R0NAAgPT3dzy3xDmUICfG9IUOG8NUDrnr06OGH1pCycDgceO+999CgQQPIZDLUrl0b77zzDgBgxowZaNSoEZRKJerVq4fZs2ff8xz61VdfoVmzZpDJZIiNjaX1gUmxKENICCm3wlkrDl2EVDwuK6vRaPzbEC9RhpAQQoqaOXMmPv/8cyxevBjdunVDeno6Lly4AABQq9VYs2YN4uLikJKSgokTJ0KtVuO1114r9rFWrlyJqVOnYuHChejXrx+0Wi0OHjxYmS+HVBEUEBJCfG7FihXYsWMHfv75Z3835b7HBVQOh8PPLfEOZQgJqTx6vR5qtdrfzSD3oNfrsXTpUqxYsQJjx44FANSvXx/dunUD4F51k5CQgGnTpuHbb78tMSB8++23MW3aNLz00kv8tvbt21fgKyBVFQWEhBCfmzx5sr+bUG1U1cCKMoSE+N66devwwQcfQCKRYNiwYXj99dcBAIMHD8aePXv83Do/MxiAu5m2StWkCaBUerTr+fPnYTab0atXr2Jv//7777FkyRJcunQJ+fn5sNlsCA4OLnbfzMxM3L59u8THIsQVBYSEkApjs9mKTDRDfKuqBla07AQhvrdy5UokJydDIpFg2bJleOKJJ7Bu3TowxvzdNP+7cAFo27byn/fkSaBNG492VSgUJd525MgRDB8+HPPmzUPfvn0REhKCTZs24aOPPvL6sQgpjK7UCCE+FxUVhczMTGRmZla52S+rGi5DWNUCwqrabkICmVAohEQiAQBMmTIFTZs2Rb9+/ZCbm+vnlgWAJk2cwZk/ntdDDRs2hEKhwO7du/HMM8+43Xbw4EHUqVMHb775Jr/t+vXrJT6WWq1GQkICdu/eXeXWqSWVjwJCQojPRUZGIjMzExkZGRQQVrCqmmmrqqWuhASy/v3749q1a0hISAAAXLt2DQsXLsS8efP827BAoFR6nKnzF7lcjhkzZuC1116DVCpF165dkZWVhbNnz6JBgwZIS0vDpk2b0L59e2zduhVbtmwp9fGSkpLw/PPPIyoqCv369YNer8fBgwdpWAcpggJCQojPcT3UJpPJzy25/1XVTBs3CQ4FhIT4zhtvvMH/rNPpMHHiRAwcOBDbt2/3Y6uIN2bPng2xWIw5c+bg9u3biI2NxfPPP48JEybglVdewYsvvgiz2Yz+/ftj9uzZSEpKKvGxxo4dC5PJhMWLF+PVV19FZGQknnjiicp7MaTKoICQEFJh6GK/4lXVMYRVNZAlpKrgvltHjhzxc0uIN4RCId5880230lDO+++/j/fff99t28svv8z/nJSUVCRAfO655/Dcc89VRFPJfYQWpieE+JxAIABAAWFl8EXp5ciRI33VHI9RhpCQisWdG7KysvzcEkJIoKMMISGkwtDFfsXzJkNY3FpVjDEcOnTI5+26F8oQElKx6LtFCPEUBYSEEJ/jMoQWi8XPLbn/eRNYbdiwARs3biyy/Y8//vB5u+6FMoSEVCwKCAkhnqKAkBBSYehiv+J5M8vo008/jcTERERFRbltHzNmTIW0rTSUISSkYtF3ixDiKQoICSE+R2MIK483JaPz588vdvuUKVN82iZPUIaQkIrFdboQQsi90KQyhBCfo4Cw8lTVTFtVbTchVQV9twghnqKAkBDicxQQVp6qujA9ZQgJqVgUEBJCPEUBISHE56pqkFIVVdVMmy+WyyCElKyqnRMIIf5DASEhxOcoIKw83owh3LlzJzp27IguXbpg06ZN/Pb+/ftXWPtKwmUI6aKVkIpBYwgJIZ6igJAQ4nNcIEjLTlQ8bzJtc+fOxe+//45du3bh2LFjmDx5MhwOBwwGQ0U3swi73Q6pVEqdBoRUEOpsqX6SkpLQunXrCn2ONWvWIDQ0tEKfg1Q+CggJIT5HGcLK402GUCQSITQ0FEqlEosWLULbtm0xePBg5OfnV3Qzi3A4HJDJZHTRSkgFoe8WIcRTFBASQnyOCwQpIKx43owhbN26Na5du8b/Pm7cOEydOhV6vb6imlciu90OmUwGxhiVthFSATw5J+zbtw+9e/fG1KlTsWPHDjzwwAN46KGHcPjw4UpoISEkUFBASAjxOcoQVh5v3uvly5cjISHBbVvPnj1x4cKFimhaqbgMIUCZDEIqgicdLTNmzMDq1asxfvx4jB07Fr/88gt++OEHzJw5sxJaSIrjcDjw3nvvoUGDBpDJZKhduzbeeecdAM7Pq1GjRlAqlahXrx5mz559z3P/V199hWbNmkEmkyE2NhYvvvhiqfvn5eVhzJgxCAsLg1KpRL9+/ZCamlpkvx9//BGNGjWCXC7HI488ghs3bvC3/fXXX+jZsyfUajWCg4PRtm1bnDhxogzvBqksFBASQnyOMoSVpyrPMsoFhHScEOJ7rucExlix+8jlcsTHx6NFixZITExErVq1EB4eDpFIVFnNJIXMnDkT7733HmbPno1z585h48aNiI6OBgCo1WqsWbMG586dw9KlS/H5559j8eLFJT7WypUr8d///hfPPvssUlJS8PPPP6NBgwalPv+4ceNw4sQJ/Pzzzzh8+DAYY3jsscfcztMGgwHvvPMO1q5di4MHD0Kn02H48OH87SNHjkStWrVw/PhxnDx5Eq+//jokEkk53xlSkcT+bgAh5P5DGcLK480YwkDicDigVCoBVL22E1IVuH6vrFYrpFJpkX1iYmJgt9shEomwZ88e/n7cLMCkcun1eixduhQrVqzA2LFjAQD169dHt27dAACzZs3i901ISMC0adPw7bff4rXXXiv28d5++21MmzYNL730Er+tffv2JT5/amoqfv75Zxw8eBBdunQBAGzYsAHx8fH48ccf8eSTTwJwHk8rVqxAx44dAQBr165FYmIijh07hg4dOiAtLQ3Tp09HkyZNAAANGzYs61tCKkm1yxDu378fAwcORFxcHAQCAX788Ue32xljSEpKQlxcHBQKBR566CGcPXvWbR+z2YzJkycjMjISKpUKgwYNws2bN932ycvLw+jRoxESEoKQkBCMHj0aGo3GbZ+0tDQMHDgQKpUKkZGRmDJlCs3KSO4LVSEgHDlypL+b4BPerudnNpuRnJyMXbt2ITk52W/nHG6WUSCwjxNCqqrCAWFxNm3aVCQbKBaLsXPnzgptGyne+fPnYTab0atXr2Jv//7779GtWzfExMQgKCgIs2fPRlpaWrH7ZmZm4vbt2yU+1vPPP4+goCD+H/f8YrGYD/QAICIiAo0bN8b58+f5bWKxGO3ateN/b9KkCUJDQ/l9pk6dimeeeQa9e/fGwoULcfnyZe/eCFLpql2GsKCgAK1atcL48eMxdOjQIre///77WLRoEdasWYNGjRrh7bffxiOPPIKLFy9CrVYDAF5++WX88ssv2LRpEyIiIjBt2jQMGDAAJ0+e5E+sI0aMwM2bN7F9+3YAwLPPPovRo0fjl19+AeC8GOrfvz9q1KiBP//8Ezk5ORg7diwYY1i+fHklvRuEVIxAWnaiuJ5TxhgOHTrkh9b4njcZwvXr12PlypVo3749goODcf36dWzatAlLly7FCy+8UNFNdeM6hpACQkJ8z3UMocVigUql8vi+YvH9eXn4wq8v4Jb+VqU9X011TawcsNLj/RUKRYm3HTlyBMOHD8e8efPQt29fhISEYNOmTfjoo4+8fiwAeOutt/Dqq6+6bSuptJgxBoFA4Lat8O+u25KSkjBixAhs3boVv/32G+bOnYtNmzZhyJAhpbaJ+BGrxgCwLVu28L87HA4WExPDFi5cyG8zmUwsJCSEffrpp4wxxjQaDZNIJGzTpk38Prdu3WJCoZBt376dMcbYuXPnGAB25MgRfp/Dhw8zAOzChQuMMca2bdvGhEIhu3XrFr/PN998w2QyGdNqtR6/Bq1WywB4dR9CKppYLGYA2IQJE/zdFBYXF8f27t1b5F/btm393TSfeOSRRxgAVqdOnXvu27VrV2a32/nf3333XQaANWnSpAJbWLyoqCj24IMPMgDs+vXrlf78hNzvvvvuOwaAAWB37tzxd3MqldFoZOfOnWNGo9HfTfGK0WhkCoWCff7550Vu+/DDD1m9evXctk2YMIGFhITwv8+dO5e1atWK/z0hIYG9+eabHj//P//8wwCwgwcP8tuys7OZQqFgmzdvZowxtnr1agaAHT16lN/nwoULRba5Gj58OBs4cGCxt5X2WdE1buWpdiWjpbl69SoyMjLQp08ffptMJkOPHj34bMLJkydhtVrd9omLi0Pz5s35fQ4fPoyQkBC3lHunTp0QEhLitk/z5s0RFxfH79O3b1+YzWacPHmyQl8nIRWJMRZQJaNPP/00EhMT0aNHD7d/Y8aM8XfTfMKbSWUUCgX27dvH/86VCQmFlf+nwG63Qy6XAwiM44SQ+40nJaMksMjlcsyYMQOvvfYa1q1bh8uXL+PIkSP48ssv0aBBA6SlpWHTpk24fPkyli1bhi1btpT6eElJSfjoo4+wbNkypKamIjk5udQqtIYNG2Lw4MGYOHEi/vzzT/z1118YNWoUatasicGDB/P7SSQSTJ48GUePHkVycjLGjx+PTp06oUOHDjAajXjxxRexd+9eXL9+HQcPHsTx48eRmJjos/eJ+B4FhC4yMjIAgJ/NiRMdHc3flpGRAalUirCwsFL3iYqKKvL4UVFRbvsUfp6wsDBIpVJ+n+KYzWbodDq3f4QEEtcypUC4CJk/f36x38cpU6b4oTW+503wvX79evz000/o2rUrOnXqxF8Y+GM8JS07QUjF8iQg3LlzJzp27IguXbpg06ZN/Pb+/ftXePtI8WbPno1p06Zhzpw5SExMxFNPPYXMzEwMHjwYr7zyCl588UW0bt0ahw4dwuzZs0t9rLFjx2LJkiX45JNP0KxZMwwYMKDYJSRcrV69Gm3btsWAAQPQuXNnMMawbds2t1lClUolZsyYgREjRqBz585QKBT88SMSiZCTk4MxY8agUaNGGDZsGPr164d58+aV/80hFeb+LBIvp8J10ayY2unCCu9T3P5l2aewd999l75UJKC5XngEQkB4v/MmQxgTE4MlS5bwv//www/FjqWuDLTsBCEVq/AYwuLMnTsXv//+O6RSKWbNmoWDBw9i6dKlMBgMldVMUohQKMSbb76JN998s8ht77//Pt5//323bS+//DL/c1JSEpKSktxuf+655/Dcc895/PxhYWFYt25dibePGzcO48aNAwA8/vjjRW6XSqX45ptvPH4+EhgoQ+giJiYGAIpk6DIzM/lsXkxMDCwWC/Ly8krd586dO0UePysry22fws+Tl5cHq9VaJHPoaubMmdBqtfw/14VACQkEVKZUucqz7AR3wajX633aJk9QhpCQiuXJuVgkEiE0NBRKpRKLFi1C27ZtMXjwYOTn51dWMwkhAYACQhd169ZFTEyM23TLFosF+/bt49djadu2LSQSids+6enpOHPmDL9P586dodVqcezYMX6fo0ePQqvVuu1z5swZpKen8/vs2LEDMpkMbdu2LbGNMpkMwcHBbv8ICSSUIaxc3i474Yq7YCwoKPBpmzxBGUJCKpYnAWHr1q1x7do1/vdx48Zh6tSpfukkIoT4T7UrGc3Pz8elS5f4369evYrTp08jPDwctWvXxssvv4wFCxagYcOGaNiwIRYsWAClUokRI0YAAEJCQjBhwgRMmzYNERERCA8Px6uvvooWLVqgd+/eAIDExEQ8+uijmDhxIlatWgXAuezEgAED0LhxYwBAnz590LRpU4wePRoffPABcnNz8eqrr2LixIkU5JEqjbsIkclkAbHsREn69OmDHTt2+LsZ5Waz2SAQCMqUZePu449FqClDSEjF8qRktLgJRnr27IkLFy5UWLsIIYGn2gWEJ06cQM+ePfnfp06dCsA58HbNmjV47bXXYDQaMWnSJOTl5aFjx47YsWMHvwYhACxevBhisRjDhg2D0WhEr169sGbNGrfFXTds2IApU6bws5EOGjQIK1as4G8XiUTYunUrJk2ahK5du0KhUGDEiBH48MMPK/otIKRCcT3RCoUiIDI/w4YNK7KNMYaUlBQ/tMb3uNk6TSaT1/flPh9/BIT3Y4bQZrPdt+u3kaqHyvcJIZ6qdn+5HnrooRIX3gScE70UNyjXlVwux/Lly0udujc8PBxff/11qW2pXbs2fv3113u2mZCqhLsIUSqVAXERcvz4cezZs8dtaQXGGEaPHu3HVvmOzWaDTCaD0WiE3W5365jy5L6AeyahstwvC9OnpKRgxowZ0Gg0EIvFsFqtiIyMxIIFC9CiRQt/N49UYxQQEkI8Ve0CQkJIxeIuQgIlQzh9+nSo1WpERka6bX/xxRf91CLfcl3Pz2azlSkgrOzSXsbYfVMyOmnSJGzcuBHx8fH8trS0NIwcORIHDhzwY8tIdef6vfL2O56RkcFPtFeVlZYAIIGBPqPAQJPKEEJ8igsCAyVDOGnSpCLBIAA89dRTfmiN79lsNreA0Nv7Av4JCAHcFxlCu92OkJAQt23BwcF+yboS4qo8a8KOGTPG182pVFzHWCCPYydO3BInrusckspHGUJCiE+5Zgj9MXtldWO326FQKAB4f9HH7V/ZF03cher9kCFcuHAhBgwYAKlUiuDgYGi1WthsNrz33nv+bhqp5mw2GyQSCaxWa4nnhg4dOhTZxhi75+LlgU4sFkOpVCIrKwsSicRtyAAJDIwxGAwGZGZmIjQ01KvqFuJ7FBASQnzKNUOo0Wj825hqgBtDyP3s7X2Byg8IuUls7ocMYffu3bF//34YjUZoNBqEhYXxGVtC/Mlms/Gl+yV9x/R6PVJSUopMhvTII49URhMrjEAgQGxsLK5evYrr16/7uzmkFKGhofdFeXJVRwEhIcSnXCeVCeRynftljExVLBm9nzKEHIVCwWdqCQkEXECo0+lK/I4vWLAAer0eYWFhbttnzZpVGU2sUFKpFA0bNgzov0PVnUQiocxggKCAkBDiU4E2hrAkY8aMuS/WISxPyShlCAm5f3lybhgyZEix23v06FFh7apMQqGQMvaEeIACQkKITwXaLKP36xgZTnlKRmkMoe/k5uYiNzcX4eHhCA8P93dzCHGrHgiEczEhJHBRQEgI8alAyxDer2NkOIWXnfCGvzOEEokEAoEgII6Tstq9ezfmzJmDyMhIBAcHQ6PRIC8vD/PmzUOvXr383TxSjdlsNojFYkgkEiqbJISUigJCQojPnDp1Cm+88QYAIC8vj7/QnzBhAr788ku/tOl+HiMDlC8L4O8xhEKhkJ8FsaqaM2cOtm/fDrVazW/T6XTo168fBYTEr1wDwrJ8x27fvo24uLgKaBkhJNBQQEgI8ZkpU6ZgwoQJOHbsGP7++28YjUYAwJUrV/zWpsJjZHbs2IGmTZveN2NkypMh9FfJKJchFIlEEIvFVbpkVCgUIisryy0gzMrKomnuid/Z7XaPA8Jt27a5/c4YQ1JSEubNm4fHHnusIptJCAkAFBASQnxGIBAgKioKADBq1CjMmjULzzzzTEBd8Pft2xfAv4ujV3VVeZbR+yFD+Nlnn2HatGnIyMgAY4yf7v6zzz7zd9NINedNyei4cePQrl07dOrUiT83ajQanDhxggJCQqoBCggJIT4TFRWF27dvAwCCgoIAAN26dcPXX3/tz2bdtxhjcDgc5S4ZreyAjAsIuYvVQOow8FZiYiK2bNni72YQUoTNZoNIJIJUKoXZbC5136tXr2LZsmVISUnB5MmT0blzZxw9ehRz5syppNYSQvyJaloIIT7z/fff82P1uIBw6NChMJlM/mzWfau8s3X6K0PIPa9YLIZYLK7SGcLC7ty5gwsXLvi7GYTwGcJatWohLS2t1H1VKhVmzpyJVatWYffu3Rg2bBg0Gk3lNJQQ4neUISSE+BR3sc+NqTKZTG7jq/zpfikT5XABYVUbQ8i1UyQSVfkMYWGJiYnIy8u77441UvVwYwgbNWqEf/75x6P7qNVqzJo1C9988w10Ol0Ft5AQEigoQ0gI8SkuyOAyhIGUHbyfMlHAv4FVVZ1l9H7MEObl5QFwLndCiD9xGcLGjRvj4sWLHt9Pq9VixIgRmDlzZgW2jhASSCggJIT4FBdkcBfGgRQQugY+3EyXVVl5M4SBUDJa1TOE69atQ4sWLdCmTRssXLiQ3z548GA/tqrynDp1CgMGDMCQIUNw6NAhfvuECRP82CoC/DuGsHHjxsjNzUVOTo5H97tz5w4A5yRhhJDqgQJCQojP7N69G++99x4EAgE/kcxTTz2F3bt3+7llTq4TK9xrkoWqoHCGsDwBYWWWON5PYwhXrlyJ5ORkJCcnQ6lU8turS8nolClTsGTJEixevBiLFy/GokWLAPh3qRnixGUIGzVqBAAeZwlpEXtCqh8KCAkhPjNnzhw8++yzUCgUfLZk0aJFATNT3f0eEHobWHH7M8b4bGNlKDyGsCoHhNzSGYAzOOJkZWX5q0mVSiAQoEGDBkhISMDmzZuh0+kwceLEKp31vV9wYwi5pYC4qo17cf0+9unTp0LaRu4P+/btQ+/evTF16lTs2LEDDzzwAB566CEcPnzY300jXqJJZQghPiMUCqHRaCAWi/mZL+/cuRMwi3S79nwHUilrWflqllHA+d6IxZXzJ6GqLTsxcuRIbNiwodjb+vfvj2vXriEhIcFtO3cRfr+Liopye/1JSUn4+uuvsX79ev82jPAZQq7DqLRz3rBhw/ifc3NzATjHwaakpFRsI0mVNmPGDGzevBkajQZ9+vTB8ePHoVQq8fjjj2Pv3r3+bh7xAgWEhBCf+eyzz/DEE0/AYDDg//7v/wAAy5cvx+eff+7nljkFUoaQu1gr72MAgEKhcPvdm/sLhUI4HA5YLBa3kseKFKglo6+99lqRbYwxt7Fxhb3xxhvFbg+UY76iff/990W2jRo1CqNGjfJDa4grbgwh12FUWkB4/Phx7NmzB0KhEMeOHcPu3buhUCjQoEGDymouqYLkcjni4+MRHx8Pxhhq1aoFwFn9QaoWCggJIT6TmJiI4cOH4+OPP8Zvv/2G2NhYvP7660hMTPR30wD4PyBMSUnBjBkz+Cyq1WpFZGQkFixYgBYtWnj9eL4oGVWpVNDr9ZU6bqhwQFiZ5aql2bBhAzZu3Fhk+x9//OH1Y9Eso8TfuE4nLiAs7Zw3ffp0qNVqREZG4tKlSwCcF/UvvvhipbSVVB2uHWd37tzBq6++CoFA4NYxeT9M2lbdUEBICPEpb8qUKptr0OOPgHDSpEnYuHEj4uPj+W1paWkYOXIkDhw44PXjcQFgeTKESqXSbwGhSCSCWCwOmJLRp59+GomJiUXKPceMGeP1Y+Xn5/uqWYSUCTeGkBurW9q5eNKkSfzPrueCp556qkLbSKoe146z/v3789u5jjOxWIydO3f6pW2k7CggJIT4lNVqhUQiCciA0DUI9Ee77HY7QkJC3LYFBweXOUPGBVIymQwCgaDMASFQuTMLuo4hFIlEARMQzp8/v9jtrpPFeKqgoKC8zSGkXFzL0mUymcedYDTLaOXbt28f5s+fj5YtW+LRRx/FjBkzEBISgnfffRedO3f2d/PceNJxVlnj0Ynv0CdGCPEpk8kEm83GZ7x0Op2fW/Qvf5eMLly4EAMGDIBUKkVwcDC0Wi1sNhvee++9Mj1eecfi2Ww2qFQqAJV7ERioJaO+VF0yhDt37sSsWbMgEokwZcoUDB8+HIAzc7B161Y/t65648YQAs6y8sKdYKdOncLs2bMhkUgwffp0dOnSBQCwdOnSSm9rdVeVJmfxZccZCRwUEBJCfGb9+vXYtGkTTCYT9u/fD4lEgg8++ADBwcEBMcmEvwPC7t27Y//+/TAajdBoNAgLC+MzqWXBBYBlna3TarX6JUNYOCAMlAyhL1WXDOHcuXPx+++/QyqVYtasWTh48CCWLl0Kg8Hg76ZVe3a7nQ8IZTJZkYBwypQpWL16NcRiMaZPn44///wTvXv3xuXLlwFUn7U0A4Hr5CyJiYmVMjmLLyY2I/ePwJgLnhByX1i1ahUef/xx1KpVC/Pnz0dkZCTGjBmDTz/91N9NAxA4y04oFArExsaWKxgEyh9Y+atk1HUMYSCVjJaX60QK1SUgFIlECA0NhVKpxKJFi9C2bVsMHjy42mRIAxlXvg84A47CnWCua0gOGjQIy5cvx5gxY/jPTq/X4+uvv670dldHMTExfKXEnj17AFTM5CwpKSl47LHH0KVLFzz88MPo3LkzBg4cWOblRXbu3ImOHTuiS5cu2LRpE7/ddWwhqRooICSE+IxCoUBaWhp/EaJSqXDx4sVyBz6+4u8Moa9xgZREIqlSJaOuYwgDqWS0vBc3ru9/dQmIWrdujWvXrvG/jxs3DlOnTqVZVr1UEZ0iNpuNPxcXlyHk1pAEnJ15169fx+uvv86X+SuVyoDpzPOVQF1IfdOmTUWygRUxOcukSZOwatUqHDp0CPv378fhw4fx8ccfu00q5A2uQmDXrl04duwYJk+eDIfDQRUCVRDligkhPrN+/Xr07t0b169fR6dOnZCeno7z58/j999/93fTANy/AWFZS0b9nSEMtJLR8pY/ur6H1SVDuHz58iLbevbsiQsXLvihNVWLr5ehKcxqtfIlgcWNIXRdQ1KhUGDfvn0YNWoUNBoNJk+eDJPJFDCdeb5SlcbqAb6fnMXXE5txFQIAcObMGYwYMYIqBKooCggJIT4TExODdu3aITQ0FH/++ScefPBB1KtXDzExMf5uGgD/Lzvh6wk4XMcQliWwCoQxhIFUMup6cbNo0SKsWbPGq4sb1/eQLojIvfh6GZrCXDOExZWMulq/fj0WLlyIWbNm4ebNmwCc54f7rWTUH2P1AokvJjYbNmwY/3NGRgb69+8PpVKJlJQUjBs3DnXq1MELL7xQEc0nFYgCQkKIT7n2SgcFBQXUhbHZbIZYLIbD4fDLGEJfT8Dhi5JRf48hDKSSUa78MSEhAQC8vripjhlC4q6kmTsnTJiAL7/80m1fX2drCnM9FxdXMuoqJiYGS5YsAeAMGmbOnAkAqFGjhk/aUpG8ec+5sXoikahCx+oFKl9MbHbkyBHs27cPQuG/o84YYxg9ejQAqhCoqiggJIT4lGuvdFBQUMAtOyGTyeBwOPySISxvBqowX5SM+nMMYaAtTF/e8kfKEP4rIyMjYCoDKlPhmTuPHDmCqVOn4sqVK0X29fUyNIUVXofQ0+944UoKrtMoUHnznruODeYEwkLq3333Hd599100a9YMjzzyCBYsWIDg4GDMnj0bgwYN8vnzKRQKKBSKe+63bds2t98ZYxAIBDhy5Aj+7//+z+22F1980adtJJWLAkJCiE+59kqrVCqkp6f7uUX/8ndAWN4MVGHlHYvnWjLqbXaxPGw2G4RCIYRCYUCVjJYXdyEtl8urfYZwzJgx2LFjh7+bUem4mTsBYPPmzUhKSsLEiROLPcZ9vQxNYa6dc1KptEhAWFIQEhkZye9jsVgCPiD05j0vib+XX/joo49w8OBB6PV6tG7dGhcuXIBcLkfv3r0rJCD01Lhx49CuXTt06tSJX4ZEKpUiNTW1yL5PPfVUZTeP+BAFhIQQn3LtlQ60klGLxQKZTAbGmF9KRn09AUd5xxD6s2SUG7MTSCWj5cV9HmFhYdUmIOzQoUORbYyxYi8YqwNu5k6u0ycpKQlff/011q9fX+J9PM3WeMu1c04ikRSZ+bW4IGTWrFlYsWIFv09lnhfKqizveaBRKBRQKpVQKpXo1asXX0pcGYHqqVOn8MADDxR729WrV7Fs2TKkpKRg8uTJ6Ny5M44ePYo5c+aU+ph6vR5qtboimksqCC07QQjxKde1rwItIDSbzZBKpZDJZGXKEJ46dQoDBgzAkCFDcOjQIX77hAkTfNlMj7mOIZRIJFVqDCF3oRNIJaOFMcbQvHlzrFu3zqP9ufcwLCwsoI77iqTX63Ho0CEcO3aM/3f8+HG0b9/e303zi++//54PTDijRo3ySwfUvTKEXBASHR3NByHbt29326cqBISB9J6XVevWrfmOMW4iH4vFgoiICJ8+zyeffOL27+OPP8bo0aPxySefFLu/SqXCzJkzsWrVKuzevRvDhg2DRqPhb1+3bh1atGiBNm3aYOHChfz2wYMH+7TdpOJRQFhIUlISBAKB2z/XcRCMMSQlJSEuLg4KhQIPPfQQzp496/YYZrMZkydPRmRkJFQqFQYNGsTP2sXJy8vD6NGjERISgpCQEIwePdrtS0ZIVRXok8rIZLIyB4RTpkzBkiVLsHjxYixevBiLFi0CgGLHqlQGXyxMz01IU9ljCLljJJBLRtPT03H27FlMnjzZo/259zA8PLzaZAgXLFhQ7JqDs2bN8kNriCvXc7FUKi3SYVRcEBIdHe22T1UICH2hT58+fn3+JUuWFJnpVCqVui0N4gsff/wxfv31VyiVSqhUKgQFBUEoFCIoKKjU+6nVasyaNQtffPEFlixZwpePrly5Etu2bcMff/wBpVKJJ554AgaDgb+dVB1UMlqMZs2aYdeuXfzvrl/S999/n58MolGjRnj77bfxyCOP4OLFi3x6/OWXX8Yvv/yCTZs2ISIiAtOmTcOAAQNw8uRJ/rFGjBiBmzdv8r1xzz77LEaPHo1ffvmlEl8pIb5nNpv5cTAqlSqgLoy5klGgbMtO+GKsitlsxtmzZ5Gbm4vw8HA0b94cUqnU67YA5SsZZYzxmbrisgcVqXCGMFBKRguXP2q1WgCA0Wj06P6uGcJAGjtbkYYMGVLs9h49elRyS6qeipxIxOFwwOFwlJoh5GYVdcXNHDlkyBBs2bLlvgsIXZdM4DDGkJKS4ofWVL4zZ87gm2++webNmzFs2DA89dRT+PbbbzFmzBiP7h8cHIzDhw/j6aefRv369XH79m08/vjjUKlUGDlyJJ5//nn069cPubm5FfxKiK9RQFgMsVhc7OxojDEsWbIEb775Jh5//HEAwNq1axEdHY2NGzfiueeeg1arxZdffskv0A04e97i4+Oxa9cu9O3bF+fPn8f27dtx5MgRdOzYEQDw+eefo3Pnzrh48SIaN25ceS+WEB9zXcw4KCgIBQUFcDgcblNU+wuXIRQIBGUqJyrvWJX169dj5cqVaN++PYKDg6HRaJCcnIwXXngBo0aN8ro9NpsNAoEAQqHQ65JRLgjzV0DoOoYwUDKEer0eKSkpfLC6fv16jBkzxuOp96tjhpCUXUVOJOJaPQA4y8o9+Y6bzWZMnDgRzzzzzH0ZEB4/fhx79uwpccmE+51AIMCIESMwfPhwbNiwAYMGDUJ2drZXj7Fx40akpKTAYDAgLi4OO3fuRMOGDdG9e3ccOHAAsbGxmDZtWgW9AlJR/H+FFoBSU1MRFxeHunXrYvjw4Xw52NWrV5GRkeFWWiCTydCjRw9+PNHJkydhtVrd9omLi0Pz5s35fQ4fPoyQkBA+GASATp06ISQkxG1cEiFVkWuGMCgoCIwxjzMsFa28YwjLO1Zl1apV+PPPP7F06VLMnz8fy5cvx759+/Dpp5963RbAfYyQt4EVFzxKJJJKDwhdx5kGUslo4fJH7nNNTEz06P7VcQwh8UxxJYnFjeGTyWQ+mUikcEDo6Xec69DjqhaqQkD43Xff4YEHHsCoUaOwdu1aNG7cGO3bt8fPP/9cZN/p06dDrVajTp06/L+EhISAWDLBbDYjOTkZu3btQnJycoW+90KhEKNHj8bPP/+MH3/80av7KhQKCAQCqFQqTJw4EY0aNYJAIOCPtWbNmhUZi0oCH2UIC+nYsSPWrVuHRo0a4c6dO3j77bfRpUsXnD17FhkZGQCK1thHR0fj+vXrAJxrL0mlUoSFhRXZh7t/RkYGoqKiijx3VFQUv09JzGaz24VsIK3xRghQNEMIONdk49a78yeuZFQoFPpl2QmFQoF9+/ahZ8+eAJw90/v27SvzVPPlmZyFu9iQSqWVHhC6lu4GUslo4fJHLiD0dNr9whlCbs0uUn14U5LIjeETiUQ+n0jEdcIpoPgxhEDREnaj0VjlAkJvMq2TJk0q9jH8vWSCr6tHPCUUChEXF1fi7Tt37sSsWbMgEokwZcoUDB8+HP369cNjjz2Gbdu24cMPPwTgPE6aNWtWYe0kFY8CwkL69evH/9yiRQt07twZ9evXx9q1a9GpUycAKPIH3pM/+oX3KW5/Tx7n3Xffxbx58+75OgjxF9eAkAsC8/Pzi3Sk+ANXMuqvgHD9+vVYuHAhZs2aBbvdDolEgnbt2vEXg95ynTRCLBZ7VTLK7euPgJDL1AKBVTJaGBcQcmMJ74V7TyMiIsAYQ0FBwT0nayC+c+rUKcyePRsSiQTTp09Hly5dADhnAf7yyy8rpQ3elCQWN4bPVxOJuI4v5h638He8uCDk+vXr+OeffyokILx9+3apwUdZ+XPJBl/hqkdcjxubzYaHHnqoQgPCe5k7dy5+//13SKVSzJo1CwcPHsTSpUuLZAClUqnbciWk6qk63xY/UalUaNGiBVJTU/Gf//wHgDPDFxsby++TmZnJX+zGxMTAYrEgLy/PLUuYmZnJ/3GKiYnBnTt3ijxXVlbWPS+aZ86cialTp/K/63Q6xMfHl/n1EeJrJpOJz/5wa2sFyvTfrgGhP8pYY2Jiir0ILCvXklGJRFKmDKE/SkYtFgt/wRlIJaOFccetp5UY3HvILeyt0+koIKxEU6ZMwerVqyEWizF9+nQcOXIEU6dOrdRZgLmSRNfF3QFUeklicRnCwt/x4oKQb7/9FqdOnSp3QLht2za337kZ2ufNm4fHHnusTI9ZkorMtFYWX1ePlMabic1EIhFCQ0MBgJ9QcfDgwVQSfx+iMYT3YDabcf78ecTGxqJu3bqIiYnBzp07+dstFgv27dvHB3tt27aFRCJx2yc9PR1nzpzh9+ncuTO0Wi2OHTvG73P06FFotVp+n5LIZDIEBwe7/SMkkLhmCLn/AykgrIiMWFmnLB8+fDieffbZMj9veSZn8WeGMFBLRgsra0DIXYhSSX/l4mYBTkhIwObNm6HT6byeBbi8Jk2aVCQYBCq/JLFwhrC4SWW4IITDZbVlMlm5A8Jx48ZhxYoVOHHiBI4fP44TJ05Ao9HgxIkTZXq80vhiyYbilk6pTOvXr8dPP/2Erl27olOnTujevTt+/fXXMlePlPY8PXv2xNq1a7Fv3z6sXr0aPXv2LPF5WrdujWvXrvG/jxs3DlOnTvX7+0V8jzKEhbz66qsYOHAgateujczMTLz99tvQ6XQYO3YsBAIBXn75ZSxYsAANGzZEw4YNsWDBAiiVSowYMQIAEBISggkTJmDatGmIiIhAeHg4Xn31VbRo0YKfdTQxMRGPPvooJk6ciFWrVgFwLjsxYMAAmmGUVHmBHBCWdwyhr6cs//bbbwEAn332WZnuz2U8Ae9LRv2ZIaxqJaPeBoTh4eEA/H+RWd2UdxbgQJGRkVHsTOfe8CRDWFwJu8lkwvjx4/nvZ1lL669evYply5YhJSUFkydPRufOnXH06FHMmTOnHK+q/NatW4cPPvgAEokEw4YNw+uvvw7AuZD6nj17/NYuX1ePlMTb0tTly5cX2dazZ09cuHChQttJKh8FhIXcvHkT//d//4fs7GzUqFEDnTp1wpEjR1CnTh0AwGuvvQaj0YhJkyYhLy8PHTt2xI4dO/g1CAFg8eLFEIvFGDZsGIxGI3r16oU1a9a49WBt2LABU6ZM4TMLgwYNovprUuU5HA5YrdaADQjLO4Yw0KYsdw0IvS0ZDZQMYVUoGdVqtR6N8eZKYbnKDcoQVq7iMkKjRo3y6xisshgzZgx27NhRrscobgxh4Q6jwkEIYwxCoRBRUVHlzhCqVCrMnDkTer0eS5cuxeLFi6HRaMr0WL60cuVKJCcnQyKRYNmyZXjiiSewbt26arOQemWWppKqhQLCQjZt2lTq7QKBAElJSUhKSipxH7lcjuXLlxfbs8IJDw/3eSkAIf7GBVmBHBBKpVKIRKIyBYSBMj6IUzhDWBXHEFaFDKHVanVbTqUkFosFEomEDwgpQ0g4er3ereMYADp06FBkP8YYUlNTy/18JWUIS+vYcD1/+2pSGbVajVmzZkGn01V6Vqm4TCu3ZivgHHPatGnTarWQuq8nNiP3DwoICSE+w11Ac0FKoAWEXGaqrAGhL6csdw2CXJeP8IYvSkYDYZbRQB9DCDizfZ4EhFKplJ9IhgLC6qdwSeK0adNw9uxZTJ06tUhJol6vR0pKSpHv/iOPPFLudhSXIWSMwW63l3iu4Y53uVzOB02+Oi8EBwcXGwBXpOIyrf3793crK+7du3e1WkjdV6WppZU1jxw5Ehs2bCj3c5DKRQEhIcRnXC8oXP8PlIDQtWTU3+truZZPabXaMs2I5zpes6wlo/7KEHJBk1gshsPhgMPhcCvFDQTc8WI2m6HT6YpdP5Zz6tQpfPXVVzAYDEhOTgYAGI3GSl3ygDjl5ubyMyhy4zkrS+GSxGbNmiE1NRUPPvhgkX0XLFgAvV5fZN3iWbNmlbsdhRemdw3w7hUQymQyCAQCSKXSgDl3l8abTOsbb7xRZBstpO69MWPGoHXr1kW2M8Zw6NChym8QKTcKCAkhPlM4IOSyV4FyUeHvdQhduY4vKygoKFNA6IuSUS5DaDAYvH7+sjKbzfyFOneharVa+dcSKEwmE6Kjo5GWlnbP8U9TpkzBI488gh9++AFLliyBWCyGyWSq1CUPqrvdu3djzpw5iIyM5NfVy8vLw7x589CrV69KaUPhksTPP/8cAIpdamrIkCHFPkaPHj3K3Q7XknAAbiWgSqWy2PsUPn+HhYUhLy+vXO2ojOC8IjOt1V1pwfbZs2excePGIrf/8ccfldE04mMUEBLiY9W5XKLwGEKhUAipVOr34ItT3jGE3GN4uoZTaVwDsLKu6VSektHCk8pU5oQPrmMIAz0gTEhIQFpaGjIyMkrdVyAQICgoCEqlEps3b4ZCocDXX38dcK/pfjZnzhxs377dbayeTqdDv379Ki0gLFySqFKpAKBIFrCicec3bi1Y7vtW2jmicEAYGRmJ7OzsMj1/ZQbnFZlpre5KC7Y7deqEvLw8rFixAi1btsSjjz6KGTNmID8/H4cPH0bnzp391GpSFhQQElJGr732WpFt1b1covAFBfdzoGQIyzuGcP369Vi5ciXat2/PX+QkJyfjhRde8HomQ9eAsKxjzcozy6hrBqG4Ncoqkusso55cqPqLyWRC3bp1IRKJcPPmzVL3jYqKQlZWFv96wsPDUatWrSILdFcH/uoUEwqFyMrKcgsIs7KyKrUUuXBJIndcz5w5s9LaABQdz+3JJDGFO/Rq1KhR5oCwMoPzisy0VnelBds9evRAp06dsHnzZmg0GvTp0wfHjx+HUqnE448/jr179/qn0aRMKCAkpIw2bNhA5RKFFL4IAQIrIOQCqLIGhN6u4VQaX2UIuQxEVVqY3nVSGV9PXuFLJpMJKpUKsbGxuHXrVqn7fv/993jxxRf516NQKNCwYcOAOfYrQqB1in322WeYNm0aMjIy+Nk0Y2Njy7zOpy9wy01lZmZW6vMWDu48+Z75MkMYCME5Kb97BdtyuRzx8fGIj49HYmIiatWqBQBuy6yRqoECQkLK6Omnn0ZiYmKRiSbGjBnjpxb5XyBnCBljbmMIbTab1xOZ+HINJ6PRyP9c1oDQZDL5bGH6yszQuZaMBnqGUC6XIzY29p4lo4D761IoFG6fcUn27duH+fPnu5VchYSE4N133w34kqtA6xRLTEzEli1b/PLcJeG+Z5W9Bl9ZMoSFz98xMTFITk72aA3OwgIxOCf/KuvM1oXFxMTAbrdDJBLxs+hyf1tJ1UIBISFlNH/+/GK3T5kypZJbEjgCOSC02+1gjPFjCAHnxZE3wZwv13DyVYawvLOM+itD6FrqCgRuhlAulyM4ONijsl7XgNDT437GjBlVtuSKOsXujfueV/YSJIXPxd4EhNx3c8CAAVixYgXOnTuHZs2aefX8gRicV3cpKSmYMWMGNBoN34EYGRmJBQsWoEWLFmV6zMJrd586dQoPPPAAdu7c6Ysmk0pEASEhxGcKlylxPwdCQMi1jSsZ5bZ5ExAWt4ZTWXrPgYqZVKaqLExvNBq9muzCX7iAMCgoyKMLeqvV6nWGsCqXXFW3TrGyZHO5Y8B1VuHKYDabIRAIiswy6s2kMo0aNQIApKenex0QksAzadIkbNy4EfHx8fy2tLQ0jBw5EgcOHPD68T755BO33xljWLlyJSZNmlTimr0kcFExNyHEZwJ5DKFr27j2lXf20w8++AA1atQo05INBoMBQqEQarXaL7OMWiwWCIVCfibYygwIDQYDP/W96yyjgYYLCD35jHbu3InffvsNp06dwqZNm/iAsH///qXejyu5AkAlVxXEV9m5GTNmYPXq1Rg/fjzGjh2LX375BT/88EOpE8Zw54bSAkJvOnI8xZWTc51VZSkZ5ZbCycnJKVdbHA4HxowZg++//75cj0PKx263IyQkxG1bcHAwf/7x1scff4xff/0VSqUSKpUKQUFBEAqF/BqzpGqhgJAQ4jOBXDLKXRSq1WqfBYTr1q1DTk4Ojh8/7vV9uaDIlwGhNxeWRqORD8r8GRB6cqHqL64B4b2Cirlz56JTp07o0qULjh07htTUVBgMhnt2FmzatKlINlAsFlPJVRmsW7cOLVq0QJs2bbBw4UJ+++DBg33y+Fw2t0WLFnw2Nzw8vNRsbkkloykpKXjsscfQpUsXPPzww+jcuTMGDhyIlJQUn7SVO3Y5ZZlURq1WQywWlzsg1Ov1WL9+PZ588kmPxuKSirFw4UIMGDAAvXv3xuOPP45evXph8ODBeO+998r0eGfOnMGoUaPw008/QSqVYvTo0ahVqxaVjFdRFBAS4mN9+vTxdxP8xmQyuZUpAYETEHJBl1qt5oOQ8gaE3NipslzkcEFRUFBQmQPCgoICfpZRb8cQut63MgNCq9UKu91e5TKE9woIRSIRGGNQKBRYtGgRatSogWPHjpX5s/XFhA/VzcqVK5GcnIzk5GQolUrUr18f77//PhhjHj/GyJEjS7zN22yuw+Hgz32FM4STJk3CqlWrcOjQIezfvx+HDx/Gxx9/7LNSu8Ll8J4uOyEUCvljTyAQICIiotwBoet3oCKChVOnTmHAgAEYMmSI2wy3EyZM8PlzVWXdu3fH/v378csvv+Djjz/G1q1bsW/fPjz44INlejyBQACxWIxr165hxYoVaNOmDf744w+0b98eP//8s49bTyoa/cUhpIyGDRtWZBtjzGc9vFURdwHtOqYuUAJC1wwhd1HnqyAoPT3d6/u4BoRlLWlzDeq4klFPxzT6KyDkMiaFA8JAyxDabDbY7XbIZDKPPqPWrVvj5MmTfElWs2bNkJ+fX+mTiQSCPn36YMeOHSXeXlEzqwqFQv54evbZZ/HSSy9hxowZaN68eZF9y7JkRuEJNIDSs7muGTetVut2m6/L94p7btfSfU9LRgufv8saEHbo0MHtcTnHjh3z+rHuZcqUKVi9ejXEYjGmT5+OI0eOYOrUqbhy5QoA4Pbt24iLi/P581ZVCoWCH8NdXh999BEOHjwIvV6P1q1b49SpU6hbty569+6NQYMG+eQ5SOWggJCQMjp+/Dj27NnjtmwBYwyjR4/2Y6v8q7hJWuRyOfLy8vzUon9xF+ZBQUH8RA/lzRByvf5lCQi5ks2ylow6HA4YDAY+qJPJZGCMwWazuWVoS1K4bNNfAWGgTirjejHvyWe0fPlydO7cmb/QksvlkEqlOHXqVIW31V/K2ilWUTOr9u/fH9euXUNCQoJbRq5mzZpF9vXlkhklZXO5Y71JkyZITU1166zhyvekUimCg4Oh1Wphs9ncyvfKE8gULhn15HtmMBiKnL9DQkLK1Kmh1+uRkpICsViMEydOoH379gDA/+9LAoEADRo0AACMHz8eGzZswKOPPorMzExs3boVSUlJmDdvHh577DGfP3dFycjIQEhIiM8Ct4qiUCigVCqhVCrRq1cvNGnSBABVOFRF9IkRUkbTp0+HWq1GZGSk2/YXX3zRTy3yv8K90kBgZgi5i0VfBYRZWVle39dgMEChUJS5ZJS72OQCQu7CwWg0ehQQFpchLOuMqd4oKUMY6AFhQUHBPdetdH1PPZ1ltCT3yrIFguI6xf7++2/s3bu31GOpomZWfeONN/ifXQPCX375pci+lbFkBnesd+/eHcuWLcORI0f4DChXvmc0GqHRaHD06FFIpVLo9Xps27YNjLFyBTKu44sBzzKEBQUFRSYEKWsFw4IFC6DX6xEWFuZ2/+nTp3v9WPcSFRXFdwSMGzcO7dq1g0qlwsWLF3HixAloNBqcOHEi4ALC0gL+2NhYdO7cudSMdWUbOXIkNmzY4LatdevW/DqE3PJLFouFn5CovMrS2UrKhgJCQsqopLEeTz31VCW3JHBotdoiZVCBGBD6alIZ7qKzcDmYJ1xLRrOzs72+f0FBAYDiA8Lg4GCP7u+apWOMwW63V3jPbkkZwkArGXWdlVatVgNwjoUq7b11zdh6GhBW5dLz4jrFRowYgezsbNy6dYsP9AqrjMWsXQPCrKysIhfelbFkBtfRM3DgQGzevBlr1qwpUhLLle89++yzaNeuHTp16sSPeSxPIONaAQB4Vprt2qHB8WT8bHGGDBnC/+za4VVc+W55uc5eevXqVSxbtgwpKSk4cOAAOnfujKNHj2LOnDk+f15vbNu2ze13TwL+w4cPV0bTinQ+eVNO/d577+Gvv/5Cbm4uwsPD0bx5c0il0jLNKFvcezR79myvH4eUDQWEhBCfycnJQXh4uNu2QAoIZTIZv+4eUP6AkAsEyxsQXrt2zev7cwEh16PPBYSevteuwYtrUFbZAWGgZgi5i9igoCA+06XX60sNCPPz86HVarFr1y7k5eV5tBxJVS49L65TLCYmBoBzoo+SAkJvx+KVhWtAeOfOHZ+MIdu5cydmzZoFkUiEKVOmYPjw4QCcpapbt24tsj8XSEVFRaFdu3a4detWiY/tGshMnjy53IGMTqfjOzIAzzpe8vPziw0IMzMzy9QG18flaDSaCh3Pp1KpMHPmTOj1eixduhSLFy+GRqOpsOfzFJe59CTg92YSJG942vnkaTn1+vXrsXLlSrRv3x7BwcHQaDRITk7GCy+8gFGjRnndvuLeo7L8bSVlQwEhIcRnuF5CV4ESEObn5/MXSFyGsDxZKavVypdnluWCo7yzjBbOEHJjfzwtUywoKOAzO64BsmtWoSJwQVLhhekDLUPIXcwHBwe7BYQlWb9+PbKysnD27FnUqFGD7zX/+uuvS704ut9Kz7kOhatXr5b5vr5QOCD0hblz5+L333+HVCrFrFmzcPDgQSxdurTEwN+1KiEuLq7UCVV8HcgU7rwQiUQQCAReZwjLM+mVa1s4lTWeXK1WY9asWdDpdLhw4UKlPGdpvAn4XTsq71Wm7g1PO588LadetWoV/vzzT7fHs9lseOihh8oUEBb3Hh08eJCfHIhULFp2gpByMJvNSE5Oxq5du5CcnBxwF7WVLTc3t8jYgUAJCPV6PZ9N80XJKHeRU6dOHb8EhNx9iisZ9YRrySgXTJY3Y+oJ7kKdKy0O1Ayh68W8a8loSVatWgXGGEaOHIn58+dj5MiREAgE+PTTT0t9nkmTJhUJBoGqW3rOLcFSWjasMrgGhL5a+04kEiE0NBRKpRKLFi1C27ZtMXjw4BKPC9djKDY21m081M6dO9GxY0d06dLFLWM6fPhwzJo1C1988QWWLFlS5rYWzhAKBAJIpdJSv2e+LBl15fr+VPYEY8HBwW4znvoLF/CvWrUKu3fvxrBhw0r8u+F67PoyQ8Z1PtWpU4f/l5CQUKTzaf78+UWCQaBoObVCocC+ffv43xlj2LdvH+RyeZm+c8W9R5QhrDwUEBJSRuvXr0fPnj2xdu1a7Nu3D6tXr0bPnj35gdXVUUklo56UzlU0vV5fJENYngCI+6MdHx9f7pJRXwaEngbfru8HFxhWxufEvVdc9oILCCsjGPVGcQFhaRfG3CyvrrO+cstWVCfcEgW3b9/2azu0Wi1/bI0fP77I7d999x0eeOABjBo1CmvXrkXjxo3vuX5a69at3cq7x40bh6lTp5Z4XLiufRoVFYWsrCy+FI7LNu7atQvHjh3D5MmT+ZmDgfIHMsWVNyuVSr6yoDglTSpT1rU0XdsSFhYGwDme8vr16+V6vMJKCq779+/v0+fxBS5zWVrA7xoQ+jKA9nXn0/r16/HTTz+ha9eu6NSpEx588EEsXrwYX331VbkmZ3J9jxYuXFjmxyHeoZJRQsrI1+US94PiMoRBQUGlXoRUFl8HhFxgU7t2bRw4cMDrGTq5ZSfKesHFPX9oaCgA70tGXScAquyAUCaT8Z+BUCiESqUKuPX6XAPCwtuKs3z5cjRr1gzvvPMOPv74Y773f9WqVRXaTn9at24dPvjgA0gkEgwbNgyvv/46f1ympaV5/Xi+nFlVp9MhJCSEn7CpcPar8PppFy5cgFwuL3X9tOXLlxfZ1rNnzxJLEvV6PSQSCWQyGUJCQmC32/mxu1y2EQAWLVqENWvWlJpt9FbhDCHgPFeUVs1QUFCA+Ph4t22+yhDWqFGDD24WL15cruxnYd6W8gaC0gJ+14AwNzcX9erVq6xmeSUmJoafaKagoADnzp0DAHTq1Mkn731wcDDatm1b7schnqEMISFlVFq5RHXEGCt2DGFQUBBMJhNsNpufWubkGhBy42l8kSGsXbs2bDab138AuWUn1Go1zGaz1yWThTNt3paM+isg5C7UXYWEhLhdBAWC/Px8iEQiyOVyPmtS2oUxt8/SpUtx5MgRfj05T2Z8raql5ytXrkRycjKSk5OhVCrxxBNPQKPRQCKR4NSpUyUusj5s2LAi/5588kmfzqyq0+kQHByMH3/8EQBw6dIlt9u59dOio6PRq1cvhISEQCaT+XQco2uZOncccMd5SdlGjUaDS5cuITc3t1zPzb1+V/cKCEuaVMZoNJbr/O36PgDw+dp6npTy9unTx6fPWZEqKkNYEfR6PQ4dOoShQ4fy21q2bFkh602SikUZQkLKaP369Vi4cCFmzZoFu90OiUSCdu3aVduSUb1eD5vNVmxACDh7EAsHApVJr9fzzy8QCKBSqcqVuXQNCAFngFX4Yupe91er1fz7k5+fz5dVeUKj0UCtVvNrt3lTMmq3293ej8rOEBY+DriFuQMJ14EgEAigUCggFApLzd5w7edem6cBuq9n6qtMQqGQL8ucMmUKGjdujP/973984LF//3707NmzyP0qY2ZVLiDq2rUrACA1NRWtWrXib6/o9dMA904o7rjQarWIjY0tkm3cvXs35syZg6ZNm2LevHnQaDTIy8vDvHnz0KtXL6+e1+FwFFsyeq+AUKPR8FlLji/O39yEXu+99x5mzJiBmzdvlulxSsIF1wkJCfxMmnq9HhcvXsSwYcOqzDIunIoMCF0rWTIyMqBQKIp8rt999x3effddNGvWDI888ggWLFiA4OBgzJ49u0j2nFtv8uLFiwgKCsIDDzyAU6dO4dtvvy1zG3Nzc/nOZVrgvvLQO01IGcXExPi07KWq43q0C19QcUFSIASENWvW5H8PDQ0tVxDiWjIKeDedusPh4MtryxMQul68eZMhLDyxC/cZ+SsgDAkJCbiAUKvV8hfUAoHgnqVz3PHPdYhwn2VeXh7q1KlT4v2qcul5//79+QtxAOjYsSMA50RL4eHh+OGHH4oNCCtjZlUuIIyIiIBMJisyyU1x525P1k8zm804e/ZskXXXipOXl8cfB4UzhIXNmTMH27dvdyvz1Ol06Nevn9cBYW5uLux2e5GJQcLCwkoNCHNycoqcv13Hz5b1/M1lCF977TWcOHHCZ7O+clyD60BdxsWbJUtcj5GzZ8+WuoC9N5YuXYrPP/8c9evXR4cOHfDjjz9CpVJh5MiRmDhxIr+fN+XU3HqTFy9exIgRI/Doo4/i8ccfR6NGjbxuH9cpEhkZyXeOlWWNXlI2FBAS4isLFwKtWgH9+vm7JX5R+IKY4xrw+BPfW+9wAHZ7uYOQnJwcyGQy/g+1N4+l0+ngcDgQHh5e5vencEAok8kgEok8epzC2azKzBDm5eUVyUIEBwcHXMlodna2W8Byr4CQ68nnjn/uwpqbZKUkXOk5Fzh99dVXeOWVV6rE2Jk33njD7XfuuHr//fexbNmyEpeeKG79QsC3M6tyAaFAIEDNmjV9Muupt9lc1xJ67rtW0nEuFAqRlZXlFhBmZWWVackBLuCKjo522x4aGlriZD9GoxEGg6FIkO7JhEr3kp+fzwen4eHhuHz5cpkf614CdRkXb8Y56nQ6SCQSBAcH46233sJXX32FGzdulLsNGzduREpKCgwGAxo3bowrV65AIpGge/fubgEhV06tVCr5cmqg5GVhHA4H/vnnH4wZMwZt2rQB4FyH1NsgtrhOkZs3bxYZ10oqBgWEhPgCY8DMmf/+XA1xPXnFTSoD+D8gzMzMdF6UjBwJ/P47Qps2Ldc6X1zAwAU33jyWa/Dsyfi04mg0Grcee4FAgNDQUI9KjLh9uLZXZkCYmZnplqkFAjNDmJWVhRo1avC/32s9Nu4z5d5TTwPCwqXnR48eBQDMmzevPM33C+47EBoainr16mH37t1+a4tOp+MvSGvWrOmTWU+9zeYWlyEs6Tj/7LPPMG3aNNy6dQtCoRACgQCxsbH47LPPvG4nt5B84YAwMjKyxEXmueO0Is7fer2enxglPDy83OMjS1MZnQ1l4c0kQlxnBjeu3FcltgqFgh8uMXz4cD6zXTjQ87ac+ubNmzAajWjcuDFq166NsLAwJCcnez3La3GdIpQhrDwUEBLiC65/ZK1W4O64muokLS0NAoGgSK9gIASEFosFWVlZiIuNBWbPBgBEqVTlzhBGRESUKyB0vb+3bcnIyChywefpxRZ3gVGrVi0AzqUfxGJxpQSEd+7c4XuROREREUhNTa3w5/ZGdna2W8+0JyWjwcHB/MUV9/O9LmgKl57LZDJYLJaAm3XVE1lZWQCcgUfdunVx9epVr2ff9ZWMjAy0bt0aAErMEHpT/gkUzebeayKx3Nxc/jsWEhICgUDAfz+Lm6F1y5YtePjhh7Fnz57yvHR+DbjC54datWrh1q1bxX4mJXXo+SJD6JopreiA0JXrGE5/cx3nCDgnEapTpw5eeOGFIvtyAaFrhr24NSK91a9fPz7Q+/DDD5GUlISrV6+iadOmbvt5W0598eJFAEDjxo0hEAj4cYTe4jpFMjIy+GO0uGUySMWgWUYJ8QXXacfLMN36/eDq1auoVatWkQsqLiD0Z0kgd4FUx+XioJlAUK6AkMsQqlQqSCQSry5yuAvnsgaUgHOdt8KZtrCwMI8yhGlpaZBIJIiJieG3KZXKSgna79y5U2RsU8OGDZGamgqHw1Hhz++pwhlCtVpd6vuTmZnpdvEiEAgQERHhVQ83c6kuKDwrZlXAHddRUVGoW7cujEajV+PFfLWAPGMMaWlpfEBfXEBYlnVkC6+71r17d/z6668l3icvL48PhEQiEcLDw/n3qLgZWg0Gg9sxUFbnz59HdHR0kWCoVq1aMJvNfBtcXblyBQCKlOeVtYLBlWv5dXh4OHQ6ndezKpdm3bp1aNGiBdq0aeO2bt3gwYM9altlWL58OR8MckpasoQLCF3Pz74Ydzljxgx+EjKz2Yx58+Zh3bp1JWZVPXXx4kVIJBL+9ZU1IExMTMSWLVtw+PBhHDlyBIcPH8aGDRvK1TbiOQoICfEF15P63T+s1c2VK1f+/YN38yZw8iQAoEaNGhAIBEhPT/db27jxF3Vcpk5vbLWWq6eaCwC4XkxvLiyuX78OkUiE2NhYfiZLbwPCW7duFcnGetr7zl0su5a+1ahRo9gLRV8ymUzIy8srkrlo0qQJDAaDT8Z5+UpGRoZb4HqvDOGlS5fQoEEDt221atXyauxPXl4ev+REWS6o/C0rKwtyuRwqlQp169YFgBLHERanPItZu8rLy4PBYOAnfIqLi+MzYxyu/HPp0qWYP38+li9fjn379uHTTz8t8XG5bO7Bgwdx6NAhyOVyaDQatwt3V1lZWW4Ztxo1avDnicIztD7//PPo16+fTwKUv/76y21GVQ73frgud8E5c+YMIiIiirwWriy9rLNdWiwWaLVaPiDk/vdlIOZJcF1cZ8OZM2dQo0YN/PDDDz5riy9oNBoEBwfjwIED/LIpvuos4Zw/f57/+Y8//ijXY509exYNGzbkqyPatm2La9euefXdJ/5HASEhvnDhAlCvHiASVduA8O+//0bz5s2dvzz2GNCuHZCZCYlEgtjYWJ8Mii+rM2fOQCQSoTbXKx0VhYZmc7kCkEuXLqF+/foAUKaAsGbNmhCLxRAKhQgJCfEqINTpdNBqtXw5Gic8PPyeY9a45+cuDjlxcXE+GWdVGu4iJDEx0W17kyZNAKDEBb4rW35+PvLy8tzeI24SkZL8888/RWbWq1evnlcXRdzx2LZtW2zatMnn0/NXNC6rKhAISg0IO3ToUORf+/btcezYMZ+0I+1ulYZrhtBgMLhVKRReR/avv/7Cd9995/E6stevX8euXbuwZs2aYtczLSgogFardcviu3a6cDO0cmrWrInx48dDrVaXez3K06dPFxsQNm3aFGKxGCdOnChyW0pKClq0aFGklFQmkyEmJgbXr18vU1u48xGXbefeD192/ngSXBfX2cAFgt98843P2uILd+7cQXR0NBo0aIBu3boB8H1AyE3s0759e0yePBnr1q27531K6hA7ePAgOnfuzP8+aNAghISEVNsluKoqCggJ8YULF4AWLYDatatlQGgwGHDhwgU88MADgMUCcGs+rV0LwNkz7c+A8PTp00hMTIQ0LQ2oUQPo3Bm1dDrk5OSUadycwWDAjRs3+AAgMjLSo0CMc/XqVbfyoXutD1YYt6ZWs2bN3LbXrVvXo1LDtLS0YgPCis7Q/fXXXwDutvvgQaBuXSA7GwkJCZBKpQETEHLHqmv5XHx8PB9oFGa323Hp0qViA0JvSj+59/+TTz6BzWbDli1bvG26X92+fRt9g4KAwYMRbDAgIiKi2ICQW8z62LFj/L/jx4/7bDHrwp9fcUFI4fLP1q1bY+TIkVi/fr1Hz+GaYTl9+nSR27nnKhwQcpO6vPHGG/w5wOFwoEOHDhg/fjwaN27scQlrcfLy8pCWlsaPn3SlUCjQunVrfuIiVykpKf926BVSt25dvqTUW1wgw2UGuU4sX3Z2uAbXHTp0wBtvvIHc3FykpaWV2tnAZeHPnj3rs7aUxmw2Izk5+Z4Bf0ZGBp+pDQsLg0QiqZCAUK1W47vvvgMAjB07lg/4vCnB5cbhun53VSoVWrZs6fYdIYGPAkJCfOH8eaBJE2eWsBoGhCkpKXA4HM6AkAsGExKAL78EbDY0btwYf//9t9/ad/r0aecF0uXLQP36QGIiIu6OyShLoMpdQLSKjgZ++QWRERFelVueOHHC+V7dFRoa6lX5anJyMiQSSZFMW/PmzXH79u1Sg1PGGC5fvlxkbbz4+PgyX/R56s8//0Tz5s2dY5u+/x64dg1YvRoikQgtW7Z0y9j4E9d7nhAdDTz3HHD0KOrWrYubN28Wmw26ceMGzGZzkYCwVatWuH79usfHxq1bt/hJGbp06RIw74enTCkpmH/jBvDzz8CaNSUGEtxi1oXNmjXLJ+24ceOG2xjZ4gJC1/JP1+yIp2Pbzp8/z4/H6tSpU5FJkQpP3ASU3EFw5swZfnxq69atPS5hLc6vv/4KAM7MksUCDB3q/Dzu6tSpEw4fPux2n9zcXKSmphabVQSABg0alLmzhuu84s5VNWrUgEQi8WlA6Bpc6/V6NGrUCDOmTYNWqy21s+HMmTMIDg7G+fPnMW3aNBQUFPisTYV5M2Y1IyMDsbGxAJzZz+joaJ8HhGfOnEFiYiISEhJw5MgRAMD+/fsBeDe+9fLly3A4HHyVB+6+h02aNMG5c+e8alNJgSipHBQQElJeej1w/TqQmFhtA8KjR49CJBI5e5iPHwfEYmd28NIl4Lnn8OCDD+L06dMVPkatOFarFX///bfzYufcOWfg3qQJ5JmZUAsEOHDggNePefjwYchkMrRauRIYNAiPOhwer62VnZ2Ny5cvo1OnTvy2OnXqeFVauHPnTnTu3BkymQzIzwc2bgTsdnTt2hVCoRDffvttiff96aefkJmZiYceesi5wWQCAHTp0gXXr18vdnyRLzDGsHPnzn8XKueWJFi5EnA4MGzYMPz6669lLpPzpb1796JmzZqI37cP+OwzYPJk1K9fH4yxYgMcroOgcEDYpUsXAJ6P0bl69Sqio6MhkUjQrl07JCcnl/OVVK5RZ85AbbcDtWoBf/7JzzRa2JAhQ/jlGAA4l+q5eBE9evTwSTsuX76MWrVq8WNkubG2JWXAz5w5w//coEEDjzpnLly4gJYtW+K///0vABTJLP7222+IjIx0qwRo2rQprl69WqQq4dChQwCcx8ucOXPw888/33MG05J8/fXXePDBB50VAAcOAD/8AAwezC+H1LNnT6SmpmL79u38fbg16B577DEgLw8odJ7u0KEDTp06BaPR6FVbAGfnVYMGDfixiEKhEA0aNKiw7NGkSZPQZ8MGNBo/HtnHjgFLlgBWa5HOBoPBgMuXL2P69OkAnEtBfPnllxXSJsDzMatmsxnZ2dluYzljYmJ8Xs5/6tQpfrbnDh06oHbt2ti1axcA78a3ch0FjRo1Ar79FggKAo4dQ4cOHZCSkuLVxG0lBaKkclBASEh53S07uRoWhmtCYbULCBlj+PLLL9G/f3/nxcuxY0Dz5kD37sCHHwKrV+Px1q0hl8uxYsWKSm/fgQMHYDAY8PBDDwFnzzpLe+/2Vv9f27b4/PPPvZ7Zb8eOHejZoQOEd/+Adr99G9euXfPogokr1+rYsSO/rWHDhvjnn388eu5r165h27ZtePLJJ50b3n/fubbi/PmIj4/H8OHDkZSUVGKP8o8//ohGjRrh4YcfBvbsARQKYO1aPPzww5DJZCVOLV5ef//9N9LS0jBw4EDnMi0pKcCkScDVq8Aff+DBBx+E2Wwu95T7vrB792706tULAi5oPX4c7Y1GCASCYsvt/ve//6FevXruswhmZKBOjRpo3769x2V/u3fvRteuXQEAbdq0wdWrV8s8mUdl09y5gweNRvwzYADwyivAzp1oERXlWUfHp586O2o2b/ZJW/bu3csH44BzHFyNGjVK7Ow4d+4cwsPDMXToUFitVnzwwQf3fI6zZ88iMTERK1aswFNPPYWtW7e63b5t2zb85z//gWTnTmDqVMBuR8eOHcEYw44dO9z2Xb9+PR7t2BGtFQqAMTz55JN48MEHS53BtDgLFy7Ejh078Mwzzzg3/PbbvzeOGQNoNBg4cCDatm2LQYMGYcKECWjevDl++OEHLFq0CHFqtXPsd3S08/x9N7P46KOPgjGGd9991+O2cJKTk9G2bVu3ba1bty62zNYXQjQajAHQAUBkx47OY/HTT4t0Npw/fx6MMfTp0wd79+5F27ZtK3RymcJjVksK+LmMqutSEI0bN/Y621aa3NxcnD17lv8bJBAI8Oijj+J///sfrFZrkfGtvXv3xieffILo6Gh069YN8+fPh8FgwLFjx/Dnn3+iZs2aiImOBt5+23mHjz9Gr1694HA4sHfvXo/bVVwg+sQTT/jqZZN7YcTvPv74Y5aQkMBkMhlr06YN279/v8f31Wq1DADTarUV2EJSqvnzmU2lYiKAPensh2UsM9Pfrao033//PQPAfv/9d8YcDsYSEhj773+dNxYUMBYWxtjUqeyVV15hUqmULV68mOXl5VVa+yZPnsxq1arFHCdOOD+bvXsZ02oZA9jfr77KALDt27d7/HjZ2dlMJpOxX0ePdj7e+PHMplAwBcAOHTp0z/sPHz6cJSQkMIfDwdimTYzt2MG+/vprBoAdPHiw1PtaLBbWqVMnFhkZyQoKChizWhmLi3O2Q6Fg7OZNdvPmTRYREcHatGnDMl2OQ51Ox55++mkGgCUlJTk3Pvqo876hoYzducOefPJJFhsby65fv+7x++GJvLw8NnDgQBYcHMzMZjNj33zjfN5btxiLj2ds8mRmNptZ8+bNWUxMDDt9+jSz2Ww+bYOnTp8+zQCwdWvWMBYZydjrrzPWoQNjDz3EOnXqxFq3bs10Oh2/f0pKChOLxWzhwoX/PshffzEmkTDWoAH77KOPmEgkYidOnCj1ebOzs5lAIGDfvfMOY6+8wi4eOsQAsJ07d1bUS/Wpo2+9xRjArvz0E2NZWYxFRLBLbdsykUjk/MxLoWvUiDGA2SMjGfvf/8rVjtTUVAaAbdy4kbH0dMbuflaDBg1i3bt3L7K/w+FgXbp0Yf/p04fZMzPZxIkTWXx8PLNarSU+h8FgYFKplH38/vuM5eaydevWMQDs9u3bjDHGNm7cyACw79audR7nAGMvv8xYRgZr27Yta926NcvNzWWMMfbXX38xAOxOs2aMASzz8cdZLMC2bNni8Wt2OBzs2WefZQBYq1atnN8dh4Oxxo0ZGz+esRdfdLbhpZcYY4ylp6ezoUOHsiZNmrCEhAT23HPPMbvdztjMmc79Gjd2/h8by9jdz27u3LkMAHvllVfcziul+eGHHxgA9tFHH7lt//TTT5lAIGCXLl3y+DV66pMmTZhFIGAaudx5PEokzNGunfP9cPHhhx+yplIps3XtytihQ2zFihVMIpG4fbd9KT09nb300kusS5curGPHjqxbt27s5ZdfZunp6UXaJRaLmcFg4Le9//77TKVSsfz8fJ+0Ze3atQwAu3btGr+NOw43btxY9A779jGWlsbemzuXvQ2wsQCDy781Xbsy1qCB85jp1s35t2juXPZgfDybMGGCx+1655132NWrV922HTlyhK5xKwkFhH62adMmJpFI2Oeff87OnTvHXnrpJaZSqTy+IKOA0M+MRuZo2JD9ERvLZA1kLEZ194//+vX+blmFu3PnDnvjjTeYVCplQ4cOdQY4Bw86X/9vv/274/TpjIWGMnNuLhs/fjwDwAQCAXvqqafYgQMH2NmzZ50XIz5mMBjYsmXLmEgkYjNmzGBs2jTGgoP5CxzWsiVzDBvGOnXqxMLDw9mUKVPYnTt3nK+jBGfOnGEPPPAAUygUzNSnD2Pt2zOWmsoYwCYoFKxGjRrsr7/+Yjabze07abFY2Pnz59nUqVMZALZq1Srnhe/di0Xbli2sY8eOLDw8nO3fv585HA5ms9mYw+FgJpOJbd26lc2ZM4fVrFnz3+CbMca+//7fIDcykrGnn2aMMfbnn38yuVzOhEIha9u2LQsPD+f/eNepU8f5fp8757zvokWMhYczNnYsO3r0KIuMjGTBwcFs7NixbNOmTez69eseXwC6ysnJYX///TfbvHkza9myJVOr1WzdunXOGx9/nLFWrZw///e/zqDQZmO3bt1iCQkJDACrW7cue//999mxY8fYlStX2O3btyvkOOE4HA52+PBhFh0dzWJjY5lh+3bn+7N/P2MbNjAGsL82b2ZisZgBYN27d+fbWrt2bWeA7nAw9s47zuNMpWJMImH2bt3YQ61bM6VSyUaOHMm2bNnCdDods9lszGazsczMTHbnzh02fPhwJheJmLlFC8YA5khIYH0iI9nEiRMr7DX7Sm5uLtsVEsKuyGTMwX1GX33FGMBaCATs1VdfZf/880+x99Xt3csYwF4B2AmFglklEuY4d87rNhQUFLCDBw+yli1bstjYWGbctYsxsZixWrUY++gjtumzzxgANmPGDKbRaFhOTg7Lzs5m7777LosAWH50NGMKBbv93/+yhgB766233I57LkC02+0sKSmJxQDMVLcuY1FRTLdgAWtQ6CK5b9++zLZ8OWMCgbNDAWCsfn322/r1TKlUMpVKxbp168YAsOHh4c7bu3RhDGB6kYi9CLAPGzdmX7z1Flv04Yds+/btbOvWrWzt2rUsOTmZbdq0ic2YMYONGTOGPfDAAwwAe+mll/4NaLjjd9s25+9vv82YVMrY5cvFv4FnzjAmkzE2e7bz97NnnfcfOJCx06eZ2WxmkydP5o//mJgY1rhxY/bcc8+xTz75hM2cOZO9/fbb7K233mIdOnRgTZs2ZQDYgAEDWEF2NmOTJzM2dixje/cyTWoqi4yMZADYrFmz2MmTJ1lWVlap515P/Pz99+wkwG61asVYbi47uW4dG3D3HOsQiZh9wQJ25coVdv36dRZdowb7OzqaPwcXtG/PugPs+eefZyaTqVzt8Mi2bYx9/jljd4P3vLw8tmXLFlajRg02atQoxo4fZ+zLLxmz2diV1FQmk8nYqFGj2N9//13mpzSZTOzMmTNMpVKxR/v0cV6nrFjB2O7djKWns969e7PExESWmprKtFots1gs7MayZYwBTCeRsBSBgH+/fm/fnu3r3JnNbdOGOWQyxpRKxt57z9kZVL8+YwDLiYxkIQB7++23+XO3x+dwjYaxHTuYNieHrnEriYAxH6yCSsqsY8eOaNOmDVauXMlvS0xMxH/+8x+PyjN0Oh1CQkIwPywMUaGhsNvtcDAGoUgEu8MBqVQKZVAQdFot1MHBsNpskMvlEIhEMN4tgYJQCJPRiIjISAjvbrc7HAgJDYVSqQQEAmRlZyMsLAxWmw0yuRwKhQIQCmG32WAym2E0mWC326FUqaAKCoJer4dYIkF4RAQcjKHAYIBIJEJubi7MFgvia9dGfn4+5AoFlEolZHI5GJwDwu0OB2x2O2rXrg2b3Y7cvDzY7HbExMTAZDYjKCgIuXl5EIvFkCkUKCgogFqthslsBoNzAWCrzQaRWAxVUBDy8/OhUCphMBggVyhgt9shkUohEAqhUCicz3t3QL/d4YBUJgMAqIKCYDAaIZVIALMZESoVdFlZKMjJAcvKArt6FTF//w21VosOAK68pUTM9Rh8+fUtdBQKcfOxx8CaNEGOwwFpZCQkSiXu5OQgKCQETCTC1bQ01EpIgEwuh0QigUKphM1mg8lkQoOGDZGXl4fb6elwOBwIUqvhcDggk8sRFBSE2+npEIvF/GtzOByQSKVwOBxQKJXIzc2FSCxGbm4u6tarx4+JkcnlyMvLQ3ZmJqQSCUJDQmA1myGVSCAWiZB68SJioqMRolbjwvnzkIjFqBMfj5S//0b67duIrlEDZpMJFy9cwOXUVIjsdvzfo4/iuWHDILl8Gfj8cyAuzrkGIbfG3bVrQMOGQL9+wIgROHbzJn7ZsQNbd+6EFYAFgEMohCooCHFxcXjgbnmpxWqFTCpFTHQ0TCYTTCYTYmNiYLVaIRQKYTaZIBKJoNPpwBwOGLVaiO12WPPzUZCbizPJyZBaLBjZpQsGx8dD+N13QFISMGeOs13LlwNTpsAwYgQ2376N/+3fj1yHA3aBAAKRyPmeAzAYjagRGQm1QICcGzcQDOCtvn3R+PffneMkx4wB+vaFITkZr+bn44LJBLNIBKPdjpiaNSGWy5GdkQFzQQGkAJ4YOBAv9+sH0ezZQKdOgFQK7NiBjNmz8eLSpbiYng4HnFeVIqEQ9ruLtQsAtGveHC9PmIAHGjYEbt0C5s93vrd79gAffwxMnux8XU2b4pZWi08//xxCiQRCsRjhajWUAAY/8ggiBQJg0SLgzh0gNRVYtw549llg0SJo6tXDp5s2Yecff+DmnTuwAbADiI2JgVQqhcNuR2hICCIjImAxm8EYQ7BaDZvVCqvFgrTr12EyGqHRaiEAIAJQMzgYHyUloVlsLHD4MLBsGbBqlfM5jx8HOnQAxo0DBg7E2ZwcrPn2W9zJy0PymTMosFjA/ZEKVqsRERGBsPBwhIeHQyAQICc3FwkJCfz2/Px8KBQKnDlzBlFRUejQti20eXmwmc2QSSQwGwywmEywmkwQC4XIyczEnfR0nP37b5gMBjxQqxbmjh+PyG++AeRy4O+/AbPZOSNqnTrIGDwYSzduxC2tFgq5HA9264aB/fsjxGp1lth98w0wYYLzWLt2DRgwANZmzbDMasX248dhvPtZAkCIWg2dXg85gDipFHOaNUO9v/8GvvsOWLAApnPn8LLRiJAWLVC3WTPUiI4GBALoDQYolUrIlUrIpFLY7XbcvnkTQSoVakREQABAKpFAIZfjTno6//0OUqmgyc2FSqkEGIPdZoPNYkFIcDAMBQWQy2TQ5OYiJDgYDrsdmXfuQCISQSaVQiwSwZSfD6tOB5teD1NeHuSMQZibixo3bqCD3Y7Lc+eiflKS88WZzUDLlsi/dQs/FBQgC0BozZqIioxEiFoNh8kEhVaLRpcu4Y5AgHPffINv1q3D/K1bESKV4mK9elDWro3b2dkQiEQIr1EDuvx85/cCgFwigU6jQW5mJlRyOW7fuAGLyYTI0FAM6dYNYfv3A2FhQFQU8NdfYDVr4kRICA6dPg0LAAkAOQAFgL5KJWLEYmep++nTMJnN+MVuRy4AaVAQxEIhDHo9gpVKmI1GBDkceFShQFBEhLPUdd8+2BwO7LLbAZkM9WrXRsPgYAhOnwZGjQJWr3aWSPfuDYhEMMTH48KNGzDqdIiRy1FXp4Owa1fgjz+A9HQYn3gCisOH4YBzXE8egCMANHCPOhV3/36qJRLUjIxE3bg455jg69ed/x5+GNi503kuzs93tjUnB2jcGAgNBRwOwG4HNBrneaBxY+DIEUClcn6Gn37qLEm/ds15roqOhhnAjfR06A0GZOXl4U5WFsxmMxRSKawWC0R32xwVHo4G9eohIT4eguRk57lGJHJOOqJSwdC1K/6+dg0p//wDbhofmVQKoUCA4OBg57ldr0d0jRoQi8UwmUyw2WyQSaWwWK0wFhQgKjQUxpwcyGw2BDGGBhYLggUCiA8cgOBu6fWHH3yAc6+9hj4AhgO4ACAHQE2xGAk2m/Pc9+mnwJUrsGZn4zebDTqxGLLwcNjvXgfYHA6og4MhlclgczggEArhYAwmiwWhd2cBFQEwFBRAp9FAIZNBqVBALpXi1o0bgMMBiUgEoUAAZrMhzmZDs7uT6piFQuf4apEIaTYb4mrUQL9WrSDfvdsZeslkgFyOK4mJ+OnIEZgAqMPCIBAIEFWjBoRCIQQCARwOB5QqFXRaLcxmM0JCQqDV6SCTSsEAFGi10GVlQQZALRbj8bp1EZSa6hzvf3d9XnOtWjiSmYkrFgvkACIEAnRnDBcBqAGo1GqE/v47ZHPnOseABwUBOh3QsqXzvK5UOj9IxoDUVLD27aERCLBHq0WeQAAmkcBstyM4PBwOgQDhYWGwmc3Izc5GWEgI4HAgTK2GOS8PHXJyEOFwICk8HPNyc6HVahEcHAxScSgg9COLxQKlUonNmzdjyJAh/PaXXnoJp0+fLnaGObPZ7DbLnU6nQ3x8PG5KpQhiDEKBAGCMv+Bgdy8mRUIhmMPhHCvF7QfniZvh7gXK3UOh8M/cYxX+mbt/daQHcBXAKQAnu3bFwLlz8e7tdyF1SKFbcBnjL11CfwBxpT/M/SU6Gnj0UeCddwCXqdYBOMcGTZ/uvEipbCqV80Jo1ChgypR/A1W7HfjgA2cQ6+24z5gY5+yTc+cCAoHzdY0aBfz5p2f3FwqdF4fffOMMCJ96Cti2zbs2CIXOcT7r1gHx8YDVCgwbBvz0E//9LVXTpsCaNUD79s4LwzFjnJPTVPSfhLi4fwMm7rNYtsw5/sQPkw4VSywGevQAPvkE4CaK+fNP4IUXAJcJSIqoWdP5OsaN+3fbnj3OwNeTSYdq1QIWLnSOCdVqwUaMAH77DYIA+zNtEghgBGARiWCSy6GrVQu1pk1DGDd2jZOWBrZwIXL37IHl9m0ITCbYHA444OwEypNKkVmrFhp/+SUS7l7A7//iC9jnzUPUnTtQW62QCoUQARA4HBALBBACfCcFEwoBkQgOgQASuRyKoCDIVSoIIyKAjh2dx1hICPDPP8BbbwEXLsCg0cCk18MuFEIok0GsViOoTRuIZs50nicKCmBMSkL2li0QmUxwGAxgAgF0BgPkKhXkKhVU0dEIffBB4OWXnd89o9E5ecmxY87voVDoPEe0aQM8/bTzOw44lyf64gvg9m3AYHBuV6uB1q2d+3GBmMMBZGWBiUTI/PZb6A8ehPr6dciMRigUChgNBkhEImdgLxA4gwbXf7VqAa1aOWcYvdvBCQBIT3eecy5fBrRaZzvFYueFfdOmzuNOrXb/DK1WZ8fXvn3OYNJicQYQdjtgs4HZ7XA4HBBKJIBIhHyDATKl0tmxevfzQd26zs6q8HBnR9bPPzsDT4MBJp0O+pwcCMVi5wyvjMFoNsNmtUIkEsFsNkMgFPKLnnPBcEFBARwSCQwArBIJZBERULZsiYavv44glwm7AODkyZP46ssvId6+HUODghAllyOuWTMEjxkDcJNcGQzARx8hf8cOaNLSYNNq4bBawex2mM1miAQCiIVCCAUCCO5eYwkEAsDhgJ0x2BlzfhYCAawOBwQiEax2OwQiEQQiESAQQCgWw2gyQSsU4n9yOS4JhXhYLEbtyEh0MBoRp1RCFhQEQVgY8J//AM2aOQOt/Hxg717YsrNh0mhgMRhgs9ngcDggEAhgt9vBGINAIIBQIIDj7s8ikcj52dzt+IdCAUlQEEKioiBMSHCez9q1AzIygBMngORkWC9cgD41FUYAJrEYhhYtEPXOO4iIj3d+BnevMWE0Oo+D48eBzp3/DQZd/f038Omn0CQnw3j7NpjFAjFjsJlMENjtsNhsEIhEMFutzuNQKITFbodNJMLNmBi0yc1FnkiEZtnZFBBWAgoI/ej27duoWbMmDh486DYAfsGCBVi7di0uXrxY5D5JSUmYN29eke2V9WXhTjoOhwMWiwUymQwCgQCMMTjsdggFAhTc7WlmDgfy8/PhsNshlUjgcDgQEhwM7d311uR372s2mZCXm+vsAbRaYTIa0bx5c1w4fx5ymQwhISEwm0zIzspCREQE9HezoszhgF6ng1wuR1ZmJmpERkJ4N2sZEhyM/Px83MnIgNViQVRUFMwmEwQCAYJUKthtNmRlZTn/6AiFkEqlCFarIRGLYTabYbn7z3r3j5JVJILBbodVJEL9Zs0QER0NkUiEkJAQCIVC5BpzMfm3ydCYNPj1/37FlStXnFNrX7qEYMagsFigy82FSi6HiDGIACilUhRotZBIJNBptc4OAoUCUqkUV69ehTooCEF3LxBkUimys7OhVCiQn58PpUIBAIiqUYPvOWWMwWQ0QnE3g8s9niYvDzKZDAq5HI67WWNVUBBsdjsKjEYwgQBCoRAWmw3RMTHQ6vWw3v1ZIBJBq9M5s48CAYKCgpx/EIRC5/9SqbMXPjS0+D8IhWm1zj8+FovzQsNq/ffnwscanOtzcVO7gzvOuE4Osdj5x+5uUGFmDLLgYPcLI6XSeRFSaLHlIoxGZy+5RuNsC2POizLuf6HQebGmUjkvnkJDi3+cggLnRRf3x9Jqdf4vFgMSifP9kkicQVFQkPt9s7Kc/3Q653MWR6Fw3o9rw93jwI1e73yPCwqcF21cFkAqdb4fSqXzIvnurH9udDpn+7Va/oKP///uZ8D/7/qvuG3cdpHI2V61uuTnBZztzMlxZhLMZudxUcKxUWzQevfYEAqFsFgszinkGYNEoYAyKAiZ2dmIiIoCuxs8CEQiZ9u4i1bu//BwICLC+XNxTCbnTIz5+f9+D4RC532470dx7dVqnf+MxqLvm0zmfF6Vquj9DQbn+2I0wmG3w2IyOc+vdjtMBgMgEEAkFsNkNsPmcMBoMiEzK8tZ5REWhlrx8cgvKIDVZoPJYoFUJoPZYoHNbkeN6GhIZTJkZWdDJBajwGhEXM2aKDAYYLXZYDAaERMXhyC1GharFUq1GoK71SEVjTGGnJwcRERE8H9zBAJBkYXTCfE3xhh/PeRwOOBwOCAu9PeJlMHKldBNnowQu50CwkpAAaEfcQHhoUOH0LlzZ377O++8g/Xr1xe77k9JGUL6svjX9kvbcTH7Ii7mXMTr3V5H7ZDa974TIYQQQggpFjcsiq5xK57Y3w2oziIjIyESiYpMD5+ZmYno6Ohi7yOTyZxrj5GAcuzWMfSp3wcSkQQpd1IoICSEEEIIIVUC5bL9SCqVom3btti5c6fb9p07d7qVkJLAdyrjFFrHtEbzqOY4k1nKGCNCCCGEEEICCAWEfjZ16lR88cUX+Oqrr3D+/Hm88sorSEtLw/PPP+/vphEPMcZgtpkhF8vRPKo5UjJT/N0kQgghpNq7rb/t7yYQUiVQQOhnTz31FJYsWYK33noLrVu3xv79+7Ft2zbUqVPH300jHtp1ZRc61uwIAAhXhCPLkIUCS4GfW0UIIVWDxW7BK9tfwYXsC6BpDYivZBuyUXNRTWw5vwWZBZn+bo4bB3PAYrf4uxmE8GhSmSquLANuuZlCvcHdx+awQSQQwcEcMNvNUIgVYGAQQACrwwqJUAKD1QCFRAEHc8BkM8HBHJCKpHAwB5QSJax256yBIqEIQoFzDR6NSQObwwarwwqr3YraIbVxU3cTKqkKCrECdmZHrjEXNZQ1oDFpEKGMAGMMeoseYfIwXNNcQ0xQDCQiCax2K1RSFUw2EzQmDRzMAZXEOVsnA+PbrDPrkG/Jh0ggglKihFKihFQkhclmgs1hg9ashdVuhUwsg8VuQUZ+BhhjiFJFwcEcuKG7gdScVGw6uwk/PvUjIpQRAIAfL/yIT098ihldZ0AulqNeWD2oZWoUWAoQIg+BWCiGAO6z5VntVjiYAxKRBAIIcFN3E+GKcP59FAlEMNudWcgCSwFEQhEEEEAmlhX5jAgh1ZeDOaAxaWC0GvlziN1h58+vAjjP4wAQJA2CUCCEzqyDUCCE1qxFtCoaRpsRVrsVVocV4YpwiIVivgqCO8eYbWa38w/gPI9JRJJS22eymWCwGmB32OFgztl0X935KtrHtUdyejLyTHn44JEPEKWKwpnMM2gX1w5CgRD5lnwoJUrIRDKY7WYIBUJIhBI6593njFaj23HHuZN/B0KBEMGyYIiFYtgctiLH4wcHP0Cd0DpYfXo1HMyB+mH18WGfD6GUeDAj9l0O5kCeMQ8mm8l5/IllsDmcs3qrpCpkG7JhsBpgsBoQrgiHSqKCxqSBUqJErjEXdULr8NdMUpEUmQWZSM1NxYeHPoTGpMHQxKF4sM6DaBXdqlzHMncp7+vvQ54xD0O/G4onmz6JF9q/4NPHdjAHhAKh2+8mmwlysRzHbx3HX3f+wpC6QxAVEUWTylQCCgirOC4g7PN5HzhkzsBBIBBAJBCBwVnKKBFJ+C+dyWYCACjECtgcNkhFUlgdVtgcNudJFwKYbCbYmR0ykQwioXPq9TxjHsIUYbDarRALxXwwZ3PY+H8AIIAASonSGWgJRQiROaeYN9qM/Ekx35IPlVQFg9UAqUgKiVDCX5jYHDYIBALkGfMQHxwPk90ErUkLB3MgShUFrVmLUFkosgxZEAqECJIGIceYg1rqWsgz5cHmsDkvXuxmiAQiBMuCYbFbIBaKoTFpoJKq+N+lIimCpcFwMAd0Fp3zgslu5f/4RCgi+BO/SChCnZA6KLAWQGfWQSKUoIaqBmoF10KPOj1QM9h93b2/Mv7Czis7oTfrcSHH2estFUmRZcjiA0KNSYMgaRCkIikYGMRCMX+RVCu4FnKMOdCatGBgkIvlsNqtEAqEUEgUKLAU8J+zgzlgZ3aIhWIYrUYoJUo4mAMMDEarEWqZGiabCTKRDEKBEFaHM/h0MAd/oScTy2B32GG2myEVSSEWimGxW6CWqmF1WGG0GiESilAruBYkQglqBddC+7j26Nugr9sJ3evj16zDhewLuJx7GdmGbKTnpyPbkI08Ux6kIilyDDkQCUWQiqR8MMwdI1yQzH1mGpMGUaooZ9AtEKNXvV7oGt8VdUI9y7abbWb8duk3yEQynM06C7VUDbVMDbVUjZu6mzDajHAwB15o9wJUUlWxj2Fz2HDs1jHkGnMhEoiQmpsKB3OghrIG2sW1Q53QOpCL5aW243LuZdzUORctVkqUYGCoHVIb0aroSr/4NVgNuJN/BznGHNzW34bFbkFqTipC5CHIt+RDLVUj15gLi90CBga1VI0mkU0gFUmhlqlRN7QuxEIxIpQRZT5O8i350Jl10Jl1yCrIwpnMM8i35CPHmIMcQw5C5aGwOqzQmrXIyM/gzz8Z+RmQiWSIDnJO0JVrzEWwLNi5dMndY18kFCFKGQW5WI6+DfoiWhWNDjU7VNj7zBiD0WbEidsnYLaZcS7rHFRSFRhjGNVyFBSSosuIfH/ue2xL3YZsQzbfYcad0x3MAYnQGYBpzVoAgFQkhUKscHa+Oaww2Uz8OUwpUUJv1vPHFXd+C5IGwWw3I0wehlv6WwiThwFwHs96ix4SoQRysZz/+wE4/5aIhWL+XCESinBdcx0Hxh9AmCKM389it+DN3W/iTsEdXNdeh0KsQHRQNESCf/+GjGwxEo/UfwQAcCbzDD498Slu6W+hVXQrHLpxCGKhGOGKcGhMGgDOzkSRQASjzcif2yKVkXi47sPo37A//5kX55uUb/DHtT+c513GEB0UjacfeBq1gmvx+9zW38ZL21+CUCBEtiEbUpEUucZchMpDIRPJ0LFmR7zc6eUi54FrmmuIUERALVMXftoiLHYLzmWdQ/2w+kX2zyzIxIIDC3Ap9xIKrM5qkwdiHoBUJEXzqOa4mH0RMUEx6FWvF6JV0QiWBfN/qyuT0WrEnYI7OJN5BvXD6qPAWoCjN4+iSWQTdK3d9Z7nOgdz4Nsz3+LQjUNgYLilv8V3XhhtRggFQv7vlkAggNVuhVQkhZ3ZYXfYEamMxHXtdYgEIv747F2vN/rW74t3/3wXAoEAm5/czJ975u+bjx8v/ohIZSQmtpmIJ5o+4dYeu8OOj49/jD1X98Bit8BkM0EoEEIoECJKFQUGBovdAgEEYGDQm/WID46HQqKAVCRFtiEbdwruICYoBowxhMnDcDbrLBgY33khE8lQL6weXmj3AoJlwTiQdgCHbhzC6YzTGNVyFIYmDi3x+Nl/fT8O3TiEQzcOocBawF8/WR1WmG1mKCVKWOwW2Bw2vnPZ9doiUhmJ+OB4PNPmGdQPr1/sc/yT8w++SP4Ct/W3+Y76pIeS8MvFX3Do5iHM7DYTXeK7IEgaVOz9CzPbzFh0eBGO3z4Oo83ZSZVtyOaDQZFABI1JA7lYDjuzI1wRDq1Ji8TIRPx/e3ceH1V97g/8M3sm2yQkkBAgbAqCgEvwSkAbxQIKRW0VRb28pPeWSoWKRH4q1FsVBcSitdreclsFtFpxQVTU2uAWSlkkSNhX2QIkhKyTTJJZz++PeA4zySSZ5cycM5nPu6+86pw5M/OdcDJznvM83+frETyYnDsZt15xKwPCKGBAGOPEgLCqpgoZ6a1ZM7fglr5o9Vp9WCfs1D0JggABgs+xIW4Ts5cewSNlSBsdjdBqtGhyNsHpduJg1UFsP7Mdnxz9BDNGzcADeQ8EfBJd3lCOfxz7B/6252+wmCwwG8wo6F+AtIQ09Enpg36WfkhPSEeDowFZSVnQa/VwepywOWzSiaZ4Uq/T6iAIrSe2Oq0OLa4WNDtbTxK/OP4FNhzZgLzeeXh03KMdnjBdsF3AC1tfwJayLZh86WSY9Wb0s/SDy+NCk7MJVrsVuZZcJBuT8c3Jb/Dx4Y/x0s0vYfzA8T7Ps+nUJjxS9AhuGngT+qX2Q6WtUgouzjWcw7Yz23Cw6iAKxxTijuF3tBuH3WXH/R/eD51Wh+GZw6Wg3ul2Yk/lHlywXcC4fuOwYOyCTk94vf89/7D9D9BAA6POiIzEDPRN7Yu83nntrqS3fdzf9vwNnx39TMoYpZpSpUCvb2pfWO1W9ErqJV29T9AnSBcaDlUdgsvjwqm6UyizlqHeXg+dRofVt61Gz6SeXY67trkWnx39DKUVpdh/YT+MOiOSjclStn1IxhAkG5PRM7GndEEoMzETaQlpUgVBqikVTc4mJBoS/f67i8eMeMJf21KLr098jcPVh1HeWI7Xbn2twxOe8oZyLC5ejGZXMwxaAyZdMgm3Dr0VRp2xw/fU6GjE0988jeJTxchJycG1fa6FSW/CwLSBOFJ9BOnmdLx34D388upfYtrl06THrT+4Hl+e+BKPX/c4+qT0UX027I/f/hED0wZiypAp0rb/+ui/MH7geAzLHIa8nLyIvfYZ6xn869S/8OquV7Fk/BKM6eu7OLkgCJi1YRb6pvbFvSPvhcPtgFlvxqGqQ3jl21fw0fSPYNKb4BE8uH3t7Zg9ejauyLoCOSk50GhaL+ClJaTB6XbikyOf4N0D7+LtO96Wnn/C3ybgjPUMeib2hNlgxmu3vuYTZIrcHjfWlK7B/5b8L36U+yPsv7Af4weOx+PXPS6Nc9p70zDr6lmYMHgCNNCgtqUWp+pOwS24sbtiN0ZljcLx2uPYfnY7Km2VqG6uxqC0QfjTlD9F7Pcrju3DQx/i3QPvwmq3wuF2oE9KH+T1zsOR6iNIMaVgcPpgvLHnDWg1WgzPHI5nxj+DHuYe7Z5r4/cb8bstv8OkwZPwo/4/giXBggFpA6DT6EIObj2CB+sPrsfL376MZTctw9h+7ZvziedI//nBf2Luf8zFdbnXSff99J2fYuqQqbhnxD1+L85EUourBWv3rcXq0tV4f9r77T4r3z/wPj489CHuG3kffjzoxwDQZTa+re9rvsd523nM+3weVt26CiOzRvrcv/PcTjzx9RNYMn4Jeif3Ru+U3j732xw2THpzEhodjRjbbyx6J/dGkjEJ88fM9/vZdL7xPO774D48kPcAbh16K/RafWulVwDfAwCwpWwL/t8n/w9bHtzCgDAaBIpp9fX1AgChvr5e6aFQHLK77MKzxc8KSzct7XJfj8cjLPvXMmHyW5OFP2z7g3DWejbi4/N4PMKzxc8Ka3at6XCfGR/MEL48/qVgd9kDes4Ge4Nw0+s3CS63y2f7hDcmCGX1ZZ0+tqapRpj0t0nCwQsH29330GcPCe/tf6/Dx3o8HuGzI58J1/712i5/d9YWqzD+9fHCn779k1B0rEh4e+/bwsodK4WhrwwV/uer/+n0cTeuuVF4YcsLwqm6U52+RjB2ntsp/Gj1j4Qtp7d0up/L7RLuef8e4dGiR4WiY0WCw+WQbQyB+vL4l8KUt6b4va+svkwoWF0gfHPiG+FU3SnhQOUB4bl/PSfct+6+Dp+v2dks3PzmzcJHhz7q9HWdbqcw/vXxPsfV1L9PFWwOW2hvRAFbTm8Rnil+Rrpd11wn3PXeXVEdg7XFKkx4Y0K77VtObxEe3/i438f8dedfhVXfrRKanc3CX3f+Vfjdv3/X5etMf3+6UGWrEgSh9X3evvZ26b5tZdva/VuK3tn3jvDwPx6WPm88Ho9w57t3Cnsq9ghnrWeFX3/2a2H55uUBvVdvL255URj/+nhhT8WegPavb6kXik8WC3vP7xXON57vcv8mR5Pw4zd+LCz+ZrH0vrtSfLJYuHHNjUKjvdFnu9PtFG5Yc0PAzxMJF2wXhGnvTpNun28873NbKZtPbRYe2/iYz7YGe4Mw/vXxsn0eHq0+Kvz8w5+3237Xe3cJp+tOd/n4Zmez8H3N98K6A+uEws8Lhbf2vOV3v19/9mthx9kdYY318JnDPMeNEgaEMY4BISnN4/EIt719W5cnFat3rRae/uZpwePxRGlkreqa64Sfrv2p3/u2lm0V5nw6J+jnXLJpiVB0rEi63exs9jkh7MzhqsPCrI9n+WyraKgQ7n7v7oAev/f8XuHOd+/s8H6X2yXc+vatwqaTm/ze//MPfy58dfwrv/e9uftN4dWdrwY0jmBV2aq6DA7mfDpHeHP3mxF5/WA8sOEB4fua79ttn/vpXKG0vNTv9m1l2/w+1/989T/CBwc+COh1F3+zWPj6xNeCILQeU7e9fVvAY1aDk7UnhbmfzpVuby3bKiz+ZnHUx/HgJw8Khy4c8tn25NdPClvLtvrd/4LtgjDjgxnCzA9nChP/NrFdAOPP/5X8n7D+4HpBEARh1XerhDdK3/C5f9EXi4SSsyXtHnfr27cKdc11Ptv2VOwR5nw6R5j696nC5lObQ/6M3Fq2VbhxzY2C0+3sdL/S8lLhypVXCks2LRF+/uHPhdF/Gd1lsFH4eaHwyeFPgh7T8s3LhW9OfOOzbdPJTcKzxc8G/Vxym/zWZMHldgkfHvxQ+NHqHwn/Pv1vpYckeDweYfJbk322bT61WViyaYmsr3PLm7cIbo9bul3eUC7c8/49QT9PTVON3+8um8Mm3PLmLWGNURB4jhtNrCUkorBoNBrMuWYO/rLzLx3u4xE8eGP3G3j8usejXvZmSWidx9roaGx33x+2/wG/uf43QT/nHcPuwEeHP5Ju76/cjxE9RwT02CEZQ6Q5gqKDVQcxOmd0QI8f0WsEMswZ2F+53+/9r+16DTcPvhnX97/e7/2PjnvUZ+ze1u5fi7suvyugcQQrIzEDTc4m2F12v/cLgoATdSdw36j7IvL6wbjlklvw+bHP220/VnsMo7JGtds+b8w8rNq1qt12j+DB9rPb8dNhPw3odX827GfYcHgDAGDbmW3tyh7VrmdST1Q2XezmeODCAQzvOTzq4/jpsJ/i48Mf+2w7Un2kw7FkJmbiXMM5XLBdwD//858dzhH2ltc7D9+Vf4fHNj6G32/7PW6/7Haf+28deive3f+uzza7q7UZjviZJBqZNRLHao5hTN8xGJc7LuTPyDF9x2DqkKn49MinHe7j9rgx/5/z8ck9n2DR9Yuw6rZVeOL6JzBj/YwOH9PsbMaRmiM+pcCBGp0zGiXnSny27SzfiWv6XBP0c8ltZK+R2FWxC89veR6FYwr9lphGm0ajkZrkiPac34Mrsq6Q9XUu73m5z3fIugPrMG34tE4e4V+6uXV6R1v/OvUvTBw8MawxUnQxICSisI0fOB7bz27v8P6d53Yiv29+p/OsIumanGuwq3xXu+1Wu7XdPIlADM0ciqM1R6Xbx2qOYUjGkIAfn5mYiQu2C9Ltw1WHg3r8PSPuwYeHPvR73/sH3sesvFkdPnZoxlDsv7Aftc21PttrmmuQbEwOqCFGqAr6F2DTqU1+7/uu/Dtc3vPyiL12MMYPHI+vT37ts83lccGkM/k9Wb+kxyU423C23fZDVYcCvlAgPs+JuhMAgM+PfS7NFYoViYZENDubpdsHLxzEsJ7Doj6Okb1G4nD1YZ9tDY4GpJo6noM05dIpmHV1x383bYlrzu6p3IPds3e3+7v5jz7/gf0XfC/aHKo6hGGZ/n8fn//n51h0/aKAX78j9426D3/f9/cO799XuQ/X5Fzj0wjttstugwCh3WeCqORcCcb2DS1Yurr31dhZvtNn2/7K/RjZa2QHj4iecf3G4fl/P48pl07BbZfdpvRwJNlJ2TjfeF66fcZ6Bv0s/WR9jYIBBSg+VQygtTvwZ8c+w82X3BzSc2UlZeGs1ffzr7SiFFf3vjrscVL0MCAkorCJzV3ENvJt7Ti3A+Nyx0V5VBf5u0pttVs7PUHsSm5qrrTocUVjBbKTswN+7Nh+Y7GlbIt0u6KxAr2TAw9M8/vlY8e5He2217fUIzMxE3qtvsPHajQaXNfvOhyrOeazfe/5vbg6O7Jf4D8Z8hN8cuQTv/e9f+B9TB8xPaKvHyixM6+3k3UnMSBtQIeP0Wl1cHvcPtuOVB8JKiASl7jZXbEb3579Fnm9I9eEJVIEXOxTd7TmKC7pcUnUx9ArqRfO2853vaOX+fnzgwoKTHoTDlUd6rD7r0ajabf9SPWRoC78hKJXUi+pG7M/W89s9ftZfG2fa9t9RooOXDiAEb0Cv7DhLS0hDVa71Wfbedv5gBpjRdpNg27CGesZ1XzuiHqn9EZFY4V0u7yxPKjvh0CIF0ltDhsmvjkRqabUkBvp3Db0Nnxw8AOfbV+d/CrgqhdSBwaERCSLwemD8X3N937vO157HIPT/be5jobROaNRUu57snO89jgGpQ0K+Tmv6n2VlHUUW40HakSvEThw4YB0u7al1m8nvo4YdUa/ixrvrdwb0JX3/mn9cbLupM+2SFyFbmtoxlAcqz3m975D1YdUkyEEIC3rIPq+5vtOj+Hc1Fycrj/ts+1o9VFc2uPSoF5Xo9Fgw5ENWHzjYtV3FfVHA6/1VT1ORaoC2v7ePILHZ1xyeeWWVzotOTfpTD4XFiptlUF9ToRqWOYwHK467Pe+LWVb/JYiX5Nzjd+LTMAPn5XpoX9Wtu103rbDtVISDYnY8t9bwnpvkdA7uTfKG8ul21VNVdI6x3IRL5qsLFmJSYMn+XTMDda1fa9FaUWpdLusvgz9Lf2DWu+RlKf8XyQRdQt5OXntSoNEJ+tOBrweYCSkm9OlNcxE5Q3l7daPDEauJVeaCxhshnBQ+iCpNBBoDQi9124LhL8r7+UN5X5b3bc1IG0ATtWf8tl2xnomoMeGQ6PRQAON30yyw+3odDmMaMtJzpEywEDrSVln7dKHZg5tV6ZYZi1DriU3qNdNT0jHVydi/+q6zWFT9IRQA42Usa20VSIrSf6M1I8H/RiXZnQc8PdJ6eNTSldpq0SvpF6yj6OtK7OvxK6K9iXyAFDdXO13DFf3vrrDx5yoO4GB6QNDHo9BZ/B7AYv8y07O9skQRiKAFjPYG49vxIKxC8J6rqykLFTYLo5365mtyO+bH+4QKcoYEBKRLIZmDMXR6qN+77O77V0uUhxpGmggeC27Wt1cjQxz6Fddc1IuBgzVzdVBXcFt+4Vf31IPi8nSySPaa3uyCbTOAwwk09jf0h+n6nwDwrMNZ5GTkhPUGELRM6knapprfLaJawaqife/L9D173ZIxpB2WZkLTRcCXnNLNDBtIA5WHVT87yVUJn1rVuxw9WFclnGZYuPIScmRsizRuNjhT2ZiJqqbq6Xb0QoIvasXvAlCx4FFkjHJZ/6nt2ZXc1h/n5nmTFQ1VbU+l7MZZn101/iLNenmdNQ21+J/d/wv/vuj/47Y60wdMhUOt6PTKQaBaJuRj8WGWMSAkIhkMih9EI7XHfd7XyTKtYLVNktY3VQdVJlmW95lPZ2daPmj1Wh95lp5BE/QizH3Se3TrpFJdXNg76lval+cafDtdNpV0w25ZCf5BsNAa7MNJYMHf7KSs3waO9S21CI9oeMsrr+sa6OjEUmGrjtWehuXOy4qZYWRkmZKQ31LvWIdRkUD0gZIZdFl9WURL4f2JzPxYiAE/HCBIDG4CwShGJIxxG9pdnVzNTITMzt8XEclyuF+fvdM6ik10Qr3Qlw8sJgssNqtaHG14I09b4QdsHXkl3m/xFf3fyXLc2WYM6Rj/XD1YQzNHCrL81L0MCAkIlm0PflRm36p/VBmLZNu1zTXhDUvo1dSL1TaKrvesQPhnmSFkyE06Aztmk7YHLagg5dQZCVntQsIz1rPKnLC3pmspCyfxiRd/W4zzBmobfHt0qhB+8YiXZk4eCJ2PeC/dC8WpCWkoaa5Bu/sfwd5Oco1xemZeDEIKbOWKZIhzEjMQHXTxQxhtMqi9Vq937Ls0/Wn0S+147+ztnMe5ZJhzpAypdVNwVVTxKNUUyrq7fWoba6FR/BE5SJCuC7LvAx/2/03vPrdqzBoDaqYI0rB4b8YEclC7Q0wMswZPqWK4V6p1ml10kmXd7YvGN4lrMHKTMxsV3oZaEDoT4urJSplim3LZQGg3l6PtIS0iL92MHol9WqfIexknmdaQlq7tv2hHhexLC0hDe8feB9j+oyJeEfNzlgSLKi31wP4oWFSJ4FQpHgHQmpwwXah05LVXkm9fJbDkUuKKQUN9ta16qqaqjrNUtLFY7emuQaTBk/yu/ap2gzNGIoXtr6AWRtm4cYBNyo9HAoBA0IiiguWBItPE5Z6e327BaJD4fa4Q7oammpK9bugb6DSEtLaNcoJ5j35y1BGI6jPMPtmTQCgrqUu6DmUkdYzqScuNF08Oe5qnqdOq4NbcHd4f7zISs7CB4c+wITBExQdh8VkQX1La0ColgxhNPlr3lTbUtvphZeOqh7CvbDh/VnHktGupZpSYbVbUdNSg3envYu5/zFX6SF16bLMy3C24SxKZpV0ug4uqRcDQiKSjb+TELvLrtiC9N5STanSCSLQmhGTo7lBqNmtcEts/QWETrcTBq0hoMcbdUbYXfaQXz9UaQlpUuZGVN8iT3AuJ3Eej8gtuIOe5xmPci252F+5X/Gshvdx1mBvaLdwfLTHoMhrt/i+dm1z5/NgLSZLu4tU4VQxiFKMrRnCjd9vxHsH3guru3M80Gv1cHvcIc1BVsqQjCH4+8/+jrycPNU1CKPAMCAkItmkm9PbnYQ0OJQ5GWvLYrL4nJzJFahWN4V2xVvMYNhd9pDmFaWb09vNWQMCz/IpdbJqSbC0O0bqWupUVzLqXXIIBD/n0+l2RqwZhJrlWnJxea/LFe+SakmwoK6lDsdrj4eViQ+HOBcMkCewCoa/ZWm6KntONiZLpZ0iOToAp5hS0OBowOrS1Xj/wPuqW/dPjcSsrNqnYogMOgPuGXmP0sOgMDAgJCLZeHcaEzU6GpFsSFZoRBe1DUQECGF/2SboE3C24WxIAWGyMRmNjsbWgNkYfMAslhWFyl+GMRosJov/UleVlYwadUY43U7pdrBlc82u+GyvPyBtAB4b95jSw5AuuMzaMEuxZlfef6ONjsaoXhjz9/nQVYZQ/EzyFurnkzcxQyiW1itRvktEnWNASESy8VcGqZY15tpmCOWQnpCOYzXHQuqaJ141b7CHdsKl1Wj9dhIMlGIBYUL7fwe1ZJHbCjYI9F7rMl7XW0vQJ2D6iOlKD0M6zrKTs7Hlv7YoMgax9A8AztvOR7VbpL+AsKvydr8BYYifT95STCmw2q1ocDSgcWFjXGbOg6X54X9E0cKAkIhk46+rXrOzGWaD8ifGbTOEcnzZppt/CAjDzBAmG6OfQU0xpoSVYQxVgj4Bdrfv3EW7yw6TLvLt+CPNbDCj2dW6uHe4i3lTeMTjzGq3RmV9za6U1ZdFtdOpd7mqyO62d1rKm2JK8Z8hDPNiTYqx9eKXIAhIMsbGnDiluTwuzlmmqGJASESy8ZchjNZyBl3xd4IUrvSEdBytORpShlAKCBVqeJFsTIbNYZNuK7lEgtOj7vl2gc7/SjIkSSfUarkQQuqYh3W6/jRyLblRez1/GUKH29HpvOlkY3K7+ZZyZQiVmscZq9RSWUPxgwEhEcnGX5t1tcylSjIkocnZJOtzppvTUVpRGtKJnjivptHRGPIJVzgnuknGJNicrQGh2+OGTqPc1ehQFnCPJofbEVAG0zvIVstxT+rwz+//iZFZI6P2ev4Cwq4aaXU4hzDMC1YmnUmRjsaxrK6lLuxAnCgYDAiJSDb+msqoJVMSiYAjPSEdx2uPo7+lf9CP9WkqE+IJVzidC72zWU6PU9GlQdS8gLsgCLDarQH9GyUZLgbZajnu41mzs1nx6gSNRgO7y44mZxMuy7wsaq8rXnDy1lUm3l+XUTkyhBqNRtV/42r0fe33uKTHJUoPg+KIemt0iCjmJBuTpRNikVpKRtuS4wRFDBIMusDW/mv7WLGpTDhLLghCa7fUYIPDJGOSlM3qqpQsXhl1Rjg9TtS21KJHQo8u9/f+nTJDqLyKxgoM7zlc6WFgX+U+jOg1IqqvaTaY0eJqabe9swtjZr0ZLW7fxzQ4GpCdnB32eBodjchJyQn7eeLFx9M/jvoxQ/GNGUIikk2CPqHdSUh3PjEu6F+Ak/NOhvRYOTKEiYZE6fcdbFDnHbzLtSZjqNTaTc+sN6PZ2Yya5hr0MAcQEDJDqCpOjzOgf7dIStAn4GTdSfRJie5i7P4+i0N5jBwZQgCoaa7pdMkL8nXjwBvRMyl6XWmJmCEkItl4d1kUNTubFT8pE4lZQUEQZAlCzAYz+qcFXy4KtJZ0iU1lQu0yKpZ9mg1m2N3BLXDvXTIa7QyhuDyDmK1QazmZWd96PAccEDJDqCqbf75Z8WZFSYYklDeWR/0z0F9w19Vnnr/H1LbUyjL2QP+GiEgZzBASkWz8nVCorWRUEAS4PK6QyjzllGRMai0ZDWPhZ+8mEE63EwZt4O+pbcloNJd9CCV7oQSzIbgMoUlngsPtAMAMoRr0TOqJdLOyWakkQxLKG8qjvvSFSWcK+m9Mp9W1W9u0qqkKmYmZYY+nuqmaASGRijEgJCLZ+Osmp6ZMiVFnhMvjUkWQatQZ4XQ7w1p2wrtTqMvjCi4gNCSh0alMhtB73IDKS0aDyBAadcaLAaGKjntSTpIxCecaz8FiskT1deW66FLdXB3Ssjpt/fzKn2PypZPDfh4iigyWjBKRbPx1k1NTpiRBn4BmVzPsLjsSdOrIWjY6Q192IkGfIAXgwa7l5/3YqAeEEVgCJBKCzRAadUauQ0g+Eg2JONdwDpYEBQJCd/gBoVwXz/405U9hPwcRRQ4DQiKKKDVk40QJutar5moaUzgZQu+yMJfHFVRAKHbQBAC7O7pNZRINiVK5qpqJGcLa5tqASg+ZIaS2kgxJrQFhjGQI23YrbltCSkTdE0tGiSii1HRiLLZiV1NAGGwg5y1BnwC72y49TzDzIg06gxS8RDtDGHNzCFtCKBllhpDQurxMWX1ZWEvLhMKoM4a9GPyxmmNR745KRMpgQEhEEaWmE2MxEGlxtahmTOEw6S9mCJ3u4EpGtRqtlA1wuB1BdSgNl0lnkgJZNRMzhPUt9QE1BfEOCJucTaq5EELK6Z3cG27BHfWmMp2tNxiogxcOYnTOaBlGQ0Rqx4CQiCKqxa2ebJx3QKiGMYV70uY9DzDYpjLeop0hNOnbNx9SIzFDKECAVtP112W7ktFucNGBwtPP0g99U/vKEqBF24WmC+iZyLXwiOIBA0IiklXbjpHNTvWUjKotINRpdHB5XCE/3nsOYbBNZbxFPSCMsQxhoDiHkNrKteTGbNnlBdsFLo5OFCcYELYxYMAAaDQan5/HH3/cZ5/Tp09j6tSpSEpKQmZmJh566CE4HA6fffbu3YuCggKYzWb06dMHixcvbjdZu7i4GHl5eUhISMCgQYOwcuXKiL8/omiLdsOSziToE9DsbFZNQOi9jmAowplDCFxcEN7uiu6/kXfg5Pa4odPqovbawRAzhIHiHEJqq4e5B9746RuKvHbbjs+B8M5kVtoqmSEkihPsMurH4sWLMWvWLOl2cnKy9N9utxtTpkxBz549sXnzZlRXV+P++++HIAh45ZVXAABWqxUTJkzAjTfeiB07duDIkSOYOXMmkpKS8MgjjwAATpw4gcmTJ2PWrFl488038e9//xsPPvggevbsiTvuuCO6b5gowtRSLiVmCO1ue7cICE16E1psoc0h9Bbthem9S0YdbkfIpa6RZtab0eRsCnidRO+AsMXVwgwhAQByUnIUeV3v49btcQdU9qyBBoIgQKPRoKalRpY1CIlI/RgQ+pGSkoLs7Gy/9xUVFeHAgQMoKytDTk7rh/wLL7yAmTNnYsmSJUhNTcVbb72FlpYWrFmzBiaTCSNGjMCRI0fw4osvorCwEBqNBitXrkRubi5eeuklAMCwYcNQUlKCFStWMCCkmKbRXDyhANS16LhZr64uo+F0GAXCn0Mo/ts43A4kG5O72Fs+3iWjoWQ2o8VsMKPSVhnwsiDeAaFH8Kg280nxx+lxBlQFIDaqEjsyq+FzkogijyWjfixfvhwZGRm48sorsWTJEp9y0K1bt2LEiBFSMAgAkyZNgt1ux86dO6V9CgoKYDKZfPY5d+4cTp48Ke0zceJEn9edNGkSSkpK4HQ6I/juiCLLe14bEFrZUqSobQ5hg6MhrEAsZucQemUIww2KI8msN+Nsw1n0SOh6yQnANyBU03FPFOjfuPeSMNH+XCAi5ajzW1hB8+bNw9VXX4309HR8++23WLhwIU6cOIFXX30VAFBRUYGsrCyfx6Snp8NoNKKiokLaZ8CAAT77iI+pqKjAwIED/T5PVlYWXC4Xqqqq0Lt3b7/js9vtsNsvNmOwWq1hvV8iuYlXltU4fypBn4BGRyNaXC2qKIVqdDSGFRCGO4dQpGRTGZfHBb1GnV9FZkNrQDg4fXBA+3sHhERqEnBAqPMNCNVazk1E8oqLDOFTTz3VrlFM25+SkhIAwPz581FQUIBRo0bhF7/4BVauXInXXnsN1dXV0vP5mw/lXSLnbx+xoUyw+7S1bNkyWCwW6adfv36B/hqIoiJBl+DTmVFNJaPi1W+1dIDsk9IHI3uNDPnx4axD6C3ajX+8AyeXx6Xa0kqz3oyz1rMBLUoP/PC+PAwISX0CbRzlnSEE1DP/m4giS52XZWU2d+5cTJ8+vdN92mb0RGPGjAEAHDt2DBkZGcjOzsb27dt99qmtrYXT6ZQyftnZ2VK2UFRZWQkAXe6j1+uRkdFx5mLhwoUoLCyUblutVgaFpCpihlCkptK5BH1rsKqWDpArf7KyXffhYHiXjIa7DmFUF6b3Khl1C271lowazDjXcC64gJAZQlKhUEpG1XQxj4giS53fwjLLzMxEZmZmSI/dtWsXAEglnPn5+ViyZAnKy8ulbUVFRTCZTMjLy5P2WbRoERwOB4xGo7RPTk6OFHjm5+djw4YNPq9VVFSE0aNHw2Do+KTOZDL5zE0kUhtxaQc18p5DqIYMIRDeFXiDziCtYxhTcwjbloyqNSDUm2Fz2pBuTg9ofzEgDCfIJ4qEUAJCIoofcVEyGqitW7fi97//PUpLS3HixAm8++67eOCBB3DrrbciNzcXADBx4kQMHz4cM2bMwK5du/Dll19iwYIFmDVrFlJTUwEA9957L0wmE2bOnIl9+/Zh/fr1WLp0qdRhFABmz56NU6dOobCwEAcPHsSqVavw2muvYcGCBYq9fyI5iJ08gR/KATXqKQcUs5fNrmZVNJUJl0FrgNPd2oQqpuYQxkpTmR+yyIFmCPVaPZxup2qWNSESMSAkos6o81tYISaTCe+88w6efvpp2O129O/fH7NmzcKjjz4q7aPT6fDpp5/iwQcfxLhx42A2m3HvvfdixYoV0j4WiwUbN27EnDlzMHr0aKSnp6OwsNCn1HPgwIH47LPPMH/+fPzpT39CTk4OXn75ZS45QTFPLMsEAJvDFtXlDLoizSFUSclouPRa/cUModuJJGNSSM8T7YXpYyVDKK7bFmhAKF7wC7dZEJHcAl1r1GwwS5/fair3J6LIUue3sEKuvvpqbNu2rcv9cnNz8cknn3S6z8iRI7Fp06ZO9ykoKMB3330X1BiJ1M57DmGDowEpxsDWcIsGNZaMhsOgM8AltAaEocwh1Gl1cHlcUc8Qtm0qo9aAEACmDZ+GrKSsrnf00uhoRLKBASEpS6vRwu1xQ6fVBZUhbLA3RGF0RKQmLBklIll5zyFsdDQGvKh3NHh3Ge0OJX1iiSIQ2hxCg9YgBYSBZA/k4j33UW1lxW29O+3dgOcQimwOW8jZWiK5GHQGOD2tnw/BBIS3v3M7vj37LZvKEMURBoREJCuTziRlfxrs4S28Ljepy6ire5SMigEdENocQjGgjHaG0LvUVe0ZwlDYnDYkGhKVHgbFOe/Ph2ACQgCoba6N6NiISF0YEBKRrPRavXRVWq0lo063s1ssuOz9uw5lHUIxU+fwKBcQuj3qXXYiVDaHDUkGZghJWd4VBIEGhOMHjgcAlDeWR3RsRKQuDAiJSFYG3cXOl2prruGzxlY3WHC5baYt2CBXr2kNKKPdVCYeMoQsGSWlGbTBl4z2SuqFf//Xv3Gu4Vykh0dEKsKAkIhk5X0S0mBvUNUcQq1G263WiNNoNNL7CWUOoRiYsWRUXswQkhp4z9UN5m88PSEddS11ERwZEakNA0IikpWaM4TdWSiBlXjC6BE80Gmj19il2weEzBCSCoRSMgq0dgHmWoRE8YUBIRHJyruRgdrmEHZn4TSVibZuHxAyQ0gq4F2tYXcHXhZu1Blhc9iiWjVARMpiQEhEsvJpKqOyklGg+y62HFJTGa/gPZraBoTRzE5GAzOEpAbeJaMtrpaAOysbdUY0Ohth0kdvKRoiUhYDQiKSFUtGlRFSU5kfgvdoB8lajRYewQMAcAvdq8uoAIEZQlIF7wqAFldLwGuvGnVGNNgbmCEkiiMMCIlIVj5NZVRYMtpdF1sOaWF6nTIZQm/dsmSUGUJSAe/P4mACQpPehEZHI0w6ZgiJ4gUDQiKSFTOEyghnDqGSQXJ3Cwg10KDR0cgMISmubcloUBlCBzOERPGEASERycr7qrTNaUOiIVHhEfnqjnPWgNiaQ+ituwWERp0RdS11zBCS4kItGdVpdGhyNjFDSBRHGBASkay8G4ZEezmDQLS4WmDWB9ZcIZaEM4dQSd0xIKxtqWWGkBSn1+rhFtwAggsINRoN7K7Au5ISUexjQEhEsvIuGVXjfL1g2q/HklieQ6jTqOuiQTjElv3Blu8Syc374lwwASEQ3LqFRBT7GBASkay8S0YpemJpHULg4vIf3S1DmGhI5KLepArhBoRcdoIofjAgJCJZeWcI1UgQBGg06stchiukDKEK5hC6Pd1r2Qmz3owmZ5PSwyAKKyDsrpUUROQfA0IikpV3hlCNi8CfsZ5Bz8SeSg9DdrE8h1Bt80zDkWhIZEBIquAdEDrcjqA+HxxuB5vKEMURBoREJCvvkxA1mj5iOmZeOVPpYchGDLrdHje0muA+0g06AxxuRySGFTCnxxl0IKtmZgMzhKQObT+Lg6mM4BxCovjSfep0iEgVDLqLGUI1NpV5fsLzSg9BVt6/42BLYfVaPZqcTYqc+Injdrqd3aoBS6IhEc2uZqWHQdSu43OwOIeQKH4wQ0hEsjJo1T2HkC4SA0IlT/y6W4bQpDPB7rIrPQwin4AwlPJ9ZgiJ4gcDQiKSlXeGkNTNoDUoliEUdbcMoVtwd6s5kRS7xICwuqkaPcw9gn48u+USxQ+WjBKRrHQaHVweV0hz2ii69Fo9bA4bjFrlAsJQmuGoWXdbRoNilxgQHqk+gqEZQ4N67IZ7NmBA2oDIDIyIVIffWkQkK3EeW7Btzik0Wo02pPlBQGs21+a0KZshDGG5DDVjQEhqIQaEh6sPBx0Q/mTITyI0KiJSI16+JyLZaaCB3W1nU4IoEE/6QpkjJGUIWTIqmwR9ArKTs5UeBpH02XCs5hguzbhU6eEQkYoxICSiiHC6nYqWIsYLnVYX8jIfBq0BTS5lmsqIAWx3ayrzQN4D2DFrh9LDIJICwkZHI1KMKUoPh4hUjHUtRBQRDrejW2V+1Eqv1cPtcYf8WKUyhN112QmDztCt3g/FLjEgdLqd7BhKRJ1ihpCIIsLp4UlINLRdfDoYBp3yXUa7W1MZIrUQPxt4cY6IusKAkIgiwuF28EQ/CsSurt4L1AdKr9WzqQxRNyVlCHlxjoi6wICQiCKiu5UCqpVeq4dbCK1k1KA1KN9UxsPjhCgSfDKEvDhHRJ1gQEhEEeFwO3hVOgrEDGEoxAyhSadMN1hBEFovHPBklUh2zBASUaAYEBJRRHS37pFqFatzCMX1E5khJIoMziEkokAxICSiiGBnu+iI1S6jOq0ObsENQRCg1fCriEhuYvWAR/Dwb4yIOsVPCCKKCF6Vjo5w1yFUqqmMTqODR/BE/XWJ4oWYIQyl4RQRxRcGhEQUESwZjY5wSkb1Wj2anMosTK/VaEPObBJR18L5bCCi+BJXAeGSJUswduxYJCYmIi0tze8+p0+fxtSpU5GUlITMzEw89NBDcDgcPvvs3bsXBQUFMJvN6NOnDxYvXgxBEHz2KS4uRl5eHhISEjBo0CCsXLmy3WutW7cOw4cPh8lkwvDhw7F+/XrZ3iuR0thUJjrCnUMIQLGSUWYIiSInnHJyIoovcRUQOhwOTJs2Db/61a/83u92uzFlyhTYbDZs3rwZa9euxbp16/DII49I+1itVkyYMAE5OTnYsWMHXnnlFaxYsQIvvviitM+JEycwefJkXH/99di1axcWLVqEhx56COvWrZP22bp1K+6++27MmDEDu3fvxowZM3DXXXdh+/btkfsFEEURl52IDp1GB7vbHtJafuJjlGoqE+pyGUTUNfFikQCh652JKK7F1WrATz/9NABgzZo1fu8vKirCgQMHUFZWhpycHADACy+8gJkzZ2LJkiVITU3FW2+9hZaWFqxZswYmkwkjRozAkSNH8OKLL6KwsBAajQYrV65Ebm4uXnrpJQDAsGHDUFJSghUrVuCOO+4AALz00kuYMGECFi5cCABYuHAhiouL8dJLL+Htt9+O7C+CKArY6jw69Fo9WlwtMRcQ6jQ6Zi+IIoglo0QUqLjKEHZl69atGDFihBQMAsCkSZNgt9uxc+dOaZ+CggKYTCaffc6dO4eTJ09K+0ycONHnuSdNmoSSkhI4nc5O99myZUsk3hpR1HEx5OgQA8JQsrHivw+byhB1P3qtHi6BASERdY0BoZeKigpkZWX5bEtPT4fRaERFRUWH+4i3u9rH5XKhqqqq033E5+iI3W6H1Wr1+SFSG7FZCUtGI0+n1cVkhpAlo0SRxQwhEQUq5gPCp556ChqNptOfkpKSgJ9Po2nfnlkQBJ/tbfcRG8rIsY+/1/e2bNkyWCwW6adfv36d7k+kBCUXPI83UoYwhGys+HljMVnkHlaX2FSGKLK47AQRBSrm5xDOnTsX06dP73SfAQMGBPRc2dnZ7Zq61NbWwul0Stm87Ozsdlm8yspKAOhyH71ej4yMjE73aZs1bGvhwoUoLCyUblutVgaFpDoGbWtAyJLRyNNr9Wh2NoeUIRRlJGbIOKLAiMtOsOEFUWQwQ0hEgYr5gDAzMxOZmZmyPFd+fj6WLFmC8vJy9O7dG0BroxmTyYS8vDxpn0WLFsHhcMBoNEr75OTkSIFnfn4+NmzY4PPcRUVFGD16NAwGg7TPxo0bMX/+fJ99xo4d2+kYTSaTz/xFIjUy6AywOZRZ8Dze6DS6kDOEohRjiowjCoxOo2PJKFEE6bQ6BoREFJCYLxkNxunTp1FaWorTp0/D7XajtLQUpaWlaGxsBABMnDgRw4cPx4wZM7Br1y58+eWXWLBgAWbNmoXU1FQAwL333guTyYSZM2di3759WL9+PZYuXSp1GAWA2bNn49SpUygsLMTBgwexatUqvPbaa1iwYIE0lnnz5qGoqAjLly/HoUOHsHz5cnzxxRd4+OGHo/57IZKblCHkHMKIC6fLqKirUvVIEEtGWc5GFBlajRaCIDALT0RdiquA8Le//S2uuuoqPPnkk2hsbMRVV12Fq666SppjqNPp8OmnnyIhIQHjxo3DXXfdhdtvvx0rVqyQnsNisWDjxo04c+YMRo8ejQcffBCFhYU+ZZwDBw7EZ599hm+++QZXXnklnnnmGbz88svSkhMAMHbsWKxduxarV6/GqFGjsGbNGrzzzju49tpro/cLIYoQqakMS0YjLpwuo0oSS0aJiIhIWTFfMhqMNWvWdLgGoSg3NxeffPJJp/uMHDkSmzZt6nSfgoICfPfdd53uc+edd+LOO+/sdB+iWGTQGlBvr2fJaBSE02UUADbN7PyzLFK47ARR5DE7SESBiKsMIRFFh9hlNNayVrEo3JLR6/tfL/OIAiMuO8ETVqLIcXlcrNQgoi4xICQi2Rm0bCoTLXqtHs2u5pg76dNpdSwZJYowp9vJz2Ei6hIDQiKSnZQhjLEgJRaJXUbDaSqjBJ2mtQOiVsOvIaJIcbgdrNQgoi7xm5iIZCc2leGV6cjTa/Wwu+0xd9Kn1Whbx82LBkQR4/Q4YdTyc5iIOseAkIhkx2UnokeOhemVIDbD4TFCFDnMEBJRIBgQEpHsWDIaPVJgFWO/a61GC7uLGUKiSHK4HazUIKIuMSAkItkZtAbYnGwqEw1yLEyvhFid+0gUS9hUhogCwYCQiGTHZSeiJ1YXptdpdZxDSBRhDreDf2NE1CUGhEQkOzFI0Wl0Sg+l24vVTJtUMhpjgSxRLHF6mCEkoq4xICQi2YlXpDUajcIj6f6kDGGMZQHEQDbWxk0US9hUhogCwYCQiGTHE5DoERemj8kMYQwul0EUSziHkIgCwYCQiGTHrE/0xOryDeK4Yy2QJYolnENIRIFgQEhEsou14CSWxXKXUS47QRRZXHaCiALBgJCIZBdrwUksi9U5hCwZJYo8NpUhokAwICQi2cVacBLLYrXLqFTqymOFKKIyEzOVHgIRqRwDQiKSHbM+0aPX6mOykyCXnSCKjmv6XKP0EIhI5RgQEpHsmpxNSg8hboiZwZjLEMZoZpMolhyeexh9UvooPQwiUjl+ExOR7JqcTRiQNkDpYcQFnVYHIPbKdHVaHVrcLBkliqQhGUOUHgIRxQBmCIlIdnddfhcOPHhA6WHEhVjNEErNcFgySkREpCgGhEQkO61GC7PBrPQw4kKsBoRiySgzhERERMpiQEhEFMN0mh9KRmMs08YMIRERkTowICQiimGxmiHUa/VodjbH3LiJiIi6GwaEREQxTAyoYq30Uq/Vo9nVHHPjJiIi6m4YEBIRxTCpy2iMlV5KC9PH2LiJiIi6GwaEREQxTMwQ9krqpfBIgiOWjDJDSEREpCwGhEREMUxsKhNrc/HYVIaIiEgdGBASEcUwjUaj9BBCIi47EWuBLBERUXfDgJCIKMY1LmxUeghBY1MZIiIidWBASEQU45KMSUoPIWjSHEKWjBIRESmKASEREUWdXquHAIEZQiIiIoUxICQioqiL1eUyiIiIuhsGhEREFHViMxk2lSEiIlIWA0IiIoo6MRBkySgREZGyGBASEVHUiesnsmSUiIhIWXEVEC5ZsgRjx45FYmIi0tLS/O6j0Wja/axcudJnn71796KgoABmsxl9+vTB4sWLIQiCzz7FxcXIy8tDQkICBg0a1O45AGDdunUYPnw4TCYThg8fjvXr18v2XomI1EzMEJr1ZoVHQkREFN/iKiB0OByYNm0afvWrX3W63+rVq1FeXi793H///dJ9VqsVEyZMQE5ODnbs2IFXXnkFK1aswIsvvijtc+LECUyePBnXX389du3ahUWLFuGhhx7CunXrpH22bt2Ku+++GzNmzMDu3bsxY8YM3HXXXdi+fbv8b5yISGXEgDDRkKjwSIiIiOKbRmib2ooDa9aswcMPP4y6urp292k0Gqxfvx63336738f++c9/xsKFC3H+/HmYTCYAwHPPPYdXXnkFZ86cgUajwWOPPYaPP/4YBw8elB43e/Zs7N69G1u3bgUA3H333bBarfjHP/4h7XPzzTcjPT0db7/9dsDvxWq1wmKxoL6+HqmpqQE/johISZW2SmStyILntx5oNBqlh0NERCrDc9zoiasMYaDmzp2LzMxMXHPNNVi5ciU8Ho9039atW1FQUCAFgwAwadIknDt3DidPnpT2mThxos9zTpo0CSUlJXA6nZ3us2XLlk7HZrfbYbVafX6IiGKNmCFkMEhERKQsBoRtPPPMM3jvvffwxRdfYPr06XjkkUewdOlS6f6KigpkZWX5PEa8XVFR0ek+LpcLVVVVne4jPkdHli1bBovFIv3069cvtDdKRKQgLjdBRESkDjEfED711FN+G8F4/5SUlAT8fE888QTy8/Nx5ZVX4pFHHsHixYvxu9/9zmeftle0xapb7+2h7tPV1fKFCxeivr5e+ikrKwvwnRERqQcDQiIiInWI+W/kuXPnYvr06Z3uM2DAgJCff8yYMbBarTh//jyysrKQnZ3dLotXWVkJ4GKmsKN99Ho9MjIyOt2nbdawLZPJ5FOuSkQUi8RlJ4iIiEhZMR8QZmZmIjMzM2LPv2vXLiQkJEjLVOTn52PRokVwOBwwGo0AgKKiIuTk5EiBZ35+PjZs2ODzPEVFRRg9ejQMBoO0z8aNGzF//nyffcaOHRux90JEpBbMEBIREalDzJeMBuP06dMoLS3F6dOn4Xa7UVpaitLSUjQ2NgIANmzYgL/+9a/Yt28fvv/+e7z66qv4zW9+g1/+8pdSVu7ee++FyWTCzJkzsW/fPqxfvx5Lly5FYWGhVO45e/ZsnDp1CoWFhTh48CBWrVqF1157DQsWLJDGMm/ePBQVFWH58uU4dOgQli9fji+++AIPP/xw1H8vRETRptXE1dcPERGRasXVshMzZ87E66+/3m77119/jRtuuAGff/45Fi5ciGPHjsHj8WDQoEH4xS9+gTlz5kCvv3g1e+/evZgzZw6+/fZbpKenY/bs2fjtb3/rM/+vuLgY8+fPx/79+5GTk4PHHnsMs2fP9nnd999/H0888QSOHz+OwYMHY8mSJfjZz34W1HtiS14iilWapzUQnoybryAiIgoCz3GjJ64Cwu6IfyxEFKsOXjiIYT2HKT0MIiJSIZ7jRg9rdoiISBEMBomIiJTHgJCIiIiIiChOMSAkIiIiIiKKUwwIiYiIiIiI4hQDQiIiIiIiojjFgJCIiIiIiChOMSAkIiIiIiKKUwwIiYiIiIiI4hQDQiIiIiIiojjFgJCIiIiIiChOMSAkIiIiIiKKUwwIiYiIiIiI4pRe6QFQ6ARBgNVqBQDp/4mIiIiIYp14bisIgsIj6f40An/LMevChQvo1auX0sMgIiIiIoqIsrIy9O3bV+lhdGvMEMYwo9EIADhw4ABycnKg0WgUHhF1V1arFf369UNZWRlSU1OVHg51YzzWKBp4nFG08FgLnSAIaGhoQE5OjtJD6fYYEMYwMQDs06cPP2QoKlJTU3msUVTwWKNo4HFG0cJjLTQWi0XpIcQFNpUhIiIiIiKKUwwIiYiIiIiI4hQDwhhmMpnw5JNPwmQyKT0U6uZ4rFG08FijaOBxRtHCY41iAbuMEhERERERxSlmCImIiIiIiOIUA0IiIiIiIqI4xYCQiIiIiIgoTjEgJCIiIiIiilMMCGPApk2bMHXqVOTk5ECj0eDDDz/0uV8QBDz11FPIycmB2WzGDTfcgP379yszWIpZy5YtwzXXXIOUlBT06tULt99+Ow4fPuyzD481ksOf//xnjBo1SlqoOT8/H//4xz+k+3mcUSQsW7YMGo0GDz/8sLSNxxrJ4amnnoJGo/H5yc7Olu7ncUZqx4AwBthsNlxxxRX44x//6Pf+559/Hi+++CL++Mc/YseOHcjOzsaECRPQ0NAQ5ZFSLCsuLsacOXOwbds2bNy4ES6XCxMnToTNZpP24bFGcujbty+ee+45lJSUoKSkBOPHj8dtt90mnSDxOCO57dixA3/5y18watQon+081kgul19+OcrLy6WfvXv3SvfxOCPVEyimABDWr18v3fZ4PEJ2drbw3HPPSdtaWloEi8UirFy5UoERUndRWVkpABCKi4sFQeCxRpGVnp4uvPrqqzzOSHYNDQ3CpZdeKmzcuFEoKCgQ5s2bJwgCP9NIPk8++aRwxRVX+L2PxxnFAmYIY9yJEydQUVGBiRMnSttMJhMKCgqwZcsWBUdGsa6+vh4A0KNHDwA81igy3G431q5dC5vNhvz8fB5nJLs5c+ZgypQp+PGPf+yznccayeno0aPIycnBwIEDMX36dBw/fhwAjzOKDXqlB0DhqaioAABkZWX5bM/KysKpU6eUGBJ1A4IgoLCwENdddx1GjBgBgMcayWvv3r3Iz89HS0sLkpOTsX79egwfPlw6QeJxRnJYu3YtvvvuO+zYsaPdffxMI7lce+21eOONNzBkyBCcP38ezz77LMaOHYv9+/fzOKOYwICwm9BoND63BUFot40oUHPnzsWePXuwefPmdvfxWCM5DB06FKWlpairq8O6detw//33o7i4WLqfxxmFq6ysDPPmzUNRURESEhI63I/HGoXrlltukf575MiRyM/Px+DBg/H6669jzJgxAHickbqxZDTGiV2sxCtQosrKynZXo4gC8etf/xoff/wxvv76a/Tt21fazmON5GQ0GnHJJZdg9OjRWLZsGa644gr84Q9/4HFGstm5cycqKyuRl5cHvV4PvV6P4uJivPzyy9Dr9dLxxGON5JaUlISRI0fi6NGj/EyjmMCAMMYNHDgQ2dnZ2Lhxo7TN4XCguLgYY8eOVXBkFGsEQcDcuXPxwQcf4KuvvsLAgQN97uexRpEkCALsdjuPM5LNTTfdhL1796K0tFT6GT16NO677z6UlpZi0KBBPNYoIux2Ow4ePIjevXvzM41iAktGY0BjYyOOHTsm3T5x4gRKS0vRo0cP5Obm4uGHH8bSpUtx6aWX4tJLL8XSpUuRmJiIe++9V8FRU6yZM2cO/v73v+Ojjz5CSkqKdDXTYrHAbDZL63fxWKNwLVq0CLfccgv69euHhoYGrF27Ft988w0+//xzHmckm5SUFGkOtCgpKQkZGRnSdh5rJIcFCxZg6tSpyM3NRWVlJZ599llYrVbcf//9/EyjmMCAMAaUlJTgxhtvlG4XFhYCAO6//36sWbMGjz76KJqbm/Hggw+itrYW1157LYqKipCSkqLUkCkG/fnPfwYA3HDDDT7bV69ejZkzZwIAjzWSxfnz5zFjxgyUl5fDYrFg1KhR+PzzzzFhwgQAPM4oeniskRzOnDmDe+65B1VVVejZsyfGjBmDbdu2oX///gB4nJH6aQRBEJQeBBEREREREUUf5xASERERERHFKQaEREREREREcYoBIRERERERUZxiQEhERERERBSnGBASERERERHFKQaEREREREREcYoBIRERERERUZxiQEhERERERBSnGBASERERERHFKQaEREREREREcYoBIRERERERUZxiQEhERERERBSnGBASERERERHFKQaEREREREREcYoBIRERERERUZxiQEhERERERBSnGBASERERERHFKQaEREREREREcYoBIRERERERUZxiQEhERERERBSnGBASERERERHFKQaEREREREREcer/A9hnFaf0nlBUAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#px.SetMaxSinThetaOvLambda(0.3) # This can be used to change the number of used reflections\n", "spgex = SpaceGroupExplorer(pdiff)\n", "\n", "# NB:verbose C++ output does not appear in a notebook\n", "spgex.RunAll(keep_best=True, update_display=False, fitprofile_p1=False)\n", "\n", "for sol in spgex.GetScores():\n", " #if sol.nGoF > 4 * spgex.GetScores()[0].nGoF:\n", " if sol.GoF <= 2 * spgex.GetScores()[0].GoF:\n", " print(sol)\n", "\n", "c.GetSpaceGroup().ChangeSpaceGroup(\"Pmcn\")\n", "print(\"Chosen spacegroup (smallest nGoF): \", c.GetSpaceGroup())\n", "\n", "# Updated plot with optimal spacegroup\n", "px.plot(diff=True, fig=None, hkl=True, reset=True)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add SO4 and Pb to the crystal structure\n", "First create the atomic scattering powers, then " ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "UnitCell : (P m c n)\n", " Cell dimensions : 5.39782 6.95807 8.47841 90.00000 90.00000 90.00000\n", "List of scattering components (atoms): 6\n", "Pb at : 0.2500 0.2500 0.2500, Occup=1.0000 * 0.5000, ScattPow:Pb , Biso= 1.0000\n", "S at : -0.0000 0.0000-0.0000, Occup=1.0000 * 0.5000, ScattPow:S , Biso= 1.5000\n", "O1 at : -0.0000 0.0000 0.1769, Occup=1.0000 * 1.0000, ScattPow:O , Biso= 2.0000\n", "O2 at : -0.0000 0.2033-0.0589, Occup=1.0000 * 1.0000, ScattPow:O , Biso= 2.0000\n", "O3 at : 0.2270-0.1017-0.0589, Occup=1.0000 * 0.5000, ScattPow:O , Biso= 2.0000\n", "O4 at : -0.2270-0.1017-0.0589, Occup=1.0000 * 0.5000, ScattPow:O , Biso= 2.0000\n", "\n", "Occupancy = occ * dyn, where:\n", " - occ is the 'real' occupancy\n", " - dyn is the dynamical occupancy correction, indicating either\n", " an atom on a special position, or several identical atoms \n", " overlapping (dyn=0.5 -> atom on a symetry plane / 2fold axis..\n", " -> OR 2 atoms strictly overlapping)\n", "\n", " Total number of components (atoms) in one unit cell : 32\n", " Chemical formula: O3 Pb0.5 S0.5\n", " Weight: 167.635 g/mol\n" ] } ], "source": [ "pb = ScatteringPowerAtom(\"Pb\", \"Pb\", 1.0)\n", "s = ScatteringPowerAtom(\"S\", \"S\", 1.5)\n", "o = ScatteringPowerAtom(\"O\", \"O\", 2.0)\n", "\n", "# When manually creating atomic scattering power, they must be added\n", "# to the Crystal. This is done automatically when importing a Molecule.\n", "c.AddScatteringPower(pb)\n", "c.AddScatteringPower(s)\n", "c.AddScatteringPower(o)\n", "\n", "c.AddScatterer(Atom(0.25,0.25,0.25,\"Pb\", pb))\n", "c.AddScatterer(MakeTetrahedron(c,\"SO4\",s,o,1.5))\n", "\n", "# Let's see what is the resulting crystal contents\n", "print(c)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create the neutron powder diffraction data and fit the profile\n", "The same steps as for the X-ray data are performed.\n", "\n", "However the peak width is larger so that must be fixed to start" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ " % Total % Received % Xferd Average Speed Time Time Time Current\n", " Dload Upload Total Spent Left Speed\n", "100 17902 100 17902 0 0 79398 0 --:--:-- --:--:-- --:--:-- 79564\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Imported powder pattern: 2920 points, 2theta= 10.000 -> 155.950, step= 0.050\n", "No background, adding one automatically\n", "Selected PowderPatternDiffraction: with Crystal: \n", "Profile fitting finished.\n", "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n", "to disable profile fitting and optimise the structure.\n", "Fit result: Rw= 9.81% Chi2= 4134.04 GoF= 1.42 LLK= 282.992\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f6348c1b44a24ff3bbf5ddce5ca1604e", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xl8k2W6//FP9qVN0o3SImUREBFQlB0dAVkUQRgdB/0JKOMyR1E6HhDQGVA8jqAzI4s4ctTxgGzDiEdHHT0ogqKCyO6gAqLs0rK1SVvaZn1+fzQJSZqutElor/fr1ZftkyfJnS74fHPd93WrFEVREEIIIYQQQgjR7KjjPQAhhBBCCCGEEPEhgVAIIYQQQgghmikJhEIIIYQQQgjRTEkgFEIIIYQQQohmSgKhEEIIIYQQQjRTEgiFEEIIIYQQopmSQCiEEEIIIYQQzZQEQiGEEEIIIYRopiQQCiGEEEIIIUQzJYFQCCGEEEIIIZopCYRCCCGEEEII0UxJIBRCCCGEaAbGjRsX7yEIIRKQNt4DEEIIIYQQDWf69OmVjimKwubNm+MwGiFEopNAKIQQQgjRhKxcuZJVq1ZVOv7pp5/GYTRCiEQngVAIIYQQogm599576dKlC5mZmWHH77777jiNSAiRyFSKoijxHoQQQgghhBBCiNiTpjJCCCGEEEII0UxJIBRCCCGEEEKIZkoCoRBCCCGEEEI0UxIIhRBCCCGakDfffJOrr76a8ePH88Ybb9C5c2d69+7Ne++9F++hCSESkDSVEUIIIYRoQvr27cunn35KcXExPXr0YN++fRiNRoYOHcoXX3wR7+EJIRKMbDshhBBCCNGEmEwmzGYzZrOZIUOGYLPZANBq5bJPCFGZTBkVQgghhGhCevTogdfrBWDFihUAuFwu0tPT4zksIUSCkimjQgghhBBCCNFMSYVQCCGEEEIIIZopCYRCCCGEEEII0UxJIBRCCCGEaAby8/PjPQQhRAKSQCiEEEII0Qzcfffd8R6CECIBSf9hIYQQQogmpE+fPpWOKYrCgQMH4jAaIUSik0AohBBCCNGEFBcXs2fPnkr7Dg4bNixOIxJCJDKZMiqEEEII0YTMmTOH4uLiSsdnzpwZh9EIIRKd7EMohBBCCCGEEM2UVAiFEEIIIYQQopmSQCiEEEIIIYQQzZQEQiGEEEIIIYRopiQQCiGEEEIIIUQzJYFQCCGEEEIIIZopCYRCCCGEEEII0UxJIBRCCCGEEEKIZkoCoRBCCCFEEzdu3Lh4D0EIkaC08R6AEEIIIYRoGNOnT690TFEUNm/eHIfRCCEuBhIIhRBCCCGaiJUrV7Jq1apKxz/99NM4jEYIcTGQQCiEEEII0UTce++9dOnShczMzLDjd999d5xGJIRIdCpFUZR4D0IIIYQQQgghROxJUxkhhBBCCCGEaKYkEAohhBBCCCFEMyVrCC9yPp+PEydOYLFYUKlU8R6OEEIIIYQQF0xRFIqLi2nVqhVqtdSwGpMEwovciRMnyMnJifcwhBBCCCGEaHDHjh2jdevW8R5GkyaB8CJnsViAij8Wq9Ua59EIIYQQIp6GDRvGmjVr0Ov1/PGPf8TtdvP8888zevRo/vWvf8V7eELUWlFRETk5OcFrXdGIFHFRczgcCqA4HI7gsfnz5ys2m02xWq1KTk6OcvDgQUVRFOXGG29UbDabYjablV/+8peVHqtDhw6K2WxWkpKSlOuvv15RFEWx2WxKXl5e2HllZWVKhw4dFKvVqlx11VWVHue+++5TdDqdYrPZlLZt21a6/S9/+YuSnJysWK1WxWKxKA6Ho16POX/+fEWj0Sj33HNPcKxWq1Uxm83KuHHjavHdaziXXnqpolarFUU5/33ctm2b8sUXXyiXXHJJnR4r8DqsVqvStm1bxe12V3nu5ZdfHnzOt99+u/4vIIpnnnlGGThwYJW39+7dWwEq/X4IIYSIn+uuuy7s6yVLliijRo1SevXqFacRCVE/0a5xReOQCblNzE8//cTMmTPZtWsXDoeDm2++mRtuuAGAt99+G7vdTmFhIf/3f/+Hy+WqdP8VK1Zgt9vZtm0b27Zti/ocTz31FFlZWTgcDsrLy3nllVcqnTNmzBjsdjuHDx+udNvs2bP597//jcPh4Ntvv8VsNtf7MXv06MHSpUuDX+/fv59jx46xevVqSktLa/huNZyffvoJo9EY/HrFihX06tWr3o+3f/9+HA4Her2e1157rcrz9u7dW+/nuFBbt27FZrPF7fmFEEJU1qNHj7D/T06cOJEpU6ZQXFwcv0EJIRKaBMIm5vnnn2f48OG0b98egP/+7//m+PHjuFwuzGYzAHa7HZvNhl6vj/oYWq2WFi1a8O9//xuAW265hZSUFK688koAPv30U+64447gbe+//36lx3jvvfew2Wzk5uZWuk2j0fDf//3fFBUV0aZNG7Ra7QU/Zqi0tDRMJhMHDx4MHluwYAHp6elkZ2djMpmYOnUqWVlZJCUl8d1334Xdf+/evbRs2ZKUlJTg9zH0cTIyMsjKysJkMvG///u/1Y4lmmXLlpGamorNZmPUqFHVnlteXk6LFi3weDykp6eTkpJCeno6x48fByApKanK+3bs2JHLL7+clJQUunbtyg033EBKSgpXXXUVAF9//XVwHF27dgXgyJEjpKenk5GRwbJly4KPdf/992Oz2bBYLLzwwgt1fs1CCCFiY9GiRbRr1y7s2ODBg9m3b198BiSESHgSCJuYY8eO0aFDh7BjRqORH374AYBevXqRnZ1Nt27dqnyMgoICTp48yYABAwC47bbbsNvtFBUVsWLFCoqLi8nMzASgRYsWFBQUhN1/1qxZnDt3jr179/I///M/7N69O+z2t99+mzVr1pCenk737t3xeDwX/Jih9u/fT3l5OZdffnml2/Ly8rjjjjv4+9//Tn5+PjfeeCNz584NO2fcuHFMnDgRu93OgQMHKj2Gz+cjPz+fp556ijlz5lQ5jqo8+uij7Ny5E4fDwc6dO/n2228rndO5c2dMJhNFRUX88pe/RKvVcuDAAex2O4MGDeL3v/99rZ7rhhtuwG63c/z4cfr164fdbufHH3/Ebrdz//33M3XqVBwOB263m4ULF/Lwww8zYsQIzpw5Q4sWLYCK7+c///lPCgsLOXToEM8++2ydX7MQQgghhEhM0lSmiWnbtm1YZQwqqkyXXXYZANu3b8dut3PJJZewc+dOrrnmmrBzx48fj1ar5Y477qBLly4A3H777QBcc801bNu2DavVyqlTpwA4efIkaWlplcYA0KpVK7p27cr69evp0aNH8PYbbriBgwcP4vF46NKlC88//3y9HlOj0VR6/Z07d0alUvH444+j1Yb/egeqfR07duTQoUPBY99//33YeceOHePee+8FqPQYAJdeeikAV155Ja+//nql22tit9u5+uqrAXA6nezcubNSQN+/fz9ZWVn06tWLRx55hP/6r/+ib9++FBQU4HK56NevX62ea8iQIQDYbDZuuukmAJKTkzl+/HgwHEPFGwW7du3i4MGDwbA5cOBANm/ezObNm7Hb7cGfSXl5eZ1fsxBCCBFrPp8v6vIYkRh0Ol3UazkRexIIm5hp06bRo0cPjhw5Qtu2bXn44YfJyclBr9dTVFSE1WrFarWi1WpJTU2tdP8VK1Zw6623hh175513mD59Ort37+a2227DaDTyj3/8g8mTJ/PBBx8wZcqUsPOPHz9O69atcblc7N+/n759+4bdvm7dOoYNG4ZWqyUlJQWv18ugQYPq/Jjbt2+vNP5AkKpJ6J6NiqKE3damTRveeOMN5syZg8fjiRoKq7pvbaSmprJr1y7atGmDy+Wq9vFTUlI4deoUf/7zn2nRogWHDh3iV7/6FWfPnq3Vc4Xu2xP6uc/no1WrVvzjH/9g5syZbN++ncmTJ3PmzBnWrVvH+PHj+eKLL9BoNAwYMIC0tDTy8/NRq9UxXZsphBCiYRQXFzerbo0ul4tDhw7h8/niPRRRjZSUFLKysmQv7TiTQNjEdOjQgWeeeYarrroKRVGw2Wxs3LgRgGuvvZZjx47h8/m45ZZbKq2Pq8qbb77Js88+S9u2bRk/fjzl5eV07doVm81Gu3bt+O1vfwtAly5d2Lt3LxMmTAg2pBk2bBjXXXdd2OP97ne/4+jRo8G1io8//jg+n6/OjxktEDaEFStWMHDgQF5++WXS09P56aefLujxTpw4Eayu9e/fn4ULF9KjRw8URUGj0fDDDz9UqogGKp0ajYatW7dSWFjIX//6VzIzM0lJSaFVq1YXNCaA1157jZtuuok///nPtG7dmsmTJzN69GiuueYaMjIySE1N5ZJLLqFz587cdtttpKamolaradOmDd98880FP78QQoiGt2zZMv785z+j0+kYO3Ysjz/+OFDRmG3Dhg1xHl1sKIpCXl4eGo2GnJwc2dQ8ASmKQmlpaXB2WHZ2dpxH1LyplPqUOETCKCoqwmaz4XA4mt0+hH/729+YPHkyd9xxR1in0Xjo0KEDJ0+epKSkhF69evHDDz+wYcOGC+o0muj69OnDN998w88//0xGRka8hyOEEIKKNx4///xzdDodL774Ip9//jnLli1j5MiRfPrpp/EeXky43W5+/PFHWrVqJd2wE9zZs2c5deoUl112WaXpo835GjfWpEIoLlr3338/999/f7yHARBWRWysymWi2bp1a7yHIIQQIoJarUan0wGQm5vLFVdcwYgRIyo1a2vKvF4vQJXd1EXiCHTAd7vdsp4wjqSGLoQQQgjRRIwcOTJsH8KhQ4fy8ssvc8kll8RvUHEi69ISn/yMEoNUCIUQQgghmoho2xJ17dqVtWvXxmE0QoiLgVQIhRBCCCGask8/hb/9Ld6jEBfos88+Q6VSYbfb4z0U0cRIhVAIIYQQoim74YaK/ybIunshRGKRCqEQQgghhBBCNFMSCIUQQgghhEgATqeT3NxcMjMzMRqNXHfddcF9mAM2bdrEVVddhdFopG/fvuzZsyd425EjR7jllltITU0lKSmJrl278uGHH8b6ZYiLjARCIYQQQgghEsD06dP53//9X9544w127txJx44dufHGG8O2DZk2bRp/+ctf2LZtG5mZmYwePRq32w3Aww8/jNPp5PPPP2fPnj08//zzJCcnx+vliIuErCEUQgghhBBNWmlpKfv27Yv5815++eXBvfZqcu7cORYvXszSpUsZMWIEAK+99hrr1q3j9ddfp3fv3gA89dRTDBs2DIA33niD1q1b88477zB27FiOHj3Kr371K7p37w7ApZde2givSjQ1EgiFEEIIIUSTtm/fPnr27Bnz592xYwfXXHNNrc796aefcLvdXHvttcFjOp2OPn36sHfv3mAg7N+/f/D2tLQ0OnfuzN69ewHIzc3loYce4uOPP2bo0KH86le/4sorr2zAVySaIgmEQgghhBCiSbv88svZsWNHXJ63thRFASpv1q4oSo0buAduv//++7nxxhv54IMP+Pjjj5k7dy4vvPACkydPruPIRXMigVAIIYQQoqnyry0DQFGghmDRVJnN5lpX6uKlY8eO6PV6vvzyS+666y4A3G4327dv59FHHw2et2XLFtq0aQNAYWEhP/zwQ1jwzMnJ4cEHH+TBBx/kiSee4LXXXpNAKKolgVAIIYQQoqkqKjr/udsNen38xiKqlZSUxEMPPcS0adNIS0ujTZs2/OlPf6K0tJT77ruPb775BoD/+q//Ij09nZYtW/KHP/yBjIwMfvnLXwLw6KOPMmLECC677DIKCwvZsGEDXbp0ieOrEhcDCYRCCCGEEE2Vw3H+c5dLAmGCe+655/D5fEyYMIHi4mJ69erFRx99RGpqatg5v/vd7zhw4ABXXXUV7733Hnr/z9Xr9fLwww9z/PhxrFYrN910E/Pnz4/XyxEXCZUSmLAsLkpFRUXYbDYcDgdWqzXewxFCCCFEIvn2W/B3nOTMGUhPj+94YqC8vJxDhw7Rvn17jEZjvIcjqlHdz0qucWNH9iEUQgghhGiqPJ7zn7tc8RuHECJhSSAUQgghhGiqJBAKIWoggVAIIYQQoqkKDYROZ/zGIYRIWBIIhRBCCCGaKqkQCiFqIIFQCCGEEKKpkgqhEKIGEgiFEEIIIZoqr/f851IhFEJEIYFQCCGEEKKpkgqhEKIGEgiFEEIIIZoqWUMohKiBBEIhhBBCiKZKKoTNxuzZs+nRo0e8hyEuQhIIhRBCCCGaqlpUCDdu3MjQoUOZMmUKH3/8MVdffTWDBg3iq6++itEghRDxJIEwwty5c+nduzcWi4XMzEx++ctfsn///rBzJk6ciEqlCvvo169f2DlOp5PJkyeTkZFBUlISo0eP5vjx42HnFBYWMmHCBGw2GzabjQkTJmC32xv7JQohhBCiuahFhXDGjBksWbKE3/zmN9xzzz28//77vP322zzxxBMxGqQQIp4kEEbYuHEjDz/8MFu2bGHdunV4PB6GDx/OuXPnws676aabyMvLC358+OGHYbc/+uijvPPOO6xevZovv/ySkpISRo0ahTek29ddd93F7t27Wbt2LWvXrmX37t1MmDAhJq9TCCGEEM1ALSqERqORnJwcunfvTpcuXWjdujVpaWloNJoYDVIE+Hw+nn/+eTp27IjBYKBNmzY8++yzQEVwv+yyyzCbzVx66aXMmjULt9td7eP9z//8D127dsVgMJCdnc0jjzwSi5chLjLaeA8g0axduzbs6yVLlpCZmcmOHTu4/vrrg8cNBgNZWVlRH8PhcPD666+zfPlyhg4dCsCKFSvIycnhk08+4cYbb2Tv3r2sXbuWLVu20LdvXwBee+01+vfvz/79++ncuXMjvUIhhBBCNBu1CIRZWVl4vV40Gg0bNmzw382Dz+eLxQhFiCeeeILXXnuN+fPnc91115GXl8e+ffsAsFgsLF26lFatWrFnzx4eeOABLBYL06dPj/pYixcvZsqUKTz33HOMGDECh8PBpk2bYvlyxEVCAmENHA4HAGlpaWHHP/vsMzIzM0lJSWHgwIE8++yzZGZmArBjxw7cbjfDhw8Pnt+qVSu6devG5s2bufHGG/nqq6+w2WzBMAjQr18/bDYbmzdvrjIQOp1OnCFTPoqKihrstQohhBCiiQkEQrU6fE/CEKtXr650TKvVsm7dusYcmYhQXFzMwoULeemll7jnnnsA6NChA9dddx0AM2fODJ7brl07pk6dyj/+8Y8qA+Ef//hHpk6dyu9+97vgsd69ezfiKxAXKwmE1VAUhSlTpnDdddfRrVu34PERI0bw61//mrZt23Lo0CFmzZrFDTfcwI4dOzAYDOTn56PX60lNTQ17vJYtW5Kfnw9Afn5+MECGyszMDJ4Tzdy5c3n66acb6BUKIYQQoknzeCrCoF4fXi2sBa22CV0mlpaCv9IWU5dfDmZzrU7du3cvTqeTIUOGRL39rbfeYsGCBfz444+UlJTg8XiwWq1Rzz116hQnTpyo8rGECNWE/tIb3iOPPMK///1vvvzyy7Djd9xxR/Dzbt260atXL9q2bcsHH3zAbbfdVuXjKYqCSqUKfh36eVXnRHriiSeYMmVK8OuioiJycnJq9XqEEEII0cx4PKDRgFZb50DYpOzbBz17xv55d+yAa66p1akmk6nK27Zs2cKdd97J008/zY033ojNZmP16tW88MILdX4sISJJIKzC5MmTee+99/j8889p3bp1tedmZ2fTtm1bDhw4AFTMxXe5XBQWFoZVCU+dOsWAAQOC55w8ebLSY50+fZqWLVtW+VwGgwGDwVCflySEEEKI5sbrrQiDzT0QXn55RTiLx/PWUqdOnTCZTKxfv577778/7LZNmzbRtm1b/vCHPwSPHTlypMrHslgstGvXjvXr1zN48OC6j1s0KxIIIyiKwuTJk3nnnXf47LPPaN++fY33OXv2LMeOHSM7OxuAnj17otPpWLduHWPHjgUgLy+Pb7/9lj/96U8A9O/fH4fDwdatW+nTpw8AX3/9NQ6HIxgahRBCCHFx2rVrF7NmzUKn0zFt2rTg/9vvu+8+Xn/99dgNxOPBDbhcLpKqCITr1q1j5syZaDQacnNzufPOOwEYOXIkH3zwQezG2pjM5lpX6uLFaDQyY8YMpk+fjl6v59prr+X06dN89913dOzYkaNHj7J69Wp69+7NBx98wDvvvFPt482ePZsHH3yQzMxMRowYQXFxMZs2bWLy5MkxekXiYiGBMMLDDz/MqlWrePfdd7FYLMH1fDabDZPJRElJCbNnz+ZXv/oV2dnZHD58mN///vdkZGRw6623Bs+97777mDp1Kunp6aSlpfHYY4/RvXv3YNfRLl26cNNNN/HAAw/wyiuvAPDb3/6WUaNGSYdRIYQQ4iKXm5vLkiVL0Gq1TJs2jS1btjBlyhQOHjwY24F4PBSXleEEdGVl6KOc8tRTT/HRRx+h1+uZOXMmmzZtYuHChZSWlsZ2rIJZs2ah1Wp58sknOXHiBNnZ2Tz44IPcd999/Od//iePPPIITqeTkSNHMmvWLGbPnl3lY91zzz2Ul5czf/58HnvsMTIyMrj99ttj92LERUOlKIoS70EkkqrW7y1ZsoSJEydSVlbGL3/5S3bt2oXdbic7O5vBgwfzzDPPhK3lKy8vZ9q0aaxatYqysjKGDBnCyy+/HHZOQUEBubm5vPfeewCMHj2al156iZSUlFqPt6ioCJvNhsPhqHJhsRBCCCFi6/rrr+fzzz8Pfj179mx+/vln9u3bxxdffBG7gcyZw+mZM3EqCmX/7//RadWqSqf84he/CBvT0qVL+d///V/y8/PZtm1b7MbaQMrLyzl06BDt27fHaDTGeziiGtX9rOQaN3akQhihpnxsMpn46KOPanwco9HIokWLWLRoUZXnpKWlsWLFijqPUQghhBCJLTMzk8OHD9OuXTugIhCuWLGC5cuXx3YgHg9elQqPolBUWBj1lB49eoSNdeLEibRt25aHHnoohgMVQsSLOt4DEEIIIYRoat56661gwAoYP3485eXlMR2H1+nE5fPh8X8ezaJFiyqNdfDgwcEN0YUQTZsEQiGEEEKIJqrEbscDFYHQ5Yr3cIQQCUgCoRBCCCFEE1V+7lwwEPokEAohopBAKIQQQgjRRHnLy4OBUKljIAx0WhdCNG0SCIUQQgghYmT48OExfT6P04kHQKPB53bX6b533313o4xJCJFYpMuoEEIIIUQDGzt2bKVjiqKwZ8+emI7D6w+Eap2uygphnz59Kh1TFIUDBw408uiEEIlAAqEQQgghRAPbtm0bGzZsQK0+PxlLURQmTJgQ03F4XS68gEanQ6miQlhcXMyePXvQasMvC4cNGxaDEQoh4k0CoRBCCCFEA5s2bRoWi4WMjIyw44888khMx+HzVwiNOh2KxxP1nDlz5lBcXExqamrY8ZkzZ8ZghEKIeJM1hEIIIYQQDWzSpEmVwiDAHXfcEdNx+FwufCoV6HRQRYXw1ltvrRQGAQYOHNjYwxMNaPbs2fTo0aNRn2Pp0qWkpKQ06nOI2JNAKIQQQgjRRPlcLnwaDWg0KF5vvIcjhEhAEgiFEEIIIZoon9uNotGg0mqhiimjQojmTQKhEEIIIUSMFBcXx/T5FJcLNBrQ6VBJIEx4Pp+P559/no4dO2IwGGjTpg3PPvssADNmzOCyyy7DbDZz6aWXMmvWLNw1bCXyP//zP3Tt2hWDwUB2dnaNa1gLCwu5++67SU1NxWw2M2LEiKjdZv/5z39y2WWXYTQaGTZsGMeOHQve9s033zB48GAsFgtWq5WePXuyffv2enw3RKxIIBRCCCGEaGDLli2je/fuXHPNNTz33HPB42PGjInpOBS3G0WrRaXToarjlNETJ0400qhEVZ544gmef/55Zs2axffff8+qVato2bIlABaLhaVLl/L999+zcOFCXnvtNebPn1/lYy1evJiHH36Y3/72t+zZs4f33nuPjh07Vvv8EydOZPv27bz33nt89dVXKIrCzTffHBY8S0tLefbZZ3njjTfYtGkTRUVF3HnnncHbx40bR+vWrdm2bRs7duzg8ccfR6fTXeB3RjQm6TIqhBBCCNHAFi9ezM6dO9HpdLz44ovcfvvtLFu2DEVRYjoOxeOBWgTCDz/8MPx+isLs2bN5+umnufnmmxt7mIKK6vHChQt56aWXuOeeewDo0KED1113HRDe9bVdu3ZMnTqVf/zjH0yfPj3q4/3xj39k6tSp/O53vwse6927d5XPf+DAAd577z02bdrEgAEDAFi5ciU5OTn885//5Ne//jUAbrebl156ib59+wLwxhtv0KVLF7Zu3UqfPn04evQo06ZN4/LLLwegU6dO9f2WiBiRQCiEEEII0cDUanWwKpKbm8sVV1zBiBEjKCgoiO1AahkIJ06cSK9evejXr18wtNrtdrZv3y6BMEb27t2L0+lkyJAhUW9/6623WLBgAT/++CMlJSV4PB6sVmvUc0+dOsWJEyeqfKwHH3yQFStWBL8uKSlh7969aLXaYNADSE9Pp3Pnzuzduzd4TKvV0qtXr+DXl19+OSkpKezdu5c+ffowZcoU7r//fpYvX87QoUP59a9/TYcOHer0vRCxJYFQCCGEEKKBjRw5ksOHD9OuXTsAhg4dSnZ2NlOnTo3pOBSPB5Vej1qnQ+3zVXneoUOHePHFF9mzZw+TJ0+mf//+fP311zz55JMxHG3jeuhfD/Fz8c8xe75LLJeweNTiWp9vMpmqvG3Lli3ceeedPP3009x4443YbDZWr17NCy+8UOfHAviv//ovHnvssbBjVVWvFUVBpVKFHYv8OvTY7Nmzueuuu/jggw/4v//7P5566ilWr17NrbfeWu2YRPxIIBRCCCGEaGC///3vKx3r2rUra9eujek4VB4PJCWh0unQAF6vF41GU+m8pKQknnjiieC0xfnz52O322M61sZWl3AWD506dcJkMrF+/Xruv//+sNs2bdpE27Zt+cMf/hA8duTIkSofy2Kx0K5dO9avX8/gwYMr3Z6ZmUlmZmbYsSuuuAKPx8PXX38dnDJ69uxZfvjhB7p06RI8z+PxsH37dvr06QPA/v37sdvtwSmiAJdddhmXXXYZ//mf/8n/+3//jyVLlkggTGASCIUQQgghGtunn8Lf/gYrV8b0aVVeLyr/lFEt4HK5qq0eWSwWZs6cSVFREfv27YvdQAVGo5EZM2Ywffp09Ho91157LadPn+a7776jY8eOHD16lNWrV9O7d28++OAD3nnnnWofb/bs2Tz44INkZmYyYsQIiouL2bRpE5MnT456fqdOnRgzZgwPPPAAr7zyChaLhccff5xLLrkkrBmSTqdj8uTJvPjii+h0Oh555BH69etHnz59KCsrY9q0adx+++20b9+e48ePs23bNn71q1816PdKNCzpMiqEEEII0djGj4dVq2L+tCqfr2INoV6PFnA6nbW6n9VqDVaAROzMmjWLqVOn8uSTT9KlSxfuuOMOTp06xZgxY/jP//xPHnnkEXr06MHmzZuZNWtWtY91zz33sGDBAl5++WW6du3KqFGjom4hEWrJkiX07NmTUaNG0b9/fxRF4cMPPwzrEmo2m5kxYwZ33XUX/fv3x2QysXr1agA0Gg1nz57l7rvv5rLLLmPs2LGMGDGCp59++sK/OaLRqJRYt7sSDaqoqAibzYbD4ahyYbEQQggh4qxtWzh6FMrLwWCI2dN+ZzZTeOmltLr0Us69/z6Z+fnBbQyaqvLycg4dOkT79u0xGo3xHo6oRnU/K7nGjR2pEAohhBBCNDatf5VOUVFMn1bjrxCq/WsIa1shFEI0HxIIhRBCCCEaW6CRS4wDodrnQ6XTofZPGXW5XHW6//DhwxtnYEKIhCFNZYQQQgghGlugQuhwxPRp1YpSUSH0B8KyKiqEY8eOrXRMURT27NnTyCMUQsSbBEIhhBBCiMYWaMoR6ymjioJKr0dTQ1OZbdu2sWHDBtTq85PHFEVhwoQJMRqpECJeJBAKIYQQQjS2OK4hVOl0aAwGFKoOhNOmTcNisZCRkRF2/JFHHonBKIUQ8SSBUAghhBCiscUrEALqWqwhnDRpUtTjd9xxR+MNrpFJI/3EJz+jxCBNZYQQQgghGpvXW/HfOKwhVOl0aIzGOu1DeDHT+Bv41LWBjoi90tJSgLB9DkXsSYVQCCGEEKKx+S98Y1kh9Hq9aKGiOljDlNGmRKvVYjabOX36NDqdLmxdpEgMiqJQWlrKqVOnSElJCYZ4ER8SCIUQQgghGlsgEBYXx+wp3W53MBBq/Jt+VxcInU4n3333HQUFBaSlpdGtWzf0en2MRttwVCoV2dnZHDp0iCNHjsR7OKIaKSkpZGVlxXsYzZ4EQiGEEEKIxhYIhG53zJ7S5XKFVQgDx6JZvnw5ixcvpnfv3litVux2Ozt37uShhx5i/PjxMRtzQ9Hr9XTq1EmmjSYwnU4nlcEEIYFQCCGEEKKxBQJhDAOK0+kkGX8gNBqrnTL6yiuv8OWXX4ZNr/R4PAwaNOiiDIQAarUao78yKoSomkyqjjB37lx69+6NxWIhMzOTX/7yl+zfvz/sHEVRmD17Nq1atcJkMjFo0CC+++67sHOcTieTJ08mIyODpKQkRo8ezfHjx8POKSwsZMKECdhsNmw2GxMmTMButzf2SxRCCCFELClKXCuEGr2+Ytoo4Cwri3quyWRi48aNwa8VRWHjxo0SqIRoBiQQRti4cSMPP/wwW7ZsYd26dXg8HoYPH865c+eC5/zpT39i3rx5vPTSS2zbto2srCyGDRtGcci6gEcffZR33nmH1atX8+WXX1JSUsKoUaPwBrqMAXfddRe7d+9m7dq1rF27lt27d8sGsEIIIURT43RWhEKIaYXQ5XSiAzQGQ3DbC3d5edRzly9fzrvvvsu1115Lv379uP766/nXv/7FihUrYjZeIUR8yJTRCGvXrg37esmSJWRmZrJjxw6uv/56FEVhwYIF/OEPf+C2224D4I033qBly5asWrWK//iP/8DhcPD666+zfPlyhg4dCsCKFSvIycnhk08+4cYbb2Tv3r2sXbuWLVu20LdvXwBee+01+vfvz/79++ncuXNsX7gQQgghGkdoCIxlIPSHP7VeHwyEnioCYVZWFgsWLAh+/eyzz2I2m6XhhxDNgFQIa+Dw7xeUlpYGwKFDh8jPz2f48OHBcwwGAwMHDmTz5s0A7NixA7fbHXZOq1at6NatW/Ccr776CpvNFgyDAP369cNmswXPEUIIIUQTEBoCYzll1D9NVWMwgL95h7uKKaORZs6cyZQpU/jhhx8abXxCiMQggbAaiqIwZcoUrrvuOrp16wZAfn4+AC1btgw7t2XLlsHb8vPz0ev1pKamVntOZmZmpefMzMwMnhON0+mkqKgo7EMIIYQQCSw0BMawQhgIf2FTRmsRCJXA9Fbg5MmTjTM4IUTCkEBYjUceeYR///vf/P3vf690m0qlCvtaUZRKxyJFnhPt/JoeZ+7cucEmNDabjZycnJpehhBCCCHiKRAIjcaYVggD6wW1RmONU0ZDnTlzJvh5aaAZjhCiyZJAWIXJkyfz3nvv8emnn9K6devg8cBc+sgq3qlTp4JVw6ysLFwuF4WFhdWeE+1dt9OnT1eqPoZ64okncDgcwY9jx47V7wUKIYQQIjYCVcGkpLhUCOsaCEM3c5dAKETTJ4EwgqIoPPLII7z99tts2LCB9u3bh93evn17srKyWLduXfCYy+Vi48aNDBgwAICePXui0+nCzsnLy+Pbb78NntO/f38cDgdbt24NnvP111/jcDiC50RjMBiwWq1hH0IIIYRIYIGqYFJSbCuEUaaM+moRSI8ePRr8XAKhEE2fdBmN8PDDD7Nq1SreffddLBZLsBJos9kwmUyoVCoeffRR5syZQ6dOnejUqRNz5szBbDZz1113Bc+97777mDp1Kunp6aSlpfHYY4/RvXv3YNfRLl26cNNNN/HAAw/wyiuvAPDb3/6WUaNGSYdRIYQQoikJDYRxrhB6q9iYPtTp06dRqVQoiiKBUIhmQAJhhMWLFwMwaNCgsONLlixh4sSJAEyfPp2ysjImTZpEYWEhffv25eOPP8ZisQTPnz9/PlqtlrFjx1JWVsaQIUNYunQpGn+XL4CVK1eSm5sb7EY6evRoXnrppcZ9gUIIIYSIrThNGQ1MD9WZTFVWCHft2sWsWbPQ6XRMmzaNAQMGUFhYiE6nQ6vVSiAUohmQQBghtLNWVVQqFbNnz2b27NlVnmM0Glm0aBGLFi2q8py0tDTZ8FUIIYRo6kIrhDHsDu6J0lTGGxEIc3NzWbJkCVqtlmnTprFlyxYKCgrQaDSYzWYJhEI0A7KGUAghhBCiMQUCodkc0wphYHqoNqRCGDllVKVS0bFjR9q1a8eaNWsoKirivffeQ6PRkJSUJIFQiGZAAqEQQgghRGMKnTIaj6Yyen2VU0YzMzM5fPhw8OvZs2djsVgoLS2VCqEQzYRMGRVCCCGEaEz+EHhOpSIpDhVClVZbZSB86623Kt3PYrEwduxYDhw4IIFQiGZAKoRCCCGEEI3JH8KWrlmDEodASDWBMJqCggK6KgqXqtUSCIVoBqRCKIQQQgjRmAIVQkBxOlHF6GnDAmGgy7nHU+P9CgsLmfmPfwBwe5s2jTU8IUSCkAqhEEIIIUQjClQFzwG+WuwD2FA89awQmgsKgp+nnjrVKGMTQiQOCYRCCCGEEI3IWVwMVATCWDaViTZlVIl4/jfffJOrr76a8ePH88Ybb9C5c2dOlZTwnv92Uwy3yRBCxIdMGRVCCCGEaESuc+cwAqWAKoaBMFgNrCYQvvDCC2zatIni4mJ69OjBnj17WNSiBX8GRgNqWUMoRJMnFUIhhBBCiEbkLi3FDTgBjc8HihKT561NIDSZTJjNZlq2bMmQIUPQ6XR0AzAaAdD4t64QQjRdEgiFEEIIIRpRIBAGo1iMqoRRu4xGNJXp0aMHXq8XgBUrVlBaWkoHwGKzAaApL4/JWIUQ8SOBUAghhBCiEXlKS3EBRoul4kCMtp6IViFURQTCBQsWoAl0IAXOnTtHJ+DF227DrdWii2ETHCFEfEggFEIIIYRoRJ6yMtxAUkpKxYEYVQiD00OrmTIaqbS4GAugTkvDo9dLIBSiGZBAKIQQQgjRiLxlZbiA5LS0igOxrhBqNMFAWNM+hM7TpwHQpqXhMRrRu90oMVrzKISID+kyKoQQQgjRiDzl5bgBS3p6xYFYVQgDgVCnqzYQOp1OvvvuOwoKCji2fTtXAbqMDDwmE+aCAtxuN3q9PiZjFkLEngRCIYQQQohG5PMHQmtGRsWBGFUIw6aMBtYJer0oioJKpQJg+fLlLF68mN69e2O1Wvnu88/5GzD+3/9mrNlMMlBaWiqBUIgmTAKhEEIIIUQj8paX4wNsMQ6EwUqkTgcqFT61Gq3Ph8fjQafTAfDKK6/w5ZdfolZXrCJaP3s2Az//nF988gm/DgmEKYH1j0KIJkfWEAohhBBCNCKf04lHpcLs38rBF6NGLYrbjVelAn81UNFo0AKukEBqMpnYuHFj8GtvYSEbAXNyMiQlkURFIBRCNF0SCIUQQgghGpFSXo5XrcbkD4Sldntsntjjwac+f6mnqNVoAXfIGsbly5fz7rvvcu2119KvXz+mrF7Nv4CVy5aBxRKsEAohmi4JhEIIIYQQdbBx40aGDh3KlClT+Pjjj7n66qsZNGgQX331VdTzfS5XRSC0WgEodThiM1C3G29oIIxSIczKymLBggVs2rSJLVu2MP/aa/kzkNW+PWqLRSqEQjQDsoZQCCGEEKIOZsyYwZo1a7Db7QwfPpxt27ZhNpu57bbb+OyzzyrfweXCp9GgT06u+LKkJCbjVEVWCKMEwkr3KSqiWKUiVaVCYzZjAM5KIBSiSZNAKIQQQghRB0ajkZycHHJycujSpQutW7cGQBPo5BnJ5cKn1WIKBMJz52IzUI8HX+iYtFo0VB8I1aWlnNNoSAW0/kAoFUIhmjaZMiqEEEIIUQdZWVl4vV4ANmzYAIDH48Hn80W/g9uNT6NBl5RUcW6MAla9KoTl5bj899EmJUkgFKIZkAqhEEIIIUQdrF69utIxrVbLunXrot/B7UbRajH61xC6Y1ghVPzbSwCg1dYcCJ1O3P6qogRCIZoHqRAKIYQQQjQArTb6++wqfzDT+yuE7hgFLLXXixIxZTSyy2gklduNx38fjcmEHnDGaJsMIUR8SCAUQgghLtC4cePiPQSRwFRuN+h0wQphrKaMqr1efKEhtRYVQo3LhSdwH4MBA1BeXt6o4xRCxJdMGRVCCCFqafr06ZWOKYrC5s2b4zAacbFQeb2g0wW3nfCUlcXueSMqhDpqaCrjdlcKhFIhFKJpk0AohBBC1NLKlStZtWpVpeOffvppHEYj4mXdunXMnDkTjUZDbm4ud955JwAjR47kgw8+qHS+xuMBvR6jv8uoNwaB0OfzoVEUlJAKoUqvrzEQatzu81VFg6FiymiMAqwQIj4kEAohhBC1dO+999KlSxcyMzPDjt99991xGpGIh6eeeoqPPvoIvV7PzJkz2bRpEwsXLqyy+Yra5wO9Hq1OhwvwxmAKpsvlqrjIC50yqtPVHAg9HjxGY8UXBgMQuymuQoj4kDWEQgghRC0988wzlcIgQG5ubhxGI+JFo9GQkpKC2Wxm3rx59OzZkzFjxlBSxYbzaq8XtV4PENNAqIOwLqMqg6HGQKj1ePAF7uMfs1cCoRBNmgRCIYQQQog66NGjB4cPHw5+PXHiRKZMmUJxcXHU87U+Hyp/tc2tUqHEskIYGgj1evRU32VU4/Xi8wfBQIVQAqEQTZtMGRVCCCGEqINFixZVOjZ48GD27dsX9Xytz4faPw3To1Lhi0GTFqfTiQ7Cpoyqa7GGUOf1oviDYDAQyhpCIZo0qRAKIYQQQjQiraKgCazHU6vxxbBCqIqoENYUCPU+X6VA6JNAKESTJoEwis8//5xbbrmFVq1aoVKp+Oc//xl2+8SJE1GpVGEf/fr1CzvH6XQyefJkMjIySEpKYvTo0Rw/fjzsnMLCQiZMmIDNZsNmszFhwgTsdnsjvzohhBD1tW7dOvr27cuAAQNYvXp18PjIkSPjOCqRyNxuNzpA468QetVqqCaQNZTAGkJVxBpCg0pVfYXQ5wsGQQmEQjQPEgijOHfuHFdddRUvvfRSlefcdNNN5OXlBT8+/PDDsNsfffRR3nnnHVavXs2XX35JSUkJo0aNwuv1Bs+566672L17N2vXrmXt2rXs3r2bCRMmNNrrEkIIcWEC3SU/+eQTtm7dyuTJk/H5fFV2l2yOdu3axahRo7j11lvD9me877774jiqhud0Otm5cyeffPIJO3furDJklZWVoQPUJhNQEQiVGAVCLQQbwwCg06GvIRDqowVC2ZheiCZN1hBGMWLECEaMGFHtOQaDgaysrKi3ORwOXn/9dZYvX87QoUMBWLFiBTk5OXzyySfceOON7N27l7Vr17Jlyxb69u0LwGuvvUb//v3Zv38/nTt3btgXJYQQF4Fdu3Yxa9YsdDod06ZNY8CAAUBFmHj99dfjPLrz3SUB5s2bx9KlS6vtLtkc5ebmsmTJErRaLdOmTWPLli1MmTKFgwcPxntoDWb58uUsXryY3r17Y7Vasdvt7Ny5k4ceeojx48eHnVtWVkYyoA1UCDWamAVCHaAOqRCi09VYIdQrCip/eA2GSQmEQjRpEgjr6bPPPiMzM5OUlBQGDhzIs88+G2xFvmPHDtxuN8OHDw+e36pVK7p168bmzZu58cYb+eqrr7DZbMEwCNCvXz9sNhubN2+uMhA6nU6cIYvRi4qKGukVCiFE7CV6mAh0l2zXrh1QsYSgbdu2PPTQQ/EdWAJRqVR07NgRgDVr1jB79mweeOABPB5PnEfWcF555RW+/PJL1OrzE608Hg+DBg2qFAhLS0tJBbSBCqFGA9V0+WwoTqezYg1haIVQr68xEBoBVcQ+hMSgCY4QIn5kymg9jBgxgpUrV7JhwwZeeOEFtm3bxg033BAMavn5+ej1elJTU8Pu17JlS/Lz84PnRNvLKjMzM3hONHPnzg2uObTZbOTk5DTgKxNCiPgKhIl27dqxZs0aioqKEipMLFq0KBgGA6rrLtkcZWZmhm3JMHv2bAYOHMi2bdviN6gGZjKZ2LhxY/BrRVHYuHEjxkCQClFWWooe0CYlAeDTaFDFcg1hlCmjVW074XG7McD5CqE/EMZimwwhRPxIIKyHO+64g5EjR9KtWzduueUW/u///o8ffviBDz74oNr7KYqCSqUKfh36eVXnRHriiSdwOBzBj2PHjtX/hQghRIJpDmGiqXvrrbcqhebx48dT3oRCxfLly3n33Xe59tpr6devH9dffz3/+te/WLFiRaVzy/x7E+r8IUvRaiEGb3AEp4wGqnwAOh26aiqE5cXFqAGN2VxxIHDfGARYIUT8yJTRBpCdnU3btm05cOAAAFlZWbhcLgoLC8OqhKdOnQquh8nKyuLkyZOVHuv06dO0bNmyyucyGAwYQv9xF0KIJuStt96qdGz8+PGVpuEJEU9ZWVksWLCgVueWBwJhoEKo06GO4bYT6ogpo3qq3nbCWVREMqCOCISxqGgKIeJHKoQN4OzZsxw7dozs7GwAevbsiU6nY926dcFz8vLy+Pbbb4OBsH///jgcDrZu3Ro85+uvv8bhcATPEUIIcXGobqq/aAaOHoWkJDhypNJNgUCo9wdCRatFHYMKYWBj+sgKYXWB0OXvSxAZCKVCKETTJoEwipKSEnbv3s3u3bsBOHToELt37+bo0aOUlJTw2GOP8dVXX3H48GE+++wzbrnlFjIyMrj11lsBsNls3HfffUydOpX169eza9cuxo8fT/fu3YNdR7t06cJNN93EAw88wJYtW9iyZQsPPPAAo0aNkg6jQghxkbn77rvjPQQRTx9+CKWlsH59pZucEYEQnQ5VyBZUoRpyrWygQqiJWEOopfoKIYAuObnigD8QqiUQCtGkyZTRKLZv387gwYODX0+ZMgWAe+65h8WLF7Nnzx6WLVuG3W4nOzubwYMH849//AOLxRK8z/z589FqtYwdO5aysjKGDBnC0qVL0Wg0wXNWrlxJbm5usBvp6NGjq937UAghRHz16dOn0jFFUYJLBgSsW7eOmTNnotFoyM3N5c477wRg5MiRNa61v2gFpoBGaSrj9G9Jog+ELJ0OTUgg3LNnDzNmzMBut6PVanG73WRkZDBnzhy6d+9e7yEF1hBqQsek16Oj6kDo9odXbWCsGg0+lQp1DLqiCiHiRwJhFIMGDUJRlCpv/+ijj2p8DKPRyKJFi1i0aFGV56SlpUVdgC6EECLc8OHD+fjjj+M9DIqLi9mzZw9abfj/PocNGxanESWep556io8++gi9Xs/MmTPZtGkTCxcupLS0NN5DazznzlX8N8prdPlvC1YI9XrUIYFw0qRJrFq1Kqxr+NGjRxk3bhxffPFFvYcUqBBGdhnVKUqVXUYDU0YDHVEBvFqtBEIhmjgJhEIIIRLG2LFjKx1TFIU9e/bEYTSVzZkzh+Li4krbCs2cOTNOI0o8Go2GlJQUAObNm8fSpUsZM2YMJf5KWZMUWENaWFjppsCU0eBaPoMBbUgg9Hq92Gy2sPtYrVa8VUwrrS2n04keUEVsTK9VlKorhP6fkS5kxpNXq0Uj+xAK0aRJIBRCCJEwtm3bxoYNG8I2/FYUhQkTJsRxVOcF1opHGjhwYIxHkrh69OjB4cOHg1tPTJw4kbZt2/LQQw/Fd2CN6cSJiv8WFFS6KVAhxB/MVHo9Wp8vePtzzz3HqFGj0Ov1WK1WHA4HHo+H559//oKG5HK50KpUwecNjKG6QOgJTG8NCYQ+nQ5NWRk+ny/s71II0XRIIBRCCJEwpk2bhsViISMjI+z4I488EqcR1cDhqNhTLj093iNJGNGWSgwePJh9+/bFYTQxEthGKkog9ASmkfqnbqoMBrSA2+1Gp9Nx/fXX8/nnn1NWVobdbic1NTXqBvd1FVhDSOj0Zr0eXXWBMDC91WoNHvPpdBioqDiaAhvWCyGaFAmEQgghEsakSZOiHr/jjjtiPJJauvTSihBQzbpz0QwEqoBRpoxGVgg1BgN6oLy8HF1I9c5kMjVo4HK5XOjh/NYR/jFofL6aK4QhgVDR6yUQCtHESe1fCCGEqK8oFSHRDJWVVfw3yu+DL1AhDGzybjCgA8oC92kkTqcTg6IEK5MA6HSoAU8VawK9/rEaQgOhv0JYHuikKoRociQQCiGEEKJRjRs3jvxA45WmKBDu7PZKNwWmYQYCocZoRE/jB0KXf2P6sEDo/1ypKhD6x2oIbXITUiEUQjRNMmVUCCFEwsvPzycrKyvew6hacTGENOJorqZPn17pmKIobN68mbvvvjshtg5pFIFwFyXk+QLH/OsCNSYTWqDEX3F78803mTt3Ll27dmXYsGHMmTMHq9XKrFmzGD16dL2H5HE6K971j5gyCqBUMWU0MFZ1yNRQxWCQQChEEyeBUAghRMJLyDARelGdlyeBEFi5ciXWkOmGAadOnaIwyvq6JqO8vCJ4RdmHMBgIAxVCkymsQvjCCy+wadMmiouL6dGjB/v27cNoNDJ06NALCoTewPNGTBkF8FUR7pSyMjwQts+myh8IZcqoEE2XBEIhhBAJo0+fPpWOKYrCgQMH4jCaGpw6df7zEyfgssviN5YEce+99/KPf/yD77//PixUvPjii7z//vtxHFkjKyuDzMyogVAJBKmIQBgIWCaTCbPZjNlsZsiQIcE9CUO/f/URfN4oU0apokKolJXhIuLi0D/FVSqEQjRdEgiFEEIkjOLiYvbs2VPpYnjYsGFxGlE1AlsNAJw+Hb9xJJBnnnmGa665huLiYlJTU4PHc3Nzueqqq+I4skbk8VR8pKXB4cOVbo4MhFqTKaypTI8ePfB6vWg0GlasWAFUdAhNv8CtTLwRlUngfIWwqkBYXo5TrcYcckxlNMqUUSGaOGkqI4QQImHMmTOH4uLiSsdnzpwZh9HUwOE4/3mgcYjg1ltvDQuDAQMHDozDaGIgELzS0ys+j9yCxOnEB8H9AHVmc9iU0QULFqDRaMLuotfreeutty5oWMHGMVEqhKoqAiHl5bgiNp9Xy5RRIZo8qRAKIYRIGLfeemvU4wkZJkKnB0ogbL5CA6HXC253eAhzOvFoNOhVKgC0SUlogfIo00sbUtQpo4GtL6oKhE4n7ohAqDKZMAAlUiEUosmSCqEQQojElZ8PY8bA1q3xHkllgQt6tVoCYXMWCF6BKZ4RQU/lcuENmQKt83fwdPo3gW8sUSuE/k6narc76n1UUQKhxh8IZcqoEE2XBEIhhBCJa9s2eO89ePDBeI+kssCFf0ZG1GYi4rzhw4fHewiNx18h3B9YR1pTIExKAsBVQyC80H0bg4EwdA1hoLFNVYHQ5cITsX5X7Q+EDTFl9MSJExf8GEKIhidTRoUQQiSuwEbfXm9chxFVaWlFkw6brdoK4a5du5g1axY6nY5p06YxYMAAAO677z5ef/31WI02JsaOHVvpmKIo7NmzJw6jiRF/IHz9n//kT1ApEKpdLnz+EAig9lfpXDVUlS94q5XAtNAoFcKqAqHa7cYTsZ5RYzbXq0L44Ycfhn2tKAqzZ8/m6aef5uabb67TYwkhGpcEQiGEEAlr/dtvMwSqbJMfV6WlkJRU8VHNxX1ubi5LlixBq9Uybdo0tmzZwpQpUzh48GAMBxsb27ZtY8OGDahDph0qisKECRPiOKpG5g+EZyO+horXrvF48Pm7ewLBTp9u/+9MY221oooWCAMVQq8XRVFQ+dc1BqhdLjyhY6WiQlifbScmTpxIr1696NevH4q/0Y7dbmf79u0SCIVIMBIIhRBCJCRFUfj0n/9kCKA4HKhqvEdsOe12HCUlOE6coFM1gVClUtGxY0cA1qxZw+zZs3nggQfweDyxGmrMTJs2DYvFQkZGRtjxRx55JE4jigF/AFRnZMCZMyjnzgV/V91uNzpFQQmdtukPaIEKYaNttVJNhdDoH5s+9DYqKoe+yP0PDQaMKlWdp4weOnSIF198kT179jB58mT69+/P119/zZNPPlnXVyKEaGSyhlAIIURCOnr0KCn+zz1nz1Z3alwc378fh8fDwVOnqq0QZmZmcjhkf7rZs2czcOBAtm3bFoNRxtakSZMqhUGAO+64Iw6jiY3SggIAsrp2BaAoZO1fWVkZBkAJDV7+CpzHP7W00bZaCQTC0DDqD4QGKvY6jKTxePBGVAjR6+s1ZTQpKYknnniCV155hfXr1zN27FjsgSngQoiEIhVCIYQQCWnPnj3Y/J/rXK6Kdv6RF6txVHr2LD7gHOC226lqZNH2kxs/fjzjx49vzOGJGCk8cQIz0Paaa2DjRgp//jn4e1taWooBwkOZPxy6/YGwsbZaUQXWCUaZMhqoEEbSeTx4Q8fqv8+FdBm1WCzMnDmToqIi9u3bV6/HEEI0LqkQCiGESEg//fQT6aEt8IuK4jeYKFwFBZRSEQhLz5yJ93BEnNjz8gDocu21FV+HdNIMVAjDAqH/TQ1vyFrDxqCOFgi1WnxqNUaiVwh1Hg++iGmkGAwYFOWCu4xardao6yWFEPEngVAIIURCcjgcZGi1lPr3bUu0QOh2OFAnJ3MO8Dgc8R5OQos2JbIx7dq1i1GjRnHrrbeyefPm4PH77ruvwZ+r+NQpALpedx0AJf6v4XyFUOWfqgkEA5qnkbcqiVohBBSdrsopozqvN3y9I5yvEDbAthNCiMQkgVAIIZq4WF4cN6SioiJS1GpK/WvSfIWFcR5ROG9JCVqLhXKNBpXsQwjAsmXL6N69O9dccw3PPfdc8PiYMWNiOo7c3FwWLFjA/PnzmT9/PvPmzQNolM6u7qIiygBbixZ4AFfImwOBCqE6WiBs5AphVYHQZzBUWSHU+3xRAyHUf7wFBQX8+OOPFPjXWgohEo8EQiGEaOJieXHckIqKirAB7qysiq+PHYvvgCKVlqK2WFBMJtTVVE/WrVtH3759GTBgAKtXrw4eHzlyZCxGGVOLFy9m586d7Ny5E7PZzO23305paWlw24FYCXR2bdeuHWvWrKGoqKjROrt6SkooV6lQqdWUqVR4QirZgQqhOlDlhuCUUV8jV9w0Hg9etRrU4Zd6Pn+TmGiB0ODzoYSOFc4Hwjq+6bF+/XquvfZafvOb3/D0009zzz33cN1117F+/fo6PY5IDOPGjYv3EEQjkqYyQgjRxF2s2x4UFxdjVhQ8rVoBUHT8eLDraCLQulxokpNRJSejq6Z6+dRTT/HRRx+h1+uZOXMmmzZtYuHChZQ2waqiWq1G5w88ubm5XHHFFYwYMSLm1aFAZ9d27doBFZ1dV6xYwfLlyxv8ubwlJTj9oatcrcZXUhK8raysjCQiAqG/YtfogdDrxafVook4ruj1VVYIDT5f+PRWOD/eOlYIn3zySdauXYvFYgkeKyoqYsSIEQwZMqROjyViZ/r06ZWOKYoSNrtEND1SIRRCiCbuYt32oKioCJPPh/6SS4DwtVnx5vV60Xs8aK1W1BYLuigdGwM0Gg0pKSmYzWbmzZtHz549GTNmDCUhwaGpGDlyZNjv2tChQ3n5d7/jkhYtYjqOt956KxgGA8aPH3/BjVGi8ZWW4tJUxC6XVosvZAuS0tJSjIAmKen8HfyBS2nEKaM+nw+Nz1d5T0H/80frMqooCkaAKiqEdQ2EarWa06dPhx07ffo0arVceiaylStXMnLkyLCPUaNGkZ6eHu+hiUYkFUIhhGjiLtZtD4qKijB4vahatwagLIE6eRYUFGAG1DYb2uJi9D4feL2giazHQI8ePcKqVRMnTqRt27Y89NBDsR10DPz+978PP1BWRtdf/Yq1N9wQnwHFgFJaiscfvNxabdielGVlZZgBTUiVLBC41BHbOHg8nkqb09eX2+1GD/iibdNSxZRRj8eDEVCHhleodyB89dVXmTp1Kvn5+SiKgkqlIjs7m1dffbVOjyNi695776VLly5kZmaGHb/77rvjNCIRCxIIhRBCJKRzDgc6nw9VRgblELY2K95Onz6NBVDS0tAFKn3nzoHVWuncRYsWVTo2ePDg5rEn27/+VfHfkJDU1KjKyvAENpvX6SAkOJWUlJAEaG2283fwB0KV08mePXuYMWMGdrsdrVaL2+0mIyODOXPm0L1793qPyel0YqSKQOivEEYGwvLSUiyA2mwOP98fCJU6Vle7dOnCO++8U6f7iPh75plnoh7Pzc2N8UhELEkgFEIIkZDc/m6NWpsNB4m1tcPp06fJpCIQGmoIhM1aoHFRSkpcnr6goICCggLS0tJIS0trnCdxOvH619l5DYawBkPnzp0jSaVCFVp10+nwqVSonU4mTZrEqlWryMnJCd589OhRxo0bxxdffFHvIblcLkxUdBStxGSKWiEst9srAmEDVQiFEBcPCYRCCNFMxOTiuAF5AxVBs7miWUeM97KrzpkzZzADSkYG+sC4mnAVrN4C35sYT/ddv349Tz75JBkZGVitVux2O4WFhTz99NMN3tBE7XTi84con9GIJqSBTklJCWaA0JClUuHRatG6XHi9Xmyh1UMqNnD3er0XNKby8nJMUHkLCUDl33bCGTFl1eX/e9NUEQiJOF8I0XRIIBRCiCYulhfHDUVRFLyBMJGURLlGg5JAgevMqVOYAV9aGnq7HQClpARVFec7nU6+++67YCDv1q0b+oj94Zok/8+w/PhxjDWc2pBi2eFS43Kh+N9gUUwmtCGVt3MlJZgUBSKmYXp0OjQuF8899xyjRo1Cr9djtVpxOBx4PB6ef/75CxpTMBBGNoihYkqogcqB0On/PdYkJ4ffwf97qjRQIMzPzyfLv5WMECIxSCAUQogm7mJs/15eXo4hUCUxm3FFNOuItxJ/xUudnIzB332v/OxZKl9+w/Lly1m8eDG9e/cOBvKdO3fy0EMPJXxjnwvl+PlnbIAvxh1iAx0uQ3/nG6vDpdbtPt+ZMykprOOs0+GoaOceEQi9ej2a4mKuv/56Pv/8c8rKyrDb7aSmpmKM3PahHpxOZ8XvYpTHUiclYQbsEVNAAxVCbWQgbOAK4d13383HH3/cII8lGt6bb77J3Llz6dq1K8OGDWPOnDlYrVZmzZrF6NGj4z080UgkEEbx+eef8+c//5kdO3aQl5fHO++8wy9/+cvg7Yqi8PTTT/Pqq69SWFhI3759+etf/0rXrl2D5zidTh577DH+/ve/U1ZWxpAhQ3j55Zdp7e+WB1BYWEhubi7vvfceAKNHj2bRokWkxGmthRCiaYrlxXFDKSoqIjhxLSkJt06HKoHWMJUGpkCazZj8gbD0zJmogfCVV17hyy+/xOfzBbtIejweBg0a1OQDYd4PP2ADzIoCpaWVglFjiWWHS53Hg8r/utRJSeh9PrxeLxqNBpe/6kbENEyfXo/O6w2OzWQyYYpSzauvQIWw0hYSgNpiIYmKDqih3P5AqItcB+sPhKoo+xZWp0+fPpWOKYrCgQMH6vQ4IrZeeOEFNm3aRHFxMT169GDfvn0YjUaGDh0qgbAJk0AYxblz57jqqqv4zW9+w69+9atKt//pT39i3rx5LF26lMsuu4w//vGPDBs2jP379wcvuB599FHef/99Vq9eTXp6OlOnTmXUqFHs2LEDjb8t+V133cXx48dZu3YtAL/97W+ZMGEC77//fuxerBCiybsY278XFRURjA5JSXgimnXEW3lgnZjZjNn/b3r52bOVztuzZw/79u2je/fupKen43a7SU9PZ8yYMQ1SCUp0XrudUqj4WZ45A23axOR5Y9Xh0uPxYPD5gp051cnJmIHi4mJSUlLOT3uOrBAaDJjwB7cGDIIBgUCoihLAVcnJJKtUlfZkdPvHqgvdIgPqHQiLi4vZs2dPpa00hg0bVqfHEbFlMpkwm82YzWaGDBkSXOPaUFuiiMQkP90oRowYwYgRI6LepigKCxYs4A9/+AO33XYbAG+88QYtW7Zk1apV/Md//AcOh4PXX3+d5cuXM3ToUABWrFhBTk4On3zyCTfeeCN79+5l7dq1bNmyhb59+wLw2muv0b9/f/bv30/nzp1j82KFEE3exdj+vbi4+HyF0GzGazSiSaApo87CwopPzGZM/gvoaIFw0qRJfPTRRyxfvpxt27ahKAqnTp1i9uzZ7NixI5ZDjgulpITjwGWA++xZdDEKhLFSUlJSsfG8f5ql1mJBCzgcjopAGNIYKZRiNGKiokrXGIEwMGW00hYSAElJJKtUlSuEgUDYQBXCOXPmUFxcTGpqatjxmTNn1ulxmoONGzfyzDPPcOWVV3LTTTcxY8YMbDYbc+fOpX///jEdS48ePYIV7hUrVgAVHWllY/qmLXHnCyWoQ4cOkZ+fz/Dhw4PHDAYDAwcOZPPmzQDs2LEDt9sddk6rVq3o1q1b8JyvvvoKm80WDIMA/fr1w2azBc8RQojmKrJC6DOZ0NXxgrQxhQZCS2YmPsAdmB4Ywuv10qlTJxYsWMCmTZvYsmULH3/8MW3btm0WjTW0paXY/aHkdGALiiakqKgIExVBEEBns2GmIhAC+AJbkkR27vQHwo8//pi+ffsyYMAAVq9eHbx55MiRFzSuQIWw0hYS/rFEnTLqH7MpsgOxPxCqQ9ZG1satt95aKQwCDBw4sE6P0xzMmDGDJUuW8Jvf/IZ77rmH999/n7fffpsnnngi5mNZsGBBcCZbgF6v56233or5WETsSIWwjvLz8wFo2bJl2PGWLVty5MiR4Dl6vb7SP4QtW7YM3j8/P5/MzMxKj5+ZmRk8Jxqn0xnWGawogTZqFkKIhhK2htBkApMprFlHvAXWW2EyYbXZKCV6IGysLpIXA0VR0LlcKO3awaFD2I8do1Wcx1RcXBy2lvZCFRUV0QJw+h9Tn5oaFgiDnXEjK3X+QPjMn/7Ehg0b0Ov1zJw5k02bNrFw4UJKS0svaFw1BkJFqTRl1BsIhC1ahJ/v39xe4/Fc0JhwODj30Ueob7mlUaqiFzOj0UhOTg45OTl06dIl2G8iMpgJ0VikQlhPKlV4c/HAupzqRJ4T7fyaHmfu3LnYbLbgR+hmtkIIURfVvfkUb4FAqBiNoNFAUhKGC70gbUCekKmAFouFUsDjv6AOFegi+f777/PXv/6VDz74gI0bN/KLX/witgOOgzNnzpCsKJg6dACgJC8vZs+9bNkyunfvzjXXXMNzzz0XPD5mzJgGfZ5AhVDvn2ZpSE8nCSgKvDkQCHaRgdBsrljjp1KRkpKC2Wxm3rx59OzZkzFjxlASqCzWU3l5edhU1jBJSZgVhfKI0BmY3mqInBqoUuHVatH6m+XU16knnyTpjjv47wkT6v0YTVVWVlbwe7thwwagYn2qz+eL57BEMyKBsI4CU3wiL6ROnToVrBpmZWXhcrkoDEwpquKckydPVnr806dPV6o+hnriiSdwOBzBj2PHjl3Q6xFCNF933313vIdQpaKiIixqdfBCWp2cjPECN+tuSMGpgGYzBoOBUs5fUEdjMpnIzs5uFo1kAg4fPowFSPV34D4Xw0C4ePFidu7cyc6dOzGbzdx+++2UlpaiKEqDPk+Rw4GZisoggDEzEzVwzr/NRrAzbkSlTmU2YwQ6dOjA4cOHg8cnTpzIlClTKA40o6mnwBrCqgIhgCfiOZSiIlxUbFwfyafVoqfy3oV1sd8/ZfhSWRZTyerVqytVA7VaLevWrYvTiCq70N9JkdgkENZR+/btycrKCvsjdblcbNy4kQEDBgDQs2dPdDpd2Dl5eXl8++23wXP69++Pw+Fg69atwXO+/vprHA5H8JxoDAYDVqs17EMIIarTp0+fSh+9e/cO+/cn0RQVFZFqMKDyX7yqrVbMVPx7mwgipwKWaTQoF1jVaWqOHDyIGUjt0IEyoPz06Zg9t1qtRuef6pibm8uDDz7IiBEjOBPYLqQWxo0bV+M5JXY7WsDor6oZ/NMtywOBMFCFi5giqfZXCB955BHatWsXdtvgwYPZt29frccZTU1TRoHKv68lJZyrYoaST6eLupl9Xbj8nXkNCbR9TKKLR2fPWFXXRWKRNYRRlJSU8OOPPwa/PnToELt37yYtLY02bdrw6KOPMmfOHDp16kSnTp2YM2cOZrOZu+66CwCbzcZ9993H1KlTSU9PJy0tjccee4zu3bsHu4526dKFm266iQceeIBXXnkFqNh2YtSoUdJhVAjRoC7G9u9FRUVcqtMFA5fOHwiLi4vj3u3O7XajDlwY+y/0nVotSjXrvgoKCigoKCAtLY20yKYdTdSJH34AICkzk0KtFleULqyNZeTIkRw+fDgYtoYOHUp2djZTp06tdO706dMrHVMUpVYN3sr8Idfg/5mq/C36nadP43a70Tud+DQa1JGBMDkZE+BopK1UqtuHMFitjOzae+4cZWo1ldvAVOybaPA/bn15/bOmNBe4PlI0rkB1XafT8eKLL3L77bezbNmyBq+ui8QigTCK7du3M3jw4ODXU6ZMAeCee+5h6dKlTJ8+nbKyMiZNmhTcmP7jjz8OW6g+f/58tFotY8eODW5Mv3Tp0rApAStXriQ3NzfYjXT06NG89NJLMXqVQojm4mJs/15UVIRNqw1evOpSUkgCTtntcQ+EgQ6oXr0ejbpioo1LpztfDQqxfv16nnzySTIyMrBardjtdgoLC3n66acZMmRIjEceW4GuoiqrlXK9Hk/EMorG9Pvf/77Ssa5duwb3/Q21cuVKVq1aVen4p59+WuPzlPlDbnBqpn/WjvvsWex2OymAOykJQ0TlTWOxYKZyp8+G4qwuEAbGGhEIVefOUVZFRUrxB8ILGa/iX2NrdLlwuVzo9fp6P1akXbt2MWvWLHQ6HdOmTQvOtLrvvvt4/fXXG+x5mhKPxxO1AhlZXb/iiisYMWIEBYG9V0WTJIEwikGDBlX7TohKpWL27NnMnj27ynOMRiOLFi1i0aJFVZ6TlpYW3ONFCCEay6233hr1eCK3f7fb7WGBUJ+SAkDJ6dPgb1ISL3a7HTPgMxgIvMXn0eujToV78sknWbt2bdgbhkVFRYwYMaLJB8JA9YzkZFwGQ/z3kTxwAHbvhl//OuzwvffeS5cuXSp1/q7NGtvg9iOBqps/EJafOkVBQQEpgC9KV1OtzUYyVQesC+2G6glMB61DhVBTVoazqkBoMl1wgFX5n89KxTKatm3b1vuxIuXm5rJkyRK0Wi3Tpk1jy5YtTJkyhYMXyVYnb775JnPnzqVr164MGzaMOXPmYLVamTVrFqNHj26w59mzZw8zZszAbrej1Wpxu91kZGQwZ84cunfvDtStup5I+yeKCyOBUAghmpvx4+H772HrVojDGpXaKCwsxKLRBKeMBtZonYvhOrSq2O12TFRcJAd4DAaSokynU6vVnD59Ouzi/vTp06jVTX8JvztQUbBY8BiNaOO5dszrhcsuq/g84g3fZ555JupdcnNza3xYV8h+lEBYhTAQCPG/mRFKm5KCBfjkk0949tln0el0jB07lscffxyoWK8V6DZZH95aBEJ1xO+rprwcl78yFO0+SXBB22Ho/D9/KxVN9hoyEKpUKjp27AjAmjVrmD17Ng888ACeBOpMXJ0XXniBTZs2UVxcTI8ePdi3bx9Go5GhQ4c2aCCcNGkSq1atCutQf/ToUcaNG8cXX3wB1K26PmPGDNasWYPdbmf48OFs27YNs9nMbbfdxmeffdZg4xaNLzGvBIQQQjQOrxdWrqz4PD8f/PtdJZrCwkKSVargxavRv0arNAECocPfWTJ0KwGvyYQ2SgXs1VdfZerUqeTn5we3FcrOzubVV1+N3YDjxBfYhsNiwWs2o4uyT2PMhHb1drmggaYrBjZzD/4u+IO/t7AwGAjVUTZn1/inQG9Yv579P/zQ4Ou1lEBHyGhNZfxTRrUR4U5XXo6riu+L6gIDoc/nw+hvCGUF9jfwetLMzMywqtbs2bNZsWIFy5cvb9DnaSwmkwmz2YzZbGbIkCHY/GtRG7qpjNfrDT52gNVqrfd2IrJ/YtMhgVAIIZqT0ECVl5fQgdCsUgUvtE0ZGQCUJ8A6lsCUUXVIS3/FbEbvdlc6t0uXLrzzzjsxHF3iCGx0TnIyPoslGAjiInT94pkz0KpVgzxs6H6UAGi1uLRaFIeDgoICWgBa/+9umEDF2OdrlPVagemZRJt26g8EhogKoc7loqyKaaqq5OQLCoQOhwMr4NVqsXo8nK1Dt9faeOuttyodGz9+POPHj2/Q52ksPXr0wOv1otFogkuJXC5Xg6+Xfu655xg1ahR6vR6r1YrD4cDj8fD888/X6/EC+ydqNBrZP/EiJ4FQCCGak9C94E6ciN84amC32zGFVAhN/gsjZwIFwrA93pKSMFwk09NiRRWYtmixoLJYMHm9wYvHmAutTp461WCB0BelEucymVAVF1NQUEBntRpNtIt6f/C6PCen1uu16kJdXSA0GHBptZgitpAwuFyUVLFPptpqJQmw13Pab0FBAVbA1aIFprw87BF7OTd3CxYsqHRMr9dHDboX4vrrr+fzzz+nrKwMu91OamrqBe2Nunr16uDn48aNY+XKlQm3f6KoHQmEQgjRnIReiMVwo/C6KiwsxJiSEqy8qPzhyxnDTpVVcTgc5Gg0qEKmjKqTkjDWc9pVU6U6dw6fSoXaZEJts2HFv79klCmUja3o6FGCu/ZGTDu+kIYevkDoDfld8CQnY8rL4+TJk6Sp1VHXEAaC2uDOnSvtQ1jVeq26CAbCaBvTA+UmE+bIQOjx4I225hDQ+APhiXpWCAsKCugEeFu1grw8ziXwvz3NgclkwlTFz7omtdmmJR77J4oLIz8xIYRoRgq+/5404FxSEkkJelFWVlaG0+msqLgFKi/+/7rjuQ7Nz2630zVkj0QAtcWCqQ7TpC60i2SiKy8vx+jx4DGZ0KtUaFNTMUCwKhFrR3bvprv/87IjRwi9FL6Qhh5KIHiFXFx709LIzMvjk2++qdjTL1og9Ac1X2DKaajjxyuq93361PblVVJthRBwmc0kRby5kuzx4KkiQGqSkzFT/ymjBWfPYgXKcnJgxw7KQ9d0iovKhWzTIhJX029zJoQQIuird97hDJCv1yfslNFC/4WqzuU6H7r8//VEu4COMYfDEdYBFSq2ETADnoh1hMuWLaN79+5cc801PPfcc8HjY8aMidVw48LhcGABvP7vkS49HQsVgTAe8vfvxwmcA05/913YbYGGHi1btgw29DAYDLWqcqhKS3FptRDSNVbdqhUtgS8//xyr1wv+hkhh/EEtaiDs2hX69q3Dq6tMHQhuVQXCpCSSI6Y427xevBENRwJUyckkq1T1DoRFeXmoAZ2/Gups4DWEb775JldffTXjx4/njTfeoHPnzvTu3Zv33nuvQZ+nMTmdTnbu3Mknn3zCzp07ccVoze2uXbvqdH5gm5aBAweGfdRmmxaRuKRCKIQQzURxcTGHvv6ajioVp5xOOiTAerxoAoFQ43RWqhB6EyAQ2u12ktXq8ECYkoIGKDxzhtTs7ODxxYsXs3PnzgbvIpno7HY7yYDi/7kZMjJIBuxx+p2zHzpEiVZLiceD46efaBNy24U09FCXl+PR6wntzZnUrh2ZgLGkBB3AJZdUvqM/qKkCaxADfD4I/I6XlUXfNqIWtGVleFQqtFV0DfUkJ2Pz+c6v6Swrq9hKJVo1EyApiWTqXyEs8b/5pPNvNeFq4C6jsdq2obEsX76cxYsX07t3b6xWK3a7nZ07d/LQQw81aGOcl19+OexrRVFYvHgxkyZNYtKkSbV6jNBtWtatW8fMmTPRaDRh27SMHDmSDz74oGEGLWJCAqEQQjQT+/fvJ8njQduyJcdPnsR39mxCThOx2+2oAU1ohVCnw6NSnV+zFUd2uz2sAyqA3n8hXXLyZFggVKvVjdJFMtEVFhZigWDwMWVmoqbi+xMPnrNncZrNnCsrq7R+rb4NPRRFQVNejjciROlzcshWqbgkEPqjNbDxf1/UkVuVhGykXrRzJ9Zrr612DFXRlpfj1OvRqlRRb/daLKRQMbU3KSkJ5exZVIBS1XTepKQLmjJaduoUACp/OPY08FrgWG3b0FheeeUVvvzyy7D9ST0eD4MGDWrQQPjXv/6Vtm3bMnbsWFT+3w21Wk1yFVOFa/LUU0/x0UcfodfrmTlzJps2bWLhwoUXtF+liI9EvBYQQgjRCA4fPkwqYGrVigLA7b9ISzSFhYUEL09Cprw5tdrz7fTjyOFwYFKUsEBo9FeTzkV8T0eOHMnhw4eDXw8dOpSXX36ZS6JVjZoQu92OBVD7L8zNLVsCcC5O3SXVdjve5GScRiNKA4WR8vJykhQFb+Ref5mZpCkKwa2/o/2sTSZ8KlXl3+eQsPq6f5P6+tA7nVXuKQjgs1pJpeI1ALj9QV1VVVU0KQmTolBaz7+/8sDfhf97oTRwpT9Q5QWqrfJu3LiRoUOHMmXKFD7++GOuvvpqBg0axFdffdWg46krk8nExo0bg18risLGjRsvqANoNN9++y3jx4/n3XffRa/XM2HCBFq3bl3v6Z4ajYaUlBTMZjPz5s2jZ8+ejBkzhpIEeONO1M3F8daJEEKIC3bo0CH6azQktWpFwa5dKAlapQpWlyA8EOp059dGxZHdbq9oIBMync/gXydWFrE26ve//32l+zdEF8lEF5gyqvVXzzT+ylN5RIfPWPB4POjOnYO2bXErCuoGCiNFRUVYAV9kIGzZEg1wX8+eKLt2ofKH4TAqFeU6HfqIbRy8P/9MYFMO/QWs8dW7XLgNhipvV1JTSaOigRNA+YkT6AFNixbR75CUhBpw1/N75wr8XWRl4VOpIHKq7AWqbZV3xowZrFmzBrvdzvDhw9m2bRtms5nbbruNzz77rEHHVBfLly/nueeeY+bMmXi9XnQ6Hb169QqG24aiUqm46667uPPOO1m5ciWjR4/mzAWs5+zRo0fYtikTJ06kbdu2PPTQQw00YhErEgiFEAll165dzJo1C51Ox7Rp0xgwYAAA9913H6+//nqcRxdfHo/ngqZAHT58mDE6HUZ/hVAT2Dg8wRQWFpKu04HbHRYI3QYD2nrug9aQ7HY7Bq83rEJo9l9IRwbCSGXFxZz74QcyevZs1DHGm91uJxvQBKZT+n+ODd1MpDby8vKwAZqMDBSvF92xY5XOcTqdfPfddxQUFJCWlka3bt3QV1Nhg/OBEKs1/IZOnQAYbTJBVhZUse9iqdmMOeL3+fjOnWQBJwDbBTQVMbpcuKtaDwj4WrQgEzjir/i5/JVbTUZG9Dv4Q6+vnkHOG6jKWq14jEY0ZWW43e7gdOpYMRqN5OTkkJOTQ5cuXWjdujVAfPbGDJGVlRU11DYWtVrNhAkTGDduHPkXULVftGhR8PPhw4fz8ccfM3jwYPbt29cQwxQxJIFQCJFQcnNzWbJkCVqtlmnTprFlyxamTJnCwZC1Nc3Jnj17mDFjBna7Ha1Wi9vtJiMjgzlz5tC9e/eaHyDEkSNHSAX0mZmU6vXoyssrQleML8pqUlhYSCuLBQoKwgOhyYQuAUKsw+FA5/GEBcKkzEwAnNVUXT0eD+9brYwFPGVlaBt4OlgisdvtpGg0qAI/P/9/G7qZSG0cO3aMVMCQlYXG7cb4449ht9e3oUcgEKoiO3N27gwGA3z5Jdx8c5X3d5rNJEV0XS0+cAAV4LbZUIV8r06cOEGraGsRq2CsZk9BALKz0eOfKtq5M25/5VYfrZoJwW0ylHoGQl/gdVoseE0mLGVlFBQU0LKq52skWVlZwUY6GzZsACr+Ln112DImZvLzweuNPuW4gajV6jr9XgGMHTu20jFFUdizZ09DDUvEgQRCIURCUalUdOzYEYA1a9Ywe/ZsHnjgATwRLdKbi0mTJrFq1SpycoIrkjh69Cjjxo3jiy++qNNj5efnY/F6UaWloc7IqNh2orAQ/GEmUdjtdrKTkysFQm9SEsY4r3tUFIViux2dopzvgMr5CqGzmvVphw8eJHApdeSTT+gwalRjDjWu7HY7FrX6/M/P/19vAzcTqY2zZ8/SFTC2bImuvByL11uxT6I/kNe3oUdxcTFWQB3ZiEWrhS5dYPduqKYpjCs5meSI32fXsWO8q1ZjS0vjh0OHeOuttzCZTMyePZunn36am6sJmAGKomD1evFUs8+l2h8CvMePA+DLy6MQSKpi2wn8x9X1nepZXIxbo0FnMKAkJ2MpKODs2bONHgjz8/PJysoKfr169epK52i1WtatW9eo46iXQHOqBOtIvG3bNjZs2BD296IoChMmTIjjqMSFkqYyQoiEkpmZGdaEY/bs2QwcOJBt27bFb1Bx5PV6gx3zAqxWa7CBQl2cycvD6HZDSgq6wIVYAq4jLCwsJDNQ3Qi5qFWSkjDG+d38kpISkgIXaCFTBdX+cXqq2Wfv0Pbtwc/zEvECtAEF14EGuhf6v1e+OFR4z549SwoVFUJDy5akAKdCglh9G3oEKoS6aPsMTp0K7drBLbdUeX+3zYYt8o2ukyd5UlFYVlJCHvDJJ5+wfft27HY720N+f6pTXl5OKlS5pyCAOtDcxb9OUXX8OMcAc0jVO0xgLWg9m4WoS0pw+b+fKqsVC8Sk025tm6UkXDfSRvw37kL3O3zggQewWCy0bds2+NGuXTseeeSR4DnFDbxGVDS+BPsLEEI0d9FavY8fP75BW29fTJ577jlGjRqFXq/HarXicDjweDw8//zzdXocn8+HM9DyPzWVpNatYdeuhA2E3QIX46FVDosFC3Du3Dks1VQ/GpPdbicYA0PXjvkvpD3VNN34eefO4OdlW7c2wugSh91ux+zznf/5GQx4GqGZSG0UnDkTXENocjqxAj/k5dGmTcVuhPVt6BEIhPpo6+7Gj6/4qIbPZgt2+gyET6Pdzqp27djesiVfnz5Nn1atePLJJ/n666958skna/V6S0tLSYNq1xDq/DMOVP71Y9r8fI4D3SMb5AT4w6WuHl1GFUVBV1aGx/990thsWKgI6g2lT58+UZ/3wIEDDfYcMdVIa/DqOj36ww8/DPtaURTeeecdevTowc0338yyZcv485//jE6nC5tKOmbMmOCUXHFxkEAohBAJ7Prrr+fzzz+nrKwMu91OampqvVqRFxQUkByoKqamYvFvEE0cpvDVpLCwkHS9vqIZR8hrDVQWioqK4hYICwsLowdCnQ4X4K0mENr9F3kOo5GS/fsbbYyJwF5YiMnrPV8hVKlw6vWo4tCO/lx+fkXnzpSU4HYmBYcPQ9++QP0begQCoaaqvftqkp5OOhXVlMDftLWsDGN2NrNuuYUjW7Zw78aNjB07Fns1ledIZWVlpAEnqxmXKTW1orGUPxDqTp3iGNCvhkAY2RW1NoqLi0lWlGA3Vm1qKhbgdAO+GVVcXMyePXsqVfqGDRvWYM8RU0eOnP9cUaCK/STrqq7ToydOnEivXr3o168fin9mRKBaffPNN7N48WJ27tyJTqfjxRdf5Pbbb2fZsmXBc8XFQ6aMCiHERcBkMpGdnV3vfany8/MJXh6mppJ66aUAKHFo8lGTwsJCUnW6iupSyIWQJiUFC/GdjhS2JUZEd8lyjQZfNYHHefQoAGWdOmEsLLyg7n6JzllQUHGBEdElNh7bhgQr4ykpWPyVseIonUbDfPIJ1LDFQpG/WlypqUwtqVu0II2KJkUAXo+HFl4vutatISODHKB1VhZ/+9vf6hRYS4uLSaGaPQWp6Lb5A2D0fx9Mp09znGqmjBoMuLRaDPUIhAUFBRV/M/7fBbXNRopaTWEDvhk1Z86cqP8uzJw5s1b3Hz58eIONpUGETq1uwDdR6jo9+tChQ/ziF79g3759DB8+nKeeeopOnToFq9VqtTrYKTY3N5cHH3yQESNGXNBWFiI+pEIohEhIBQUFwRbwadHW6Ig6CQuEKSlktWtHKeA7duz8JvAJwm63k5KSEj5dlIrKgh443MCbWtdFlRVCwKnVVnvxppw8SblOh+7yy8nas4dDhw6FNbxoStyBi/2Qn6EnKQldFfsQbty4kWeeeYYrr7ySm266iRkzZmCz2Zg7dy79+/e/oLG4AusFU1LQ+7cXKPE3U4mqpASGDcPdsSO6aqYcugIVrshtJ2pJl52NCSjJy4OOHTn5ww+0Aszt20OLFqiBk3v3YrVao06JrEogAKur2kKCimCwH7j0+HEoKcFYXMxxlQpDNXsXOo1GjE5nrccRUFBQUNF8J2QLEptG06CB8NZbb416fODAgWFfXzQdMkMD4enTlf4trK+6To9OSkriiSeeoLi4mIULFzJ//nzsdjuKoqBSqRg5ciTbtm3jsssuw2azMXToULKzs5k6dWqDjFfEjgRCIURCWb9+PU8++SQZGRnBNQ6FhYU8/fTTDBkyJN7Du2hFVggvueQSCgBtAgbCwsJCrO3bV7oI0qWnY6Ziql68BC5ugUpBwKXToaqigqIoCvqCAsptNswdOpAFfFldKLnIeQNTHJPP/3b5kpIw5uWFrZkLaMwNw72BakVqKvinypXl5VV5/pH162kL6H78sdptWTyBx61nhVDn38zbefAg/OIXnPzmG1oBts6dwR/m7D/+GLz4ri23PxBWuacgFfvuHVCruSMvD775BoADZnO1z+MymzHXI8QF/mY0gTf2LBasKlWDBsLaumg6ZIYGwjNnwD+j40LVd3q0xWJh5syZFBUVMXv2bLp3706HDh3o06cPkyZNIikpiXHjxvHAAw/QtWtX1q5d2yDjFbEjgVAIkVCefPJJ1q5dG7ZGrKioiBEjRjTLQLhu3TpmzpyJRqMhNzeXO++8E4CRI0fywQcf1Ppx8vPzyTYag5u9BwJhsr/LYKJwu90VTWN8vkoX2oaMDExAcRwb4RQWFpJpMIDTGRZ2ANx6PZoqAuHp06dJ93jwtmiBsV07MoGf/VNImxpFUVACoT3k7ziwBvTs2bNcErG3WqNuGB4IpykpwUDorGb7km/ffhv/ClvO/fADSV27Rj1PCQTCaoJXdUz+7XW8/vVihf41pi26dQObjQLAW1zMjz/+SCf/Zve14fIHQkNg24Iq7DcYMJaVwZtv4lGrOVnNFFMAj9mM+fTpOgfUgoICOgD6kEBoUZS4BMJp06ZhsVjIiPiZhXbITAgOBz6NBrXXW1EhTBBWq5VNmzaxZ88eSktL6dy5MwcPHkSn03H99dfzwAMPxHuIop5kDaEQIqGo1WpOR/wP8PTp02Hv6DYnTz31FB999BGffPIJW7duZfLkyfh8PkrruBYrPz+f1snJFRfFKhUtW7akAPDEeV+/SIGLxGS3u6KiE8Lo3yqjPLAmLA4KCgoqtsRITq5oehPCazCgKS+Per8jR46QRcX+b6rsbDSA/WLtgFiDsrIykgLbKYT8DKvrLhnYMBxo8A3DVYFqi80WrOp6qlnjVLJrV/DzE199VeV5mkCgqSFIVSW5c2cAFH+luNgfCLfl5XHthAn8BjgJ/OY3v+G6665j/fr1tXpcr7/6aQrZuzSaXTYbHo0GXnyRYxkZJNcwNd9jsWBTFNxud63GEXD27NmK7TkC3yeLBbPPF5dAOGnSpEphEOCOO+6I+Viq5XDwk//vwZVg/0abTCZUKhVJSUnceeed6PV6VCpV4m3dIepEfnpCiITy6quvMnXqVPLz84PvRGdnZ/Pqq6/Ge2hxodFoKtbTAfPmzWPp0qWMGTOGkjo2GsjPz6en0Rjs2qnVaik1GhOuqUzgItHkdAb3PgvQ+jd/d8UxEBYWFtLdaIza9c+dlISpim6Qhw8fphNgatcuuOF0+aFDjTfQOLLb7aQEvgj5GWrT0rASPRA25obh2pIS3DodOr0egHKtFqWarp2GEyc4arXSpqiIgpBwGEkdCDT1rBAabDbOAGp/gPMdPIhDo+HJ559n7ccfk5yezoNeL4MefpiRI0fWfpZEfj4+ILmGaYbG9HR222z02r+fDy+9lNTA3p9V8FqtpFOxrYXe/72sjYKCAmwq1fnmOxYLRq8XRwJueZMoFLudPKAdsHfLFq76zW/iPKLzRowYgdfrRaPR8Je//AUAl8tF1yoq6eLi0DzfchdCJKwuXbrwzjvv8NVXX7Flyxa++uor3n77bbp06RLvocVFjx49OHz4cPDriRMnMmXKlDp32szPzydTpwu7QHcnJ6OJw0bh1Qm01zeUlVWqEOKvYHjjOIWqoKCA9EAH1Ahumw1LFdWTI0eOkK1SYWjTBvyNZDxNdA1hWCAMWWepT0+v8/5zF1p1cLvdmJxOXCHTe50mE5oq1qEqioLZbseZk8NplYqyarYH0TscuDUaqGqrhlrI12gw+N/g0OXlcdZiqZglcfYsqvR02hiNHDp0qE6zJNSnT3Ma0NUQ8FJTU1nUqxd89RXvW62k1rB9hjcjgxZQ59kJwS6jgd8F/99OuXSirNK5EydwAHagKI5Ty9etW0ffvn0ZMGBA8E2bGTNmMHr06LDz9Ho9L730UjyGKBqIVAiFECKBLVq0qNKxwYMHs6+OGxfn5+eTptGEhSxfSgr6apprxEOgQqgrKakcCP1fK3FeQ5iu0QTDaShvSgo2jyfqGqujhw6RoSiosrLAP/VVFcdKZ2MKBEJvUhKakEBnaNECGw27IXlNCgsLK8YS2u00ORnNqVNRf04nT56khdeLtnVrzhw+HL4fXARjSQmlZjO2C9gj7qjRSGf/9iPWggJKL7nk/CyJ4mLOeDwULVzI9u3baz1LQnfmDGc0GlrWcF5qaioFDgf060eh3U7rGqaYKhkZZAJFdQyEjjNnMCnK+TdR/P/1JNAeqMXFxXHb2zSa8pMncQAlGg1lcdyeJrBkQa/XM3PmTDZt2sTChQvr/KaASHxSIRTiIjBu3Lh4D0Fc5PLz80n1+cLWO6nS0kiqRxv5xlTgD3uaoqIqAyFxvJAsKCggTVGiBkLS0sgAyqOsIyw8cKBic/SsLNDrKUtKwlBY2CBr5BJNsEIY0RRIlZ5OGud/xrFQUFBACqCEjEWxWLB6vVGr7D/88APZQFLHjpSkp2OsphqdVFaG8wJDxDGLhRZnzuD1esksK8Pnb6rzzjvv8FX//rzRsiVXXnllnWZJGAoLOVuLKZ0pKSnBN2AKCwuDU9OrosrMJIOKfQ7roiywBi5QIfRXa30OR8w3MF+2bBndu3fnmmuu4bnnngseHzNmTEzHURNfYSGlWi1eiwV3HCupgSULZrOZefPm0bNnz3otWRCJTyqEQiSQ6dOnVzqmKAqbN2+Ow2jix+l08t133wX3IezWrVud1qyIcC6Xi7Nnz2IzGsPWO2kyMrB6PKAoUdfExUNeXh42sxlVtAphUhIelQp1HKe5FhYWYvN6ozYSCWw0fsZuxxQxXa80sF7QXx10p6eTefQop06danJ7EQZCmCoyNKenkwyU1iHQDx8+nI8//rjeYzl79iypgDp0LOnppAOnTp3CGrF1yIG9e7kO8F5xBYd27SK9imm9Ho8Hq9uNp557EAYUtGqFNT+f41u20AnYe+WV529s3ZrsvXs5XsepxeaiIg5XsdF4qNTU1OAU7cLCwhqnjKpbtkQNuOpYsXIFAk1EhdDo9XLu3DmSk2O38c3ixYvZuXMnOp2OF198kdtvv51ly5bFPJjWRF1Sgjo1FcVkiuuMiMCShXb+LVImTpxI27Zteeihh+I2JtE4JBAKkUBWrlzJqlWrKh3/9NNP4zCa+Fi+fDmLFy+md+/ewX0Id+7cyUMPPcT48ePjPby4uNCAfMr/Dr2ptBT8jVkAtJmZaAGluBhVHS5sx40bx8qVK2t9fl3k5eXRuWVLOHSociBUqSjR6dDWsULRkAoLC7HodFErhJrMTDRUrP8hpOW/oih4A9t7BMJfVhbZR4/y888/N7lAeObMGTI1GtSRPz9/iPZFqbo11obhgXCqDX0jJDubTCr+Ljr6t34IyPvmG9SAuk0bDJ06ccnmzZw9c4b0iMYxdrudbMCTmXlB4yu7/HLYuRPfwoVogOQbbjh/4yWXkFZezs91rMZYi4tx1BDuoCIQFhYWoigKdru9xkCo828V4q3jNPNg46qQLqMAFir+nhoiEO7atYtZs2ah0+mYNm0aAwYMAOC+++7j9ddfD56nVqvR+feVzM3N5YorrmDEiBExrVrXhr6sDEObNqh1OnTHjuHxeBq0i2dtH6+mJQsbN27kmWee4corr+Smm25ixowZ2Gw25s6dS//+/RtsvKLxSSAUIoHce++9dOnShcyIi4y77747TiOKvVdeeYUvv/wyrIGCx+Nh0KBBzTIQNkRAzve/o28oLg6rEBpbtQKg5OhRLN26VbpfPCrW+fn5dEhPjx4IgVKjEX2cpiv5/K3yzRZL1Aqh3v/9LDt2DHr2DB632+1YAmtu/BVCXZs2ZG3dyrFjx+gZcm5TcObMGbrq9ZW6xAa/Z1HWEDbWhuEFBQW0A/Qh/6bqW7cmE/h3lGBq//77ik9atcLSrRtm4MdvviE9orun3W7nEoCI/RTrytStGwfUajqtWUMJkO1/HqfTyXc+H2ccDop9Ps6ePUt6bba38HhIKy2l0F/RqU4gEBYUFODxeGgR8mZRNAb/3pCeOu5dqg10dA382xMRCHNqWLtYG7m5uSxZsgStVsu0adPYsmULU6ZM4eDBg5w4cYJW/r/NkSNHhlW8hg4dSnZ2NlOnTr3gMTQYRcHs8WDKysKg0WBVFI4fPx4cc33t2bOHGTNmYLfb0Wq1uN1uMjIymDNnDt27d6/XY86YMYM1a9Zgt9sZPnw427Ztw2w2c9ttt/HZZ59d0HhFbEkgFCKBPPPMM1GP5+bmxngk8WMymdi4cSODBw8GKi4KN27ciLEWU6CaooYIyPn5+dgAlccTViE0+y9m7QcPRg2E8ahY5+XlMSBQrYzSzr/cZKrYTDsOioqKUBQF07lzUSuEZv+F7bmIRiRHjhyhJeA1m9H4p5Ia27enFbCnjhfXF4MzZ86QoVZXGQjVUaoxjbVheH5+PpkqFZqQiq2pbdtghTCS59ixik+ys7H5p28W7t4NEYGwsKCAK4HTbdpc0PjatGnDSz4fC4EVKSk8mJR0/k2g9HSsPh8mYNiwYUyZMqXmv/njx9EoCsW1CI+pqamUlZXx008/AdQYzJIvuwwAX+B7VAuKoqALdHQNjMn/e5EKDbYXoUqlomPHjnz44Yf85je/YeXKldx0002cOnWKMWPG8PTTT3PzzTfz+9//vtJ9u3btytq1axtkHA3i3Dm0gCkriySdDhtw8ODBCw6EkyZNYtWqVWE/56NHjzJu3Di++OKLej2m0WgkJyeHHP/a19atWzNu3Dg0EXu0isQnTWWEEAll+fLlvPvuu1x77bX069eP66+/nn/961+sWLEi3kOLi0BADqhPQM7PzycYA0MuuK3+C4ySKi7wAhXrgQMHhn00ZsU6Ly+PdmZzxRdRpuOVWyxY4xQICwoKSALUVawhTPPvw1V28GDY8cCm9ErI1FBVq1a0Uqn4uQluPXHmzBkyIOzNByD4PdNGWQPaWBuGnzh+nAxFCftdUmdlkQQURvne686cwadSQWYmaT16AETdeqL40CEMgKFDhwsaX9u2bXkRuAbY/atfAeffBFr4X//FM8CVwHPPPcd///d/1/yA/i1qztVQ7QPI9ofkrVu3AtDaXwGsiiEtjbOApg5vYpSWlpLi9eLV6c5vz6HX47NYSKfhAmFmZiaHDx9m4sSJvPTSS3Tu3Bmz2cz+/fux2+1s3769QZ4nFs75v79JrVphyckhBYKh/UJ4vV5sEY2erFYrXq+3+jvu2wdXX03emjXBQ/n5+UyfPp2TJ0/y2GOPMX36dHr16sW0adPYtGlTk2yW1dRJhVAIkVCysrJYsGBBvIeRMJYvX85zzz3HzJkz8Xq96HQ6evXqVaeAfOLECTqlplZ05wy5UExp3x6A0ioCYTwq1nl5eVxy+eWgVkcNXc7UVFJD9mWMpcLCQoIjilIhNLVuTTngjdg3LC8vjyxA45+2BkB2NiZFoSBOr6UxnTlzhlS3u3KgT0nBp1Khi+EaUMehQxXdXUPH4v+8LKKS6/F4SCouptxiwazRoG7RglKVCm9EwAc45w+JtiuuuKDx9e7dG4BdwJOjRgEhsyT69AGgMxX7wdXqTSB/8yJP6O9aFdq2bQvApk2bUKvVtVrLmqfVoq/Ddilnz54lA3BbrWhCGlepWrQgo7i4wQLhW2+9BcChQ4d48cUX2bNnD9OmTePtt9/m5ptv5sknn2yQ54mFMz/9RBJgzclB6/ORolJxrA5V2ao899xzjBo1Cr1ej9VqxeFw4PF4eP7556u/4xdfwO7dfDd2LJ+tWsX/+3//j7vvvpvvvvuuyhkk69atu+DxitiSQFgPs2fP5umnnw471rJly+A6HUVRePrpp3n11VcpLCykb9++/PWvf6Wr/91jqFgf8Nhjj/H3v/+dsrIyhgwZwssvv1zjO3RCiItPbRseRNMQAfn48eN0SUurFAjTO3TABbh+/vmCHr+hlJWVYbfbyYKKcUbZiNuTnk62xxPzsUFFhTC4t1u0ZiIqFae1WoiooJw6dYouej2qliE7w/kv2J1NMBDaT58m2eWq/D1SqzlnMpEUwzWg5YFwHlox84/LG/F7f+rUKbIUBXegUqlScdJoRBvl78N94AAA+oimNHVlMBh45ZVX2LdvX3Drg7A3gfR6zng8pH/+Oe+++27ND7h/P8fUaqwta9qFsGK6KlQEwuzs7Fo1GTllMJBVh30kCwoKSAd8EeuBVRkZZB89SkEDbyGTlJTEE088QXFxMQsXLmT+/PnBTqoXi8LDh2kLpLRtCwUFmBWFMw2wX+z111/P559/Hvx3NjU1tcY3Gfr06QP+338ncOShh5g3bx4HDhxg8uTJVfY8aMgGOCI2ZMpoPXXt2pW8vLzgR2gntD/96U/MmzePl156iW3btpGVlcWwYcPC9jx69NFHeeedd1i9ejVffvklJSUljBo1qubSvWiWhg8fHu8hiAuQm5vLggULmD9/PvPnz2fevHlAxbqQOjt0CEaMgDrsTXX8+HE6JSWBVht2YazT6zmpUqEkyDq2k/7KQ7rHE2y+Eklp0YIWgDPKXn+N7ezZswRXooWsSQtVaDZjiGhWcvLkSXJUKgh9w89/fyVBwnhD8gYqSFGmLZ6zWrHVYVPr/AvclNsbuH/oRat/DZUu4rHz8vIqfr4hP1uHzYY5yt+a/tAhitTq6G8M1NFvf/tb5s2bh8pfQQu8CbRp0ya2DBnCspQULr300lpV8JTvv+dbn69WDWiMRiMtW7bk2LFjtPfPFqjJmaQkrHUIcQUFBdGnD2dkkK3TNViFMJLFYmHmzJn87W9/u+hmnBT5q4Hpl14aXG95rgH/jTaZTGRnZ9eq4lxcXMzmoUPZSkUVu8zh4LHHHqN3794888wzlcIgNK+eB02JRPh60mq1Uf9xVhSFBQsW8Ic//IHbbrsNgDfeeIOWLVuyatUq/uM//gOHw8Hrr7/O8uXLGTp0KAArVqwgJyeHTz75hBtvvDGmr0UkjsZqvS7iK9DwAGDNmjXMnj2bBx54AE99Kl1/+QusXQsvvABz59bqLsePH6edXl9xoRtRdTur16OL0lwjHvL874Jby8urvNBWZWVhAM4eP47hAqszdZWfn09bnQ7F50NVxRqtYquVpIiKxMn8fFq53eCfogcEQ4emmo3PL0YejwdNoIIUbQ1oairpdXjNd999d733IfT5fNHHkpJCuU6HOWIcJ06coA2gDWneUZaZSWqUNYTJJ07wc1IS1sbev7NXL67csIGDP/5Yq9N9e/bwHdC2Nh1JqagSnjx5MtjEqyYFNhsZBw+Czxe1gh/p9OnTtAS0kW+gZGSQqVI1WiAMsFqtFVWui0iJ/00ia04O+H9Hyy/wjZH6mjNnDvYXXsANZAMjO3fmo48+YubMmXEZj2g8UiGspwMHDtCqVSvat2/PnXfeGXyn/9ChQ+Tn54dVdAwGAwMHDgy2at+xYwdutzvsnFatWtGtW7ca27k7nU6KiorCPkTTsW3bNp5//nn+/Oc/h31E7pUlLi6BhgcBs2fPZuDAgWzbtq3Oj3Vy2bKKTz76qNb3OX78OK0gOE0xlD0pCUMVF2Xr1q2jb9++DBgwgNWrVwePjxw5si5DrrVAIDQXF1dZIQyswwtu9B5D+fn5dExKqpj6WcXFcFlGBunnzoUdc544gdHng9COlElJuEwmUsrKKInTNhqN4eTJk+cbGEUJhK6MDDK93kpvhvTp06fSR+/evYMNT+rj1KlTtPD58Gq1ENpMQ6WiKC2NlIjgfvCnn+gAmEJa8PtatybL6ay0cXnG2bOcqWXouiCDB5PsdGL44Yeazy0uRn3kCN9B7baooGK2EsDo0aNrdX5BZiZGrxdq2QzpxIkTtFGp0EVWIFu0IF1RGiwQxvrfqoZwooqqX/Hx4/gAlcUSrBC64vTG0a233orp8GEC/7eZkJJCj/ffZ6A/ZL/55ptcffXVjB8/njfeeIPOnTvTu3dv3nvvvbiMV9SfBMJ66Nu3L8uWLeOjjz7itddeIz8/nwEDBnD27Nng9JaWERczoWsM8/Pz0ev1lTaBDT2nKnPnzsVmswU/GmL/HpE4Aq3X27ZtG/xo167dBbdeFw1r3LhxdTr/rbfeqtQyfPz48ZTXcdrjzi+/pEVJCf8GlL17oRZTzIv9jRsyXK6ogfCc1YqlijeWnnrqKT766CM++eQTtm7dyuTJk/H5fJTWYcpfXeTl5aHT6dCeOBEenkLo/FW28gbouldX+fn5tA1UWqtQnpNDK5cLXK7gMW3gwi+0Qgh4MjJoBfzchKaN5uXlnV9nGaWKqrrkElpRecuH4uJiNm/ezNatW4Mf27ZtCzZdqY+ff/6ZNoA7OxsiKnnOrCxaOp04nc7gsRN79mAF1CFvwOk6dCADsIf+jLxe2hcX44jFmv/+/fHqdFxTVFRzeNq+HZWisJXaB8K77rqLc+fO0atXr1qdXxz4NyRK1TSavBMnaA2oIv+eW7Qg1eNpsA3hY/1vVV19+OGHYR8ffPABY8aM4cMPP6x0risvj2KdruJNJ/8bGd4G+j5FU9OSFO2ZM+zXalE6dODWr78m98wZyp94AoAXXniBTZs28cILL/D444/z2muv8eWXX/LnP/+50cYrGodMGa2HESNGBD/v3r07/fv3p0OHDrzxxhv069cPILgWIEBRlErHItXmnCeeeIIpU6YEvy4qKpJQ2IRMmjQp6vELbb1+sfF4PAmxKD0eG7NXpaysjOd+8xveBNYAV5aXV6wnrKF6/KN/qllKaWnUIFOenk5qFe/2azQaUvzvUM+bN4+lS5cyZsyYRqto5eXlcUnLlqh+/rnKQGjp0gUAVy2n0DWk/Px8WqnV1QZCX8eOaADvgQNounat2LcwsKYu8jW1akX2sWP8/PPPdO7cufEGHkMnTpwgh4omIurANgMhjJdeSjaw88iR4GbhUDE1rbi4uNIbpRcyNS0QCFURQRzA164dHb75piLk+28v+/bbihtDtpJI8ncRPb1jB6mBALhvH0mKQklIo7hGYzRy7soruWHHDn766afqg9vXX+MxmdhXVlbrQAhgDmzzUgvuSy7BqVJh+P57GDasxvNLDh3CoCjBdZtBl1yCxe2mtA5roatT079Vw4cPr/fU44YwceJEevXqRb9+/YLV5sB2GDfffHP4yadPU5aUhA2CFULtuXOUl5df0H689VqSUlaGwemESy5B1bcv+N+IK960if95+WUKCwtZunQpULGP5aRJk5g0aVJC/P9b1I1UCBtAUlIS3bt358CBA8F1hZGVvlOnTgWrhllZWbhcrkrv9oWeUxWDwYDVag37EKIp2LNnDzfffDMDBgzghhtuoH///txyyy1xXT+5cuVKRo4cGfYxatSoOl1sNZS5c+di9rfJP9yzZ8XB776r8X4H/N0QTfn5EGVjY3d2NikeD0QJeT169Aib6jpx4kSmTJkS1iCrIR0/fpweLVtWVD6rCIQtcnLIg6hbATS2/Pz8iupfNZuRG/zTDYt37gSoaNjhdOJKTq5UMdO3bUs2VVcIN27cyNChQ5kyZQoff/wxV199NYMGDeKrr75qmBfUCPLy8mhL9BAGYO3WDS1QEAhffrfeemulMAgwcODAeo/l559/pi2gj7JXoOaqq+gE5IVMPdYGqs6XXho8lnb11QAU7d4dPOb6/HN8gHLNNfUeW13ohg9nIHCwpqrcxo2c6tABH7WvENZVemYm36vVsGtXrc73Bbb2iKym+gOiqYECYeDfqrFjxzJ27Fg+/PBDiouL2b9/P7/+9a/jvg7/0KFD/OIXv2Dfvn0MHz6cp556ik6dOkXdDkPncOD2B0H813gpVD3FtLbqtSTFX8k3tGkDM2eizJ/PEoMB9cGD/PWvf8XlcmE0GklKSuLhhx9GrVZjNBob7PcvrwG6q4rakQjfAJxOJ3v37uUXv/gF7du3Jysri3Xr1nG1/38kLpeLjRs3Bvd66dmzJzqdjnXr1gXfscnLy+Pbb7/lT3/6U9xehxDxNGnSJFatWhVW8T569Cjjxo3jiy++iMuYAhuzR2urHWufffYZj3bqBIWFtLvpJgp37iT1u+/A36q+KgcOHOCylBRUdnvYhW6AEgiJhw5ByNopgEWLFlU6f/Dgwezbt6++L6Nax48fZ0DgTa4qAkVSUhLfqdUkxWFD9xM//0yLkpKo38cA2+WXUwg4t26FCRP4/vvv6Qr4Lr+80rRFbU4OrdVqtlQRCGfMmMGaNWuw2+0MHz6cbdu2YTabue222/jss88a7oU1oBMnTnC9wVB5iqCf1f//xbIaLtDfe+891q9fz1/+8hd0Ol29x3KrWh01nCb3748WKN2+HQYNory8nLZnz+LIzMQW8kZri2uu4SSg+frr4DH3+++zE8ioZWfOC2W67TZMc+fi+uwzqGq6enk5bNzIj0OHYj54EJPJ1ChjyczMZIvXS49t26hNOx1D4II+8mfg/3fe0kBrCAP/Vm3bto0NGzagDlnjqygKEyZMaJDnqa/abodRUlKCze0+vwerVovPbCaltJRjx45xaTX/9tQksCQlI7Ctil+1S1L8sxssHTtCly6ounRBvXo11q+/5puff+bNt99mzZo1jB07ljvuuIN//OMf3Hvvvdx77711Hl/k9FlFUZg1a1adH0fUjwTCenjssce45ZZbaNOmDadOneKPf/wjRUVF3HPPPahUKh599FHmzJlDp06d6NSpE3PmzMFsNnPXXXcBYLPZuO+++5g6dSrp6emkpaXx2GOP0b1792DXUdF8OZ1OvvvuOwoKCkhLS6Nbt27o9fp4D6vReb1ebKGNH6joEBfPrVgae2P22k5j8nq97Ny5k27t28MVV9Dj6qv5VlHotX07NV32HThwgF+0agV2e9hUuAD95ZcDUP799xgjAmGsHT9+nMsDF9nVVOFOm0yk12Fz7IbgcDhQzpxBD1BNEGiZlcU24Ort2wH4/vvvGa5SYQhUdUO1aUOOonCiinBrNBrJyckhJyeHLl26BPep1Wg0F/hqGs+RI0dop1ZX+fNTtW+PF/BV0yTl1KlTwT35srOzefzxx+s1ltNHjpDp80V9c8F27bX4AK//5/TTTz9xDeDq1i3sPK1Ox9cmE1f/+98VB0pLMWzcyL+AO2qxDUSDuOYazmq1pIeE0ko++QTKytialhY2FbehZWZm8g7w4N69/P/27js8iqqLA/Bve3rvhRBCT0JL6Eiv0gWlo5+AUkSKIqgoiCJ2iiigINIRpEoH6YSeACEECCSQXkkvW8/3x5I1SzaNdDjv8+wDmZmdvbuzZc6ce89Ferp+sR4D7JOTkWtiAuNnx5O6ugIArDIzSzVcprSeK+ipQvnTYWRkZBi8sBYfHw87AMKC7y17e9g9fozI/Dk1n9PzDElRxcZCDMC+QPdovzfegOTyZdw6cgSjR4/GyJEjsWXLFgwaNAjJ5cj4GupWm56e/tz7Y2XDAeFziI6OxqhRo5CcnAx7e3u0a9cOly5d0o1D+Oijj5Cbm4upU6fqJqY/duwYzM3NdftYunQpxGIx3njjDd3E9H/++WeN/qFnlW/Tpk1YtWoVWrduDQsLC6SlpSEwMBBTpkzB2LFjq7t5leqbb77BgAEDIJVKYWFhgfT0dKhUKl1mvTYr73QiYWFhyM7OhmtGBtC1K1q2bIljAJoHBZUqIByb3/3IQEBo2bAhcgDk3L4No2ocq0pEiI6Ohpe7u7b4TYHvy2clW1rCuoK6mpVWWFgYdNfmi7lK7+joiM0AXrlzByDCzXPn8D4RBIa6F3p6QkaE7CIK5Dg5OUGtVkMkEuHkyZMAtONrNRpN+Z5MJXoUEaGdYqOogF4mQ6JMBmkxGd7Dhw/DF8B7Hh74c9++5w4IhWFh2nExT8cBFiQwN0eIsTGsnnbtfRAcjF4A1J07F9o20MUFgx4+1BZSOXkSorw8bAUwo6oCQqEQt93c0LC4btJbtwLe3rihUlV6QHgGgIAIOHMGKKY6aW5uLurJ5cho2BDGzwZ8MhlyrazglpaG7OxsmJmZVUj7ass4/KKmw4iPj4cbAFmBYyh0dkbduDg8ejo/YVV6EhoKOwCuLVroltXr3h0AEHvpEpoNGQKhUIhx48ZhzJgx5Zo3NCIiAitWrEBwcDCmT5+O9u3b48KFC883Xy8rMw4In0PBksaGCAQCLFy4EAsXLixyGyMjI/z8888Gu2Sxl9eaNWtw/vx5ve4uKpUKXbt2feEDws6dO+Ps2bPIzc1FWloarK2tyzWAviYpbzem+/fvQwzAJDYWaNIEnp6eiLK0hElUFKBUAsV0qQsLC4NPkyaAk5PBIMvJ2RlhAByfGdOVr6oy1unp6dqgNzMTeFo4pihPHB1hExsLZGYWGzhWpLCwMOhG2hQTEJqYmOCapSWM09NBly9DcPq09ofWUO+Pp5lGUf44q2cY+q0Ri8U4fvx42RpfhfLCw2GsUgFPM8+GJFpbw7aYE8ejR47ggEyGOo8f40JkJNLT0wv1HigNs/wT6CLeT3fd3dErIgJQKqE4fBgmAMjAxZu7Pj5IiYqC7bBhQFQU7vv5ISooqErHEse2bIkue/YADx4ULiQVHw/8/TewZAliDx6EczFFj8rLwcEB4QByHR1hfPx4sQFhXFwcvAEoGzQwuD6vTh00SkvTTudSSVMrZWZm6l2Mr+ni4+PRAoDwmTlLPWQynKuGgDDt7l0IAHgVKHpl0rChdl1+1vwpoVCouxgRHx9vcK7u4hjqVssZwqrDRWUYq0GMjY1x5swZ3d9EhDNnzrwwgVFpGBsbw9nZ+YV6zuWdTuT+/ftobmICgUqlHcchEMCsbVuI1WrtCWIR0tPTkZSUBM+sLKB5c4PbODk54TYASWhooXWbNm1Ct27dsGHDBpw5cwbr169Ht27dsHnz5lK1uyyin2aMbJKSig0mACAn/2SplKXvK8L9+/fRzsREm/kqoZhXqrc30oyMkLF8OV5NS0OWq6vhIPJpQGhcxqvqNbWCn0qlgmV+4YtijmFKnTqoV8yJXtSZM6jzdDqI14hw6tSp52qPY3IyMs3Ni+zWGNWxo3a81vbtaHDsGMJNTCAw0G5HDw/McHbWFjt65RVs8PODp6en3gWeyqbo3RtpAFRr1hRe+dVXgIkJMGECYmNjKz1DCABRzZsDe/ZoJ6gvQsKDB/AGICyiMqrA2xtNgXJ3hQSAjRs3wtfXF61atcI333yjWz64hDHWNU1yRATMABgXLADm7AwXgQBRFRAQFpxPMz4+vsSAS/7wIWIA/Wr2JiZIl0igKGbqn/KMs8/vVrt27Vq9Y8kqFweEjNUgmzZtwr59+9CxY0e0a9cOnTt3xoEDByrlBJw9v5LmbXrW1KlTC41pAUrfjSksLAxd8gvbPO3+5vi0246qmGp/+RVG7WNjgWbNDG5jY2ODEIEAZo8fA89Mvp2fsV6+fDm+/PJL/Pzzzzhz5gxWr15dqnaXRXR0NGQAjKOigBLK+YvyuwCWospqRQkLC0MrmQx4ZoyZIQ0aN8Z6OztYbt+ONwAI58wxvKGpKbItLOCQllatY2UrSmRkJBpqNNBIJMWOs8xt3BhOKhXombkIAW1V1oZxcSChEJg1C12FQhw/cqTMbcnJyYGvXI50A92k89l27Yo9ADB+PFrEx+N09+6FCv8AQKNGjbAjNhZ5QUHAgQMIevQITUrIYle0uk2aYC0AwapV2oxgvlOngF9/BT77DLCyqvSA0NTUFCYmJghq2BCIiQGedmU2RHn2LMQATAtM1aW3Lz8/NAQQWaDS6/NatWoVAgMDERgYCBMTEwwfPhw5OTm6AKg8XRkrwvHjx9G2bVt06NBBL/Pfv39/ve3kT7+zBQUDQicn2CmV5Q6cly9fDl9fXwwePBiLFy/GwIEDMXjwYPz+++9F3kcZHo5MK6tCw5myrK0hjo1F69at4ePjg8aNG8PHxwetW7dG69atceXKlXK1FdB2q/UzNPaaVQoOCBmrQZycnLBs2TJcuHABly5dwrlz57B06dIyd71gFSO/hHnBW3WUMA8NDUVrMzPA2hp4Ghh6tWuHWABpxVSbDAsLgx0AWXw88LS647OEQiGirK0hy8sDnhmrUZUZ66ioKLQUCCBQKoESJiN38PLCfQDqCjjpKK2wsDA0VihKFRA2btwYnycn4+d69fCNmxtMpk8vctscT080IUJCFRfJqQx37txBCwCqBg2A4rKYT8dOZRvo+rp//350Fwig9vUFhgyBpUaDaAOTd5ck6vFjtAWgKOaEsmfPnhgH4NyAARgKQDZypMHt/P39oVQqcetpF7nQ0FA0LiGLXdG8vLywBIBSKtV207xwAVi7VltluEcPYOZMpKenIzMzE65PC7ZUFg8PD1wAtN8pxVRGNzt/HnEALIr4PEtatYIRgJzr18vdJqFQqKtG+/7772Py5Mno16+frshJdVSGLmjBggU4evQoTpw4gStXrmD69OnQaDTIycnR2y4/INQbg+vsDPPcXMSVMyDcunUrgoODsXXrVqxatQoXLlzAqVOnsHHjRoPbazQayBITITHQu0Hj6orArCzcvn0b3bp1w+uvv45u3bpBKpVixowZaF3CdzireWpmvxPG2H8ePdL+OFRh96SapDonFK4JJcyVSiWuXbuGlg0baoORpxkMb29vnAPQoZg56cLCwjDAwgLIyAA6dSpyu/TGjYGAAO2tQEZl06ZN+OabbzB//nyo1WpIJBL4+/tXWpfR7hYWQE5OoekvnuXq6oqrADwCAlAVZbiICBl378I2O7vEYBXQnnwuX74c74eH49NPPy32s0tNm8L75k3ExMSUOrNT3ZNsFyU0NBSvCoWQdOxY7HY2rVohAoD5wYMwe2Yahb937sROqRTinj2BNm2glkjgGRWFR48eoa6BeTSLEnXgABoBUD876XcBLi4uaNSqFTofOAAjIyP8UcS2zZs3h0QiwbVr19CkSRM8fvwYTQ0UqqlMLi4uyJbJsOfttzFq587/Ps+jRwNr1gAiER4/HYvqUcSULRXFy8sLD8PDgblzgZEjgcuXgbZt9TdSqVDv2jUctLbGmKLe/61bQw3A5ObNcrepf//+unkI8+Xm5iIyMhKtW7fW9ZaoLiKRCFZPi3v99NNP+PPPPzF48GBkPTP/qzo8HGqBAKKC40CfBocW6enIysp67gI8xsbGEAgEMDU1xciRI3VjwYvqgh4dHQ1ntRoiAxfBJE2a4FRQEBYuXIh33nlHN4dofs2DxYsXP1cbAeDJkye6Mes1tXv8i4hfacZqsp07gTfeAN5/H1i+vLpbU6nKW4mzMlRkCfPnLc5y8+ZN5ObmwiMpCXjaTRQA7OzscNvUFK/ev68d22SgQnFYWBgGmZgANja6eb8MqdOyJR5cv476588DBYLd/Ix1VYiOjsZooRDw8wNksmK3dXNzw0EAo0JCgNxcoJLmXMuXkpKCphkZ2j86dChxe0dHRyxcuBCTJk3C8OHDi93WyN8f9bdtw6Hw8ELBZk38TBTnYVAQmmg0ELRrV+x2TZo0wQ4Ao06c0HZTfnqRQ61W48nly7CTy4Fu3QAjI2jatkXX8+dx/vz5MgWEwkOHkCEQwGbAgGK3GzNmDAIDA/G///1Pd1L7LJlMBl9fX1y9elUXCFZ1VzahUAgvLy9cVCgw6sED4OZNbW+BApmk/C6FVREQHjlyBBg2TJslHD8euH4dKBiobN0Kq+xsXG/dGkXMnAiYmSHSygrOFVBF8pNPPgGgLSITHBwMsViMgIAA3Lp1C++++26Zu/lXtBYtWuhd1Hjrrbfg4eGBKVOm6LYhIkji45FlaQnLgoHQ06I8DaA9xs97MaJfv366qsU//PADAO082d5FdNF/FByMzgDkBgJCm3btYL11K1Li43Wfm4I9SLp06VLm9v3777/4/PPPYWdnp6uyXp5pLFjZcEDIWE2WPw/eypXA55//N1ntC6gmZOOeVVElzMsznciJEyfgbmICo9jYQgFDfMOGkAUFAVeuAO3bF7rvrZs3sSwzE3jttWIfw8fHB0cVCngdPaotJ29gHFVGRga6dOmCbt264ccff6ywecPyBV2/juXZ2UCvXiVu6+bmhpMAhEolcP58qe5THmFhYegKQO7qqlcOvjgTJ05Ejx494FnC5OVm3bpBCEB56RLwzPuqJn4miiM+f147DqWEk0ErKytccHPDO9HRwMWLuiD73r176J2XB7VUCtHTfUh69kTXgAAsuHy59JWWieB1/ToCHRzQtYSLLu+++y7EYjEmTZpU7Hb+/v4ICAhA06ZNYWpqWuVjCAFtV+Rbt25pqwobKNTy+PFjSCSSSq0yCmgDwoiICG0ma/t2oFUrYMAA7QVMe3ttsafZs3HQ2BiyEi4OPG7QAH6BgdriNBXQC+brr79GZmYmtm3bhmnTpgHQXqCZP39+ufddHoYqynfr1k1vLsL4+Hh4KhRQFKjoCQCoUwcklaKBQoGIiIjnDgjnzp1baJkkPByjnJyQk5MDExMTvXVPLlwAANgZ6F0i9fHBZgCDDx5ExytX/utBUrcuNkqlUMbHQ1LGoS6ff/45jhw5olcVNjo6Wr+gDas8xGq19PR0AkDp6enV3RRW0e7eJQKIVq8mEgiI1q2r7hZVql9++YWSkpIKLd++fXs1tKZidezYkdRqtd4ypVJJHTt2LNV9v2nTRvteePRIb917U6ZQqkhE9Mknhe4XFRVF7bT5F6ITJ4p9jNOnT1PP/G0DAwutj4iIIB8fHwJAAOjnn38usd1lkZKSQq/kP/7586W6j421NWWYmxPNmlWhbTHkz/Xr6QFAikmTKn7nKhVlCgR0uGvXQqtq02ciNTWVfgUo3dGxVNu/OXYsRcpkRK+9plv225o1dAMg+YAB/214+jQRQON9fErdFs25c0QArXvjjVLfpyS///47ASBnZ2fq169fhe23LH788UcyMjKivLw8g+s//PBDqlevXqW34+DBgwSAHj9+rF1w9iyRvT2RuTlR+/ZEMhmpGzcmW4DWr19f7L7+njmTCCD16dMV1r6rV69SM4A29upF/fv0IVdXV8rIyKiw/VeWU6dO0T2AUsaNK7RO06QJ/SoS0dKlSyvuAbOzKcvSkgigbQU+h/l29Oun/U7Oyip835gYIoBmeXoWaicBtNDSkh48eFCm5nTq1IkePnyotywoKIjPcavIyzkoibHa4MgRbde5ceO02Z+DB6u7RZWqvJU4a7LnLc6SlZWFS5cuYYCRkXbusWe6gjXx8cEejQa0eXOh8u+//vorZgqFUNetq+1+VwwvLy+cBpBnZQWsX19o/ZQpU5CVlYUbmzZhV5cu+HD6dFy+fLnYfZbFwYMHMQKAysnJYKbTkIaNGuGKs7N2/rVKnqg988IFeAGQDB1a8TsXiXDH0hKuBTIF+WrTZ+JqQACGAVAVM2avoNbt2mGBSgXs3g3s2wcAiF6xAs0BSGfN+m/D9u2Ra2ICn9BQKBSKkndMhLx58xACwG7UqDI/j6IMfXrs4+Li8Pnnn1fYfsvilVdeQV5eHgICAgyuv3jxIloWUTyqInk9HWf8MH/agVdeAYKDgTlztN9Tixfj9tq1SAFKLL4j6dIFDwHIV6yosPbt2b4d/wiFGHf8OLa4uSE1NRWLFi2qsP1Xloe3bqE+AAsDGTmBjw/ayGQVOhaSDh2CaXo6kgF4HjlSqNKxIDQUccbGgKlp4Ts7OyPL0hJOjx4hLy9Pu+zBAwieTl/UOz0dCxYsKFN7fvvtN3zwwQdo37492rVrh/bt2+Ozzz57nqfGnkd1R6SsfDhD+ALr14+oZ0/t/7/4gsjSkkiprNYmMa24uLgybz9jxgzq0KEDtW3bljp16kQzZ84scT/Hjx8nIUAKBwei6dMLrQ8ICKA2+Zm1Almj7Oxs6iiVkhog+vXXEtunVqtJJpPR5V69iMzMiApkpXJyckgmk9G6jz8mMjYmAmiXlRUNGjSoDK9A8QZ07UqZIhHRxx+X+j5vvvkmvdO0qfa5HzpUYW0xZI+nJz2RSIgUikrZ/45OnUguEBDVgixGUbaPHEkEkCYoqFTbX7lyhQBQSpcuRFIpyYcOpUyAIpo3J9Jo9LaNGzaM4gG6Xprs8erVRAD1ByghIaHMz6M427dvp/3791foPstCrVZT48aN6TUD2ZysrCySSCS0cuXKSm9HXl4eCQQC+v3334vcZvv27QSAnjx5Uuy+bty4QdMB0giFRDdulLttGo2GZjg5ab8X3nqLSCCg3157jRwcHEilUpV7/+WRl5dH169fp+PHj9P169dJLpfrrf/5jTe07b5+vfCdf/yR8kQi6tO9e4W1J7BNG7oL0ME33iA1QGsWLtStUygUdEEopLvFZOZTevak8wBdvHiRiIhy5s2jLIB2tW9PKqGQLMXicp+b8jlu1eGAsJbjD8sLKjOTSCYj+vFH7d+XLpWpOx2rXL169Xru+96/f59Wr15NyQ8fEj3TjfRZn376KQ2xsNAe+4CAQutzc3NJIpFQuI8PkZOTrkvpibVrKRygXG/vUl9EaNKkCX08caI2IHznHd3yNWvWkBCgrBYtiOrVI1qyhNQCAbW1siLNMyfuz0Oj0dDnUimpRCKiyMhS32/x4sVkY21N1LYt0SuvlLsdRcmJj6c0gC526VJpj7Hju++IAMpZvbrSHqNSaTQUamlJt6ytS30XuVxOUqmUVv74I9Fnn1FKw4a0DKDwW7cKbZt35w4pALrep0/xO92+nUgopBONGlHz5s3L+CRqhzVr1pBAICjUHe/o0aMEgEJCQqqkHXXq1KF58+YVuX7hwoVkb29f4n6ys7NJJhBQqpMTUadO5b7oefv2bToA0JPGjbXfr/36kVokoh4AnT17tlz7Lo+NGzdS+/bt6f3336f58+fTe++9Rx06dKBNmzbpttlcvz5lisVEhgLX8+eJAOphYVFo+MHzUKlUFCEU0ilfX6KUFFIJBDTbxISynnYPPX3wICkAivjooyL3oVy5kpQA/fbFF0Q5OZRuZUV/CIWU9LSbdw+Atm3bVq528jlu1eGAsJbjD8sLavdubRCQ/6OvUhHZ2BDNn1+97aoGZc3GVaTWrVsXuvn7+5OlpeVz7S8xMZG8vLzo/adZPbW/P1Exn10fHx+64eJC5ONTKGuSr02bNjSmRw8iT08iCwui3r0pVyymx2IxaSIiSt22YcOGUevWrYlWrdK+937+mXJzcsjc3Jy2t2hBGoFAO1YoL49y7Ozor4JjiMohKiCA0gGKGDiwTPfbuXOn9rtv40Zte48eLXdbDAkbMYJyALp38mSl7J9IexJ7AqC0xo0LHeeSsgo1gXrtWiKANr71Vpnu17ZtWxozZgwREY0cOZLq1q1b5EWGn11ctMf500+JsrP/W6HREAUHE40dq81QjhlDrk5ONGfOnOd+PjVZTk4O2dra0vRnegzMmzePHB0dK+QiTWkMGjSIOnToUOT6Hj16UI8ePUq1r0aNGtHy114jEouJ/ve/Ei+UFefHOXNICZBixQrtAoWCND17UrRIRJPL+P6sSCWNI1cqlXRNJKI7TZsa3oFCQQpTU1oI0C0DF03KKujvv4kAuvPNN0RElN2+PR0FaO/evUREtLJLF+3n6d69oneSmkq5QiHts7Oj5IEDKQ+gqd27az+Tdna0ysGBJkyYUK528jlu1eGAsJbjD8sL6s03iby99ZeNHk3k61stzalO5cnGlVfjxo1JaeCKdc/8rrxlkJycTK6urtQEILVQSP8AlC2RUEKXLgaDveDgYBqQ3x10x44i97tx40ZtZuDsWaJPPiHlgAG0xMiIPiqQ5SuN3bt3EwC6dfOmtlALQMmNG9Ph/DYUKFzzZOlSIoBOLFhQpscoJCuLUuvXp0iAIst4knPz5k0CQAHnzxN160bk6kqUklK+9jzr4kVSCYW0vIKyoUXRaDT0upWV9nXetUu3vDRZhWp36xapjYzoD4COHTtWprtOnz6dvLy8aMOGDQSA1q5dW+S2k999l1bY2xNJpUSmpkQdOhB16ULk7q593VxciH7/nW49fV8cP368nE+s5vrss8/I1NSUsp8GxtnZ2eTh4aELrqvCpk2bCADdMxAw3Lt3jwDQli1bSrWv119/XRtcbtqkLaDWqxfRc15sWuPkRHkikf53wb17pBII6GOpVJcBq2o9e/akkwUuKmk0Gjpx4oQuaL65dSsRQHe/+qrIfShHjaJ7AP28fHm527O1fXtSAKTMf51++YUUAE0ZNIgy0tMpQCikxx4eJe4naPx4IoCUAI0D6J9//tGuGDqU7ru4UP369cvVTj7HrTocENZy/GF5AeXlabOBz46n2rtXe+Jz+3b1tKuSVXQ2riLs3r3b4BiY089REW/BggVkZmJCmf7+RPXr0+xp02jY02BL/tNPhbb/ZtgwShUISP3qq0VmB4m0Yz0sLS3piy++oNzcXGrRogUJBAI6X8buxQqFgszNzenLL78kIqKMzZvpqLExXbayIlq/Xr8NajUFm5rSI3NzorS0Mj2OTkIC0SuvUJ5EQt2srcsccGVnZxPyqxhGRhJZWxN17Fhx4/AePiRyd6dAmYymT55cMfssxrhx4+i8ubk20/v0PVee6rRV4soVInt7SnZ3JxOA0sr4Xjh06JCucu348eOLfQ9s3LiRBAIB3Tt8mOjbb7UZwZEjiebMIfrnH+33JhF9/fXXZGRkRLm5ueV6ajVZfsA1c+ZMksvlNHbsWDI2NqawsLAqa0N+ENq/f/9C67788ksyMzMr9THIH2+4a9cuouPHtd3fZTKiCRO0XSVLOfYv6uBBygIo1EBvg/RRoygZoK2rVpVqXxWtpHHkQU2aUKxAQIrMzKJ38rR67pJiMrOlERUVRWcEAnrQqNF/C1NTKcfMjI4BtNbIiAighM2bS7W/s7/8Qv/r0UP//ffLL6QWicgBoH///bdU+9mwYQP5+PhQy5YtacmSJUTE57hViQPCWo4/LC+gTZu0gV9oqP7yvDwiBweiadOqp12VrCKzcTVNfHw82dra0uauXfWmgQgLC6MVAgGpBQKiefOILl4kOn2a8iZPJgVAUS4uRKmpJe5/5MiR1KpVK1q2bBmJRCIKMDDesDSGDh1KLi4utG7dOpowYQJZW1vTo2emusi3a+FCegJQZrNmZbuan5VFtHIlkZ0dqR0cqL+VFc16zqkj6tSpQ++//772j0uXtF1mfXzKX5zixAkiZ2dS1qtHrhUwDqY0Nm3aRF4Aqa2tibp2JcrKKjGrUG1SU4k++4xIIiFq145G9+lTbPfBoqjVaurUqRO1bt2akpOTi902Ly+P6tWrR6NGjSpyG7lcTnXr1qVxBsr2v2iaN2+uC6YB0LpqmJZo69atBICOHj1K0dHR9N5779GBAwfIzc2t2ONkSJcuXeiV/LHAmZlEixcTeXhovy+trIiGDCH66iuiv//WFl2JiCBKTiaKiiK6fJmUn3xCWSIRBQkElBEfX/gBYmIoVyikw46OpQ4wq0J6ejolPO1x8WdJ45Q1GnpYpw6FC4WkLEfBpG/HjNGOWf7tN/3dHz5MWRIJ5QF0ZcSI594/ERGlpJBGJqPf6tQp9XdDu3btSPG0cNfy5ctp2LBhFBcXx+e4VYQDwlqOA8IXjEJB1LAhxbVsSZ6enrRx40b99QsXEhkZlan4Rm1Rkdm4ypCYmEg7d+6kNWvWlHlQ/8yZM2m4mRlpZDKiiRP11q1auZIWAqR6elWWAEoRCukrqZSinpmTqShbtmzRnRiW52T4wIEDeieZ+VdpDVEqlTTc3Z2eGBlpq4+OG6fNJF69ShQerq1UGh1NFBJCdOwY0dKl2pM6c3Ntt7Bx4+j72bNJKpVSeHj4c7V39uzZZGNjQzk5OdoFwcHagFAg0GaPjh0r/cmfQkF05AjR4MHa49CtG/2zdi0BKDIorkj5Jz5bJk/Wdon09aW4o0efqzptpVAotHMCTp2qPYYyGdGnn9Lev/4iABU7P1oRvvnmGwJAf/75p8H1ixcvJrFYTDdv3qz0tlS39PR0On36NI0YMYJat25t8GJaZVOpVNShQwe97wwA5OnpSZFl/I3KHxO8e/fu/56LWq3Nii1cqO0ebG2t+4589iYXi2mFSEQ7iql8GjB1KqkBCnVzo/QrV8rxzMtPo9HQpsWLad3T9u8yN6eoUrxmIXv3UhJAyQ0bantZlNHjBw/orFBIKVZWBqsmK3NyKC02tsz7NWjWLFLIZOQDFJpf0JBnA8fjx49Tx44d+Ry3inBAWMsVDAhTn2YSUlNTSaVSkVqtprlz59Lu3bvJwcGBP1A1mEajoZSUFKJ580gjFlN3W1vdj6uHhwdt2bKFEhMTtQVInJy0GQSegqJKBAcH0/Dhw8nL3Jx+AegOQKc9POiN+vXp8uXLxd9Zo6H006dpi0ymPXF59VVd17Z8CoWCGjduTKYSCS0cOJC8ARo7ciRdu3at1G188uSJ7v1yuxxdijUaDa1YsYJMTU2pbt262vdcMb7//nuyk0opdc4c7ZhXgaDIEzaSybRVBL/8kig8nGJjY8nY2LjYSoUlCQsL+6/baD65nOiXX4gaNNA+rrm5dvqW997TdjVct47ozz+J/viD6LvviGbP1o5ZejpBMzVuTLRhAyUnJpK7uzt17Nixygp1zJw5k6RSKcUeO6Z9PQHt9DN//aXNhlQFjUYbzJ8/r32tPvqIqHt3IhMTbXvc3LTd2ePiSK1Wk5eXF/Xt27dKit3ExcWRg4MDmZmZFfo902g05OXlVe4iFrVRVb0/DUlPT6c9e/bQtGnTaMKECbR7925dlqcs1Go1tWvXjgBQmzZt6P79+4W7IOe/N69d03Yt3bWL6NAhOrBwIRkJBPTDDz8U+xgajYaWDhxIUU+/kzSNGxO9/TbRDz9oh2RcuqTNPOZfYKoMajUpLlygEx4epAAoVSSig6++SnHR0aXexRQ/P3oiEpHaxkabNb13r9hhBfmUAQF03dKS5ABlHDhQnmdROhkZpPL1pQyADr/6aonDCxYvXkwR+YXQrlwhmjCBLv37LweEVURARFQxMxqy6pCRkQFLS0v4+fnh+vXrmD9/Pr766ivMnTsXEydORIMGDXTbDhs2DKmpqRg2bBh69eqFOXPmYPLkydi5cydWrVoFqVSq2zY0NBTDhg3DpEmTMKvgJMEGJCYmYv/+/WjevDlatGgBiUQCALh27Rr8/PwgEAgq58nXEHfu3EG9evVKnGTckNzcXCxduhS/rFiBKQkJmA/gIwDfAzh79iyWL1+OXbt2AQDMzc0RFhYGx3v3gB49gDfeANauBYyNK/T51BSP//oLaatXw71NG9jMmwdYW1fZY1+8eBExMTHo378/evr4oEt4OD6VSmFkYoJrHh6wv3kT9QDcNDaG88iRcGjZUjt5r1wOZGYCkZHIDQ2F8No1yDIykCAQQLxoEWw//hgQiQo9XlZWFkaNGoUDBw5g9OjR2Lx5c5k/N7dv30ZERAQGDhxY7ucvl8shFoshMtDWgtLT0+Hj44Po6GgsWbIEc6dOheD+fSA9Xfs6SKWApSXg6Ah4euqeu1qtxoIFC7Bs2TJER0fDysrqudv66quv4ujRo5g5cyamTp2qmzQbRMC1a8CJE8ClS0B4OBAZCWRk/HdnS0vAwQFo2hTw8wMGDQKaNYOGCNOmTcOOHTtw48YNuLu7P3f7yiIrKwv16tXDqFGj8P7UqfA8fx7CtWu17QeAJk0AX1+QpycE9eoBtraAubn2JpMBEon+TaUCcnOBnBwgO1t7TJ69paYCCQlAfLz2FhenXQ4AAgFQpw7QogXQqROy/Pxg2rkzBCIR1Go1Fi1ahEWLFuHy5cto06ZNlbxGMTEx8PT0hFKphJ+fH0aPHo1r165BJBJh8+bNOHjwIF599dUqaQurWHK5HJs2bcKkSZMAAGZmZtBoNMjLy0P79u3RvHlzzJ8/HxEREYiKikJeXh5iY2Mxf/58vPHGG9iwYYPeeUxRLp08ie969MBnfn5wSUyETUICJAqF/kampoClJTSWliBzc4isrQEjI+1NJvvv//l/C4WFL4MplUBWFpIeP4YqNRWOABSBgTDKy0MsgKTx49Fs5UoIzM3L9DrduHEDQzt2xPcyGYbm5EAkl0Nhawupt7f282ppCUilIJEIgtRUKKOioAoKgnFSEh4CyF62DM1mzCjTYz63jAyc8fdHp7AwCIRCwNsbivr1EQvArmlTWDg6al9DoRDIytJ+H924AezbBwBIOXgQdv37Iz09HRYWFlXT5pdVdUekrHzyM4TlvR07doyWLFlC9+/fp4sXL+qtu3z5MgUGBhp87H/++YcmTZqk27ZHjx4UEhJCgwcPJgDk5+dH9+/f17tfwauZSUlJtGzZMsorkDXZs2cP+fj40NmzZ+n48eO64hj9+/enuXPn6rYLCwsz2NUsJSWFVCqVbkC7Wq2mO3fu6G1z9epVWr16tV43m4iICDp48CBpNJpSXXFVKpX00UcfEQCaMWOG3rqgoCC6fv06JSQkkEqlooSEBAoMDKTs7Gz6/PPPafPmzZSRkUEjevSgtwAKFghIBdDcAq+7XC4njUZDFy5coFGjRpG5uTkBoP/973+k3rJF202vQQNtpqMU48zyFayydu/evRKzQEXJzs7WZjWJSlU8ICsri27dukUxMTEG11+8eJE+/PBDWjxxIp318iIC6DFAuQCpzc0p7+OPKT04mIi044kKTjKc+XQgfk5OTpHHLr+bp1KpJHlODlF6OmliYojCwoiuXyfVwYN0YepU2tK6NX0F0A6A7gqFpAZILZFou8olJlJWVhZt3rCBwpYsoT0iET0CSCkSaU8BxGJSmpnRLYAOAPQFQK+Zm9O5Uk5Z8DxX1qvbsWPHdO/ZFStWkEqlIoVCQYmJiXqfayLtaz9w4EDd9h8VM8dVaRXs5mpra0tHjhwxuN3jx4/p+++/p+zMTMpOSyN1bi5lZGSQUqmkq1ev0pEjR0itVlNkZCT5+PgQAL3vm6oyY8YM3fPp2LEjTZkyhT4cPpx2DhpEV/386LaDAz0SCLQTeReVjS3hphEISGVmRhpXV0pzd6fIhg0pvEMHevz665T66aeUs2EDya9eJU12Nn355Zc0YMAA3WsCgKytrUkkEhEAWrRoUZW/RgcOHKBRo0aRi4sLAaB69eqRi4sLffbZZ9U++XhNFZIYQjtDdlZ3M0rlp59+otatW9NHH31ExsbGNG3aNHr11VfJxMSk0LmLSCSiESNGlLnL7JQpU3T7EADkCFAzgHoBNNfFhRZaWNBKW1taZWREm8RiuuzmRlccHemyhQVdMzKiEFNTemhqSqn29pRsYkJxIhElGxtTipkZxUqlFCOVUoKFBYWZm9NZgA4BtE0kok8EAvqmb186X86hEJcvXyYzMzMyB6gfQF8BtNfMjG5bWVGMgwOFGxnRfYBuymR01NiYvgdoSt26dOXpJPJVKT4+nvr6+tIkgPY5OtItGxu6B1AqQIr8306AVDIZJUskdEogoBVPl3V6eow4Q1j5OENYy+VnCL8CIEPxUZ9EIoFcqdT9Xa9+fYQ9eKC3jUAohFqjKXRfgUCA96ZPx979+xHx6BFsbG2Rm5eHzOxsEAB/f3/U8fDAzl27Ct1XJpOhUePGiIyORp06dXD3/n0QgGYtWiA8PBwxcXHw9vFB//79EZ+QgL927EBWTo7ePsa/+Sb+3LABGgBz587Fps2bERUTAwKwc+dOhN69i9NnzmDY66/jnXffhZGREXLy8tC3Xz9kZWXhzLlz0ABY/PXXCAoKwj8HDiA7Nxdjx47F4CFD8OVXXyHwxg0QgBEjRuDY8eOwd3DA+DffxNXr16EB8O6772LHzp0YPWYM4uLj8feuXdi+YwcIgImpKSZPnoyOnTrh8aNH+HjWLBgDMAbQrnlzZCQkIDc+Hk4AnAC4AWgBoB4AEgiQ27EjJF9/jVO5ubC1tcW9e/cwevRovWP9zz//YNCgQbq/TyxfDqfly+EdHg6IxUDr1lB7eyPJ1hZSDw9YN2mCR7m5sHB3h22dOgi4eRPdevaEQqFAv379YGtri82bNwMAZs6ciddffx2tW7fG8ePHceDAAQwdOhSBgYHw9fVF27ZtERYWhkaNGuHatWuYNWsWHB0dcfLkSXz66adYvHgxtm3bBicnJ2zduhUtWrTA1KlTcf36dTg4OODa1at4a9QoQKFAA3d3bF63Dt8tWAAPU1NkP3oETXw8XLOy0AZAewDJAgHujhoF1wUL0L9NG7ybno4pAIwAPJHJ8FgqRRoRXBo2RGRCAuJiY9G6ZUvcCQmBkVgMFwcH+Hp5IT02FprMTEhVKmQnJsJMIICxRgOJRlPkZyobQJ6ZGXKdnXEoKgpeb7yBHj/9pM3GPOPJkydYvnw5Fi1ahHlz5sC/bVtMnDgRaWlpqFevHo4ePYr69esX+VgvirS0NHzwwQf4448/AAD29vZISkqChYUFWrdujfr16yMkJATh4eGIjY0FAIwbNw7r168vMQtZEo1Gg7/++guurq6YOHEioqKi8Msvv8DS0hKfffYZYmJi0K1bN1y+fBnx8fG6+9WrVw8xMTEgIiieZgckEgmUSiXEYjGaNWuGv//+G56enuVqX1mFhIRg/PjxGDZsGLZt24aYmBi4uLjgwYMHkMvl8Pf3x7Vr1yAG0NDRETKFAsrUVEgBSJ7eLIyM0LtbNxw8ehSZGg1yAOQAkEskeKJUQmBqiqzsbHh6eiIiIgJisRgqlapQW6ytrZGamgoAePvtt+Hr64s9e/agZ8+esLOzg7+/P1q3bl11L84znjx5gocPH8LPzw9CobDa2lFaCrUCgXGBaOfWrsofe1vwNjx48gCfdfmsyh+7PFQqFcRiMQAgISEBa9euRbt27dC2bVvIZDKIxeLn6oWk0WgQFBSErKwsdO/eHT///DMuXLiAjIwM2NraQiwWIzs7GxYWFli/fj2USqXuvr1794azszOuXr2KO3fuwNbWFn379sWWLVsAAEOGDMHevXsBAP3790eHDh3g4eGBS5cu4e2330bLli3L/8JA28Po8ePHSExMxIMHD/DXX38hMjISd+/e1dvOysoKU6dOxZw5c8rVG6O8AgIC0L9/f6SlpWHChAlwc3PDF198AQAQQHuu5+joiMTEREweMAC//vMPPmvbFl9dvswZwirAAWEtlx8Q3rewgJOZGWQSCfJycwEAudnZUKvVsLO1hVqlgvDp9nm5uRAAcLC3x5OUFIiEQt16wdOblaUlREIh0lJTdcvyb0KBQHcTi0QgtVp7UkcEjVoNaDTa7arlFanZkgUCqO3tkW1ujj0PH8Ksc2e8u3Ur4Opaqvvn5eWhZcuWel/4rgDmNmyILjIZLKKi4JiWhqI6kcqhDXgUAgGURBBIJMhTKqECoAYglEiQq1RC/XT7/OOY/29pbvnbmkgkECqVkEF7saI4agDpdnYwbd8e1K8f6PXXYWxnBwCIjIzE0aNHkRUbi9x9+6AMCoIXALOnN1OhECqNBmoAGgAyExNk5uRAaGqKhOxsZD19zmRkhOS8PGQ//dupXj08jItDUm4uMgE4+/pi2OTJ6DFwoK6LIBGVeLJBRPj+++8xd+5cAIBUKkVgYCAaNmyo6z79MsjMzMQHH3yA33//Xbds6NChEIlE2Lt3ry7geP3117Fly5ZKeW1ycnLwzjvv6E7M+vTpg44dO+LAgQN49OgR+vfvj9OnT0OtViMyMhK+vr7o2rUrvL29Ua9ePezcuRPR0dFYt24dnJ2dK7x95ZGTk4PIyEg0btwYOTk5OHDgAG7duoXExET06NEDUVFREAgE8PLywtq1a3H48GHMnTsXkydPRl5eHjIzM3HhwgU8efIECQkJuHjxItLT07Fo0SKMHDkSx44dw9atW+Ht7Y20tDSYmJjg1KlTUCqVOHr0KMzL2K2NFfbwyUN8duozbB22tcof+7sL3yE9Lx2Leyyu8seu6QoGnYY8ePAAVlZWsLOzw/379+Hl5QXR027T+/btwyuvvAJ7e3s8ePAAERER6NWrF0JDQxEWFqZ3EbcqKJVKXLhwAQ0bNoS9vT3EYjHUanWxz68qhYeH4/Tp0xg5ciRMTEwQGBgIGxsbpKamYt++fZg1axY0Gg0sFQoInZyQsWULLMeM4YCwCnBAWMvlB4Rl+bBMmzYNTZs2xbRp03TLAgICcPLkSaxfvx5jx47VXbWJi4uDWCzGmTNnsGDBAkyYMAGzZ88u1ePExcUhLS0NDRs0QF5uLkxNTJD65AnOnD4NEKFf376QSaUAEcIfPsTNGzfQvl07RD5+jNZ+fsjJzoaRTAahQIBDBw/CSCZDWmoqjhw+jI/mzEGD+vXxz/79WLN6Nbp364Z2bdtixIgRGDt6NN7+3/9gYmwMlUIBUxMTXL1yBYcPHcKRI0fQu2dPrPz5Z0RHReH7775DXm4uPvn4Y3jUqQONWo1LFy+irocHjh09ihUrVmDenDkwMzXF8mXL8M6kSfh5xQr07NEDH82ZA6lEAhBBqVAgJjoa4Q8fwsraGtv27kW6QoE5n32G5OxsWLu4oLG/v3ZM1VNXr16Ft7c3TExMSn/AoQ1AwsLCMHHiRCxZsgQTJkzAvXv3AAAikQjdunZFckQEssPD8eGYMbAAkJWYCHVGBvq+8grc7eyQm5qKJ0lJcHN0RExUFFLi45GWkoJbQUF4pUMH1K9bF7t37UKuXI56Xl6wd3KCtY0NbgYH4+GjR/CoWxcOzs6wsLTEmXPnMHb8eGTn5kJqZAQjY2P8sHQpVACatmiBbJUKMktLvPnOOxAYGWH/0aOISUnB/6ZNw4O0NDTt0gVCW1uDY+uelZeXBycnJ/Tr1w9bt26FRqPR/dg9efIE1tbWEIlEGDhwII4cOYINGzZg5MiRePToETw8PLBkyRKkpqZiyZIlkEqlICLExsZCJpPB7mkA+rzu3LkDU1NTWFlZwdLSslz7qs1SUlIAAKmpqbrsaHJyMkxNTaFSqWBqalqp2RwiwqlTp2Bubg5/f/8iA/qsrCyYmpq+kGOcNRoN4uPj4eLiUt1NYQXcjL+JmUdn4tSbp6r8sacfmg6ZWIYfev9Q5Y/NWJllZgIWFshYtw6WEyZwQFgFOCCs5Z4nICxO/tuhtp4kBQQEwM/PDzKZ4ZzU1atX0bBhw1KdsKempuLbb7/FggULYGxsDI1GA6FQiOzsbJiamlZ005+bSqWCRqNBXFwc7OzsdG178uQJbGxsyrSvuLg4XWYkv4tMwUyOQqFAamoqHB0ddcsMZdH279+PR48e4f3333+u51Scu3fvws3NDWZmZkVuEx8fj4SEBDRv3rzCH58xxp7H+cjzmPTPJIROC63yxx6yfQjcLNyw8tWVVf7YjJWZQgHIZMhYtQqWU6ZwQFgFakYOmdUYtTUQzNehQ4di15dlvIu1tTW++eYb3d/5WY2aFAwC0HUF8fDw0Fte1mAQgF43OUNd+qRSqV4wCBh+z1RmN5nGjRuXuI2TkxOcnJwqrQ2MMVZWWYosxGfFl7xhJUjIToC9iX21PDZjZSaRaKsc5+VVd0teGjzMizHGGGOskmXKM5GWl4Y8VdWf5EqEEuSp+eSa1RICgXY6j2enA2GVhgNCxhhjjLFKlqXIgqu5a7VkCY3ERpCr5FX+uIw9NyMj7dy+rEpwQMgYY4wxVskyFZmoY1kHaXlpVf7YMrEMcjWfXLNaRCbjLqNViANCxhhjjLFKlqXIgoOpA3KVuVX+2AIIwDUEWa3CXUarFAeEjDHGGGOVLFOeCXsTe+Sqqj4gZKzWMTLiDGEV4oCQMcYYY6ycbifeLnZ9liIL9qb21VJUhsDZQVbLcIawSnFAyBhjjDFWTm/ufbPY9ZmKpxnCKu4yqtaoIRTw6R6rZThDWKX4G4IxxhhjrBzyVHm4k3Sn2HF6+RnCqu4yKlfLIRPJqvQxGSs3mYyrjFYhDghrgF9//RWenp4wMjKCn58fzp07V91NYowxxlgpRWdEI0+VV2ywp1ArYCmzrPIMoVwlh5HYqEofk7FyMzLiLqNViAPCavbXX39h5syZ+PTTTxEUFIRXXnkF/fr1Q2RkZHU3jTHGWAk0pIFao67uZrBqFpUeBQEEeJL7pMhtBAIBjMRGVT6GkDOErFbiaSeqFAeE1eynn37ChAkTMHHiRDRp0gTLli2Du7s7Vq1aVd1NY4wxVoJ9d/dh6aWl1d0MVs0i0yPRwLZBsQEhEcFYYlyhXUaJCDnKHATFBSEqPcrgNnKVHDKx4YDwUdojTDkwBQo1Z2JYDcNFZaoUB4TVSKFQ4Pr16+jdu7fe8t69eyMgIKCaWsVqEoVagfVB67E2cG11N4UxZkBURhRORpys7mawapaUk4TGdo2RkpNS7HbGYuMK7TJ6MOwgfFf5YumlpRi1axQOhR0qtE1+htBQpdHfr/8OsVCMdYHrKqxNjFUILipTpTggrEbJyclQq9VwdHTUW+7o6Ij4+HiD95HL5cjIyNC7sRfXtuBtuJ9yH7tDd1d3UxhjBsRlxuFu8l2e9PsllyHPgKeVZ7EZQgAVmiG8m3wX3174FtcmXcPGoRtxZOwRrAsqHNgVzBA++z69nXQbX3T7Av9G/Fumx07JScGN+BvP3XbGSiSTASEh1d2KlwYHhDWAQCDQ+5uICi3Lt2TJElhaWupu7u7uVdFEVk3ORZ7DtDbTYCIxQaY8s7qbwxh7Rnx2PBrYNkCmgj+fL7MMeQbqWtUtMSCsqDGE6wLXYeaRmdgxfAesja0BAGZSM8hVcijVSr1t8zOEUpEUKo1Kt5yIoFQrYWNsgxxlDjSkKfXjf/zvx/jp4k/os7kPlpxbUu7nw1ghI0YA7dpVdyteGhwQViM7OzuIRKJC2cDExMRCWcN8H3/8MdLT03W3qCjDYwbYiyEmMwZuFm7o7tkdx8OPV3dzGGPPSMlJQRO7JkjMTqzuprBqlCHPgIelR8kZwgrqMvp36N84MPoAnM2d9Za3dW2LyzGX9ZblZwhlIpleMJqalwo7EzsAQD3renic9rhUj61UKxGZHomNQzfi6NijkKvlmHZwGu4k3Snns2KsgD59gL/+qu5WvDQ4IKxGUqkUfn5+OH5c/0T/+PHj6NChg8H7yGQyWFhY6N3YiykpO0n3Yz2syTDsCNlRzS1iLwqFWoEJ+yYgOSe5uptSbkRUrd01CQQnMyckZCVUWxtY1bgYdRFbbm3Ry7Lly5BnwN3SHeny9GL3URFdRq/FXoOXtRfEQnGhdT3r9cTxh/rnFPkZQiOxEeTq/+Z1i0qPgruFtpdRU/umpQ7oToSfQK96vXR/L+iyAD3r9cTkA5PxwdEPcCHywvM8LfYM31W+uBJzpbqbwV4SHBBWs9mzZ2Pt2rX4448/EBoailmzZiEyMhKTJ0+u7qaxahYQFYCO7h0BAI5mjpCJZXwFllWI+yn38W/Evzgcdri6m1IuX5z+Au3XtUfbtW2RrciutnY4mjoiIZsDwupERJVeKfP7gO8RmR6Jz05+VmidUqOEvYk90vMMB4RKtRJioRhGYqNyBYQa0mD+yfn4vMvnBtf7u/jjRsINvWV5qjyDGcKojCjUsawDQBsQhiaHlqoNe+7uwbCmw3R/CwQCDG0yFG94v4E3vN/A2qC1PO69nPJUeYjLjMO5xzwvNasaHBBWsxEjRmDZsmVYtGgRWrRogbNnz+LQoUPw8PCo7qaxanYh6oIuIASAzzt/ji/PflmNLWI1WVpemsHMhSEhiSF4w/sNhCT9N2A/OScZtxJuYfOtzbVmXr2A6ABcnHAR7/q9W20noAII4GDqwF1Gn1OeKu+5M7yBcYGYc2wOll1ahm4buqHDug6Qq+Ql3/E5xGfFw0hshHmd5uF63HWDnxFLI8siM4S5qlwYS4whE8lKDFxVGlWR2fuPT3yMkT4j4WDqYHC9RCQp9D2QPzG9kdhI7/WJSo+Cu6U2Q9jErglCk0oXEMZkxqCuVd1Cy99r8x7aurXFz/1+xs9XfuZx7+UQlxmHVs6tEJ9luMAgYxWNA8IaYOrUqXj06BHkcjmuX7+Ozp07V3eTWA0QkhQCbwdv3d9eNl4AwCeerJA8VR76b+2PcXvGlWr724m38VqT13Av5Z5u2Q8BP2D20dk4GXESf974s1JO5q7HXkdyTnKZilcAwPJLy3HkwRG9ZQFRAWhg0wACgQAjfUbi98Df8eqWV/Hm3jfRZ3Mf/HPvn3K1NUuRVeI2cpUcUpEUjmaO3GW0CBrSYNmlZQZPbJNzktFhXQd8e+HbMu3zx4Af0fGPjph7Yi6GNhkKB1MHnBh/Au/6vYtPT35a5AWNHGUOQhKfr2rhlltbMMZ3DAQCAbp7djc41YiFzKLI4kK5ylyYiE2KLBhX0KGwQ/j+wveFlkemRyI6MxpvtXir2PvbGtvqBZT5XUZlYv0MYWR6pK7LqIOpAxJzSv5tUagVkAglxW5jJjXDB+0/wIrLK0rcX0EBUQEISQxBcEIwdobsLNN9XzQxmTHwc/ZDfHb1B4RZiiwsPru4upvBKlnhDuiMsWr1KO0R/r7zN4zERhAK9K/ZDGo4CG3XtsXJ8Sfhae1ZTS1k1e1O0h2EJoViWNNhuJN0B79c+QUz287EP/f/waO0Rwav3hf0IPUBvO29ddUIL0VfQkBUAM68dQbRGdHos7kPzkedx/rB60vdJg1pcCL8BJZfXo5mDs0gEUkwymcUojOi8X3A91CTGsZiYxhLjCFXySEUCPFNz2/Q2K5xiftedW0V+tXvh771++qWfXX2K2wbtg0AYCo1xck3TyI2MxYAYGdih9lHZ+Nh6kPMaDsDGtJAqVHCSGxUbPsP3D+ANdfXoH+D/lhwegEuT7yMetb1irxPujwdVkZWcDZz1j02AMRmxmLDjQ34+JWPS3xuz0rOScbrO1/HkTFHipxMvLppSIMjD45g151d6FK3C8Y3H1/kthGpEfj63NewN7HHmGZj9NbtDNmJjzt9jA03NyA9Lx2WRpbFPi4R4auzX+FGwg2cevMUJEIJBAIBOrhrx9xPbDURq6+txhdnvsCibosK3X/JuSW4/+Q+/hpe9kIVRx8exYx2MwAAo31H48szX6KX13/j6IgIQoGwyGxnjjIHxhJj3bYFnYw4ia51u+q+7y9HXzbYBXn/vf0Y5TOqxLY2tW+K0KRQvOLxCgDthQtTqWmhMYRJOUm6TGNpAlUAuJd8r1Sf2R6ePfBH0B+l2uethFv4+N+PYWtsixxlDuRqOXKVubiTdAdRGVFY0W8FTCQmUGlUOBVxCh3rdISJxKRU+66tYjJi0NS+qV4vjuryy5Vf8Fvgb5jbaa7BcavsxcBHlrEaZu/dvdh3bx9+efWXQuuGNx0OiUiCL858AYFAgDUD1kAqklZDK9mzUnNTYSo1hVgoLhTIVyQNafDOP+/A2dwZOcocbLi5AX3r98XwpsPhauGK1ddW45ue3xS7jyxFFsxl5jCVmiJLkYUl55dg+/DtEAgEcLd0x51pdzDy75FIyUmBrYltsftSa9RYeWUlAOBGwg30b9Afao0atxJuYemlpWhq3xRrBqyBRCSBrbEtdoXuglqjRte6XTFh/wTseH0HbIxtitw/EaGBbQM8SH2gWxaRGgEXcxe9AEIsFOvGQwHAqv6r8H3A93h166uQCCVIy0vDjLYzcC7yHLysvbAleAvaurZFrioX9ib2eJD6AB6WHvhz8J/4N+JfbHltC6YenAo/Zz8s7mH46nhaXpo2IDR3RlxWnG75dxe+w9XYq4jKiMKv/X8t9vUraNmlZTgUdgj+zv6YfXQ2env1ho+Dj653QGXLU+XBSGyEDHkGkrKT8Hvg70jITsCaAWsgFoqRkJWAt/e/DbVGje6e3fFFty/w3YXvsPHmRqwdtNbghYjYzFgMajQI12Kv6QWEao0af4f+jX9G/QNzmTk+P/U5lvdbXmz7Dtw/gNjMWCzts9Tg955AIMCU1lMwePtgxGfFw8nMSW99UHxQocnZo9KjMHDbQJx+6zSsjKwMPu695HtoZNtIdzJcx7KO3vEujVxVrsEg5nHaY0w+MBlvt3wb8zrNAwAEJwYb3EdoUigGNBxQ4mPVsayDqIz/KpDL1XLYiGwKjSHMf//mEwvFUKqVkIiKzgBGpEXAy7rk96OxxFjXHbikYHPzrc2Y4j8FrzZ4VffdmZidiMdpjxGTGYMBWwfARGKC1LxU9KrXC99e+Ba2JrZwMXOBs7kzXqnzCtq7ty+xTbVJbGYsmjk2K/R+rQ7nIs9hpPdIBCcEo6VzS6TkpMBCZlHs+4TVPhwQsheKWqOGSCgqcn1pfpwKSspOgr2pfUU0rVSICMceHsPhMYdhJjUrtF4ikmBYk2GQq+SIyojC9xe+h42xDVLzUtHApgHau7eHm4VblbW3KBrSQKVRVUqwuvfuXrRxbQMXc5cit4lIjcDlmMsY6TNSb3mGPANCgdDga1sepyJOYeGZhbA2skZCdgIOjzkMtUZdbDAVnBAMlUaFls4tcTf5LvaE7sGV2Ct4v8376ObZrcj7hSaFop1bO4xvPh4LTy/UC6jau7XHDwE/YMm5JZjXaV6J7/Wmdk1x7OExSEXSQq/nkMZDsDV4K6a3nV7k/ZVqJUbuGol6VvVAIPw+8PcSryCPbTZW9//ven2H4TuGY/Nrm4s8njnKHJhJzZApz4SGNBAKhDgYdhCDGw0u9nEEAgE+6vgRPur4EQDgzKMz+PTkp5jeZjqScpKwffh2nI88Dx8HH2TKM2EqNUUr51YAoHvf9PbqjUHbBiFXmavL7hSUf0ItFAj1TtzCnoThzFtnMHb32FJ/hxx5cAR3ku5g49CNcDJzwt93/kZ8VjzWXF8Ddwt31LepD4lIgvfavAcBBNqAMz0Keao8DGs6TJtZUcnhZOaE85Hn8Vvgb/iu53dwtXAFoO3qFxgXiFxlLq7EXEGuKhcnwk/gg/YfoIVTC+wK3YXdobt1J3n1reujb/2+CE4MRp/NfWAhs4CR2Ajf9/oePg4+unYv77sctxJuYeHphfhzyJ+FnldMZgy6eHTBjjv6VZLnHJ+D/7X4H0wkJuhbvy+OPDiC4w+P62XdCkrMTsSyy8uwd8RemMvMi30tP+70MZacW1IowBQIBJAIJbppGNQaNSYfnIz3276PeSfmYfWA1Qb3FxQfhDaubfSWiYViKNQKSEVSaEhT4mctR5ljMCDcHboby/sux0+XfsKMtjMgEAggEAgMdqsuWASmOO4W7giICtD9nR/oPzsHokKt0MtCu1u4IzI9stgLEI/SHpUqQwgA3vbeuJ14G76OvsVuF5wYjG97fqv3GjqYOsDB1AGt0RpDGg8pdJ9sRTbisuIQlxmHr89/jdcav4b/tfxfqdoFAAlZCbqeBzOPzsRfw/9CWEoYnM2dIRVJ4W7hDqFACIFAgH/D/4WFzAL1beojNDkUHd07QiQUQUMaHAo7hG51u8FUaorYzFjEZ8WjlXMrRGdEIzQptMj3c0ki0iIwuHHR33FEhDOPz8DHwQe2xrYQCATaissgHH94HM2dmsNSZgmlRolcZS4czQxPZRaZHlnseypPlQeJSAI/Fz/cTryNls4t8fG/H6O3V28Mbzpcb9vw1HDcTryNHGVOod/efOcjz+NUxCl82vlTCAVCxGbGwlJmCbFQjB0hOzDadzRuxN9AA9sG+OrsV5jfdn4pXi1WETggfMEZCoA23NgAbwdv+Lv465ZFpUfhXso9fH3ua8zpMAf9GvQDoM0kiIVihCSGYMPNDRjWZBi61O1SqsdWaVTIUebAQvbf1BhEhMfpjyEUCPW+hBRqBZJzkuFi7gKVRlXopDIhKwFGYiNkK7NxIvwExjYbC6FAiPiseKwNXIshjYegkW0jtFzTEn8N/0tv7B2gzd6k5aVh7J6x+K7nd+hYpyOICFEZUbifch896/Us1P4MeQaa/toU4e+HA9B2W/ug/QeYf3I+xjUfh6b2TQu91iqNCgKBAKciTkFDGvTy6oXU3FSYSEwKnVB+dfYrvN3ybd2JcJYiC903dMfYZmOLDVgEAgHGNBsDIsLb+99GckwyhjUZhvDUcPwe+DuGNx0OoUCI7be3Y+PQjRALxdCQBgq1Au4W7kWeuBARNt/ajDHNxkAoEOJWwi3Ym9jDzsROd5IYlxmHKzFX0K9BP4gE2h/E/B+JgtZcW4Pj4cexfvB6JGYnQiKS6LIHCVkJSMtLQyO7RkU+R0Ab3KfmpeKtvW8hV5WLMb5jMK7ZOHx74Vv4Ovjix94/IiknCVKRFDbGNghNCkV9m/qwNLLE74G/IyQpBCGJIWjv3h4hiSEY2GggvrvwHe6n3MfaQWtxN/kuJEIJVl9fDTOpGepZ1cO7/u/C0dRRd5IUFBeEZo7N9C4y5Kny8PPln/Fhhw9xJ+kOrsddx/57+3Fw9EGYSc1wMuIkWqxuATcLN/Rv0B+5qlx88sonhborfnbqM2QpstDcsTluJNzAVP+peL/t+xiwbQD239uPtm5tDf6oXo65jHZu7dDMsRl2j9AvpCIQCLD5tc2Yc2yOtkptnY6F7l9wDJCPgw/mnZiHQ2MOFdru9aavo//W/nityWu6oKIglUaFeSfmYXCjwcV2GSxOK+dWWPnqSnx68tMiu6dmyDNgIbWAg4kDwlPDUd+mPk4/Ol2m7qwA0KVuF5x/+7zespK61gLA0MZDseHmBkz2L1z5+dkMCxEhOScZNsY2EAvF6N+gP44+PKoXBBsSlxmHny7+hP2j9uveJ/knWxNbTUR8VjxuJtxEQlYC+m/tD7lKjmaOzeDn7IeYzBi8vvN1pOSkwN7UHgq1Ag6mDvig/QeYcUTbXTZTkYknuU8wsOFACCCAv4s/AqICcGL8CXx97mscDz+OTnU64cfeP6KtW1u9DPfwpsOLDXYEAgGaOzVHal4qMuWZhYK12MxYtHTS/36Qq+QITw3HT31+0i1b2HUhJv0zqcgT6AP3D2BSq0klBoMA0M6tHX4I+EGvaEr++76hbUPcT7kPX0dfnI88j/Zu7fF2y7dxIvwE4jLjdPP6fXP+GwggwNxOcxGcEIzXvV/Xe4wmdk1wN/kumjk203Z3lRXf3TVHmQNjceGLChFpERjSeAjGNRuHjTc3wsvGCx3dO+JcpH51SSLSXRApibulO6JC/ssQ5l/QkIllxRbd8XXwxc2EmxAJRUV+Nh6nPUYfrz4ltgEA+tbvi8MPDusCQoVagZ0hO/UyxdmKbJhJzcp0oRbQdhOvb1Mf9W3qo41rG3xw7APEZcWha92uui7EhoSnhsNEYoJJ/0zCxJYT8cvVX+Dv7I/X/noN/i7+SMtLg42xDR6lPQKBdEG/i5kLErITIBaK8eXZL2EqMcWT3Cdo7dIaS84vQRuXNriZcBMSkQTuFu548OQBnMycsPzycjSwaYB61vWw5+4edPHogs4endHQtqHuezUyPRKXoi+hV71esDa2BqANvD0sPSARSnRtyHc47LD2MV3b4I+gPxCdEQ0LmQVSclMgFAjhaeWJRWcXITU3FQDgZOYEKyMrDG40GJ09OuuGmzzJfQK/3/ywduDaIoPPG/E30NKpJZzNnHEx+iKICOcjz8PG2Eb3HaVUK7Hw9EKcfnwabV3bIjgxGMOaDNOdN8hVciw+txiR6ZFQkxr2JvbYcGMDTKWmWH1tNTLkGTCTmqGFUwtsvLVR+50lz8TV2KscEFYhDghfEMsuLcPwlsNhY2yDu8l3kZaXhhxlDpKyk9DdszuEAiFEQhF2hOzAyYiT6FmvJ+pa1UXn9Z3xvxb/w847OxGdEY2RPiOx8upK+Lv4w87EDvNPaj+MQfFBGN5kOD4//TmsjazRxK4JTCQmmNZmGg7cP4BRPqMgEUkQEBWAXXd2oZ51PcRnxSMkKQQa0iBdno7xzcbj5KOTuBh1EenydPSt3xdmEjPM6TgHs47OAqAdP5OrzMW+kfvw5t438ckrn0AoEOLrc19DKpIiW5kNb3tvhKeGw8XcBcfDj2Os71jMPTEXxmJjjPIZhbkn5iJTkQkPSw9EZ0TD0sgSjqaO2B26G1P8p2DR2UVY2GUhlBol3vnnHTSxb4L99/ajb/2+aGrfFGN3j0XXul1hb2KP9m7tMevoLOQoc2Aps4T/7/4Y4T0CM47MQEObhpjRbgbq29TH3ONzERQfBJVGBQIhMTsR6XnpmNhqIs48PgNbY1t80P4DTD88HQu7LsS/4f8iKScJc0/MxeLui6FUK3H60WlMbT21xIIB+QQCAf4Y9AeUGqXux2KS3yQsvbgUalLjh94/4O19b8NYYgxTiSnisuLQ2qU1JrWahMj0SOy7tw/f9vwWX579Eo/SHkEsFCM2MxZnH5/Fa01ew8IzCxGfFQ9Xc1dYGlnC18EXF6MvwlJmiaWXlsLKyAojfUZi7om5+G3AbzgUdgjGEmM4mzlj3719mNByAgZtH6QLSFf0XQE7EztM2D8BAODn7IfDDw6jX/1+uJ10G8OaDIOVkRUOhR1CRFoEhAIhrIysML/zfHjbe+O3679h8PbBGN9sPC7FXMLAbQPh4+CDB08eIEeZgw7uHXD60WkA2kmW947Qdr19nPYYzRyb4cNjH8Lb3lt7RfjITAxoOABBcUHYMXwHojKikJCVgEn/TEKuMhedPTrDUmaJa3HXYCw21mU+Hjx5gO8vfI+E7ASE7g9FSm4K+nj1wcahG3VX/7t7dkfAhABkyDOQkpOC+Kx4DNg6APtH7ddtcyfpDuxM7PBD7x/wOO0xvuz+pW7d9mHbkZqXii/OfIEmdk3Q3Km53nE//eg0vuv1XZHvCxOJCWa3n40l55cYDAijM6J1WeTBjQejb/2+MJWaFtpOJBThx94/YsHpBVg7aG2h9fNOzEMju0YY16x0hWyK0tS+abGV9DLkGbCQWcDbwRtBcUHwsPRAniqvVIFBRRjffDwGbR+EDu4d0Myxmd66ggGhnYkdknOSseLyCgxvoj1R6lO/D2YdnaUXEN6Mv4k3976J3SN268Yn/nb9N8zvPN/gGEeRUARXC1fdyeP/Wv4P5x6fQ6c6nfROovML3BRc9vcbfyMqPQrO5s7QkEbvpLJ/w/4AYHCsXUGlPVEf4zsG64LWYWa7mXrLYzJi0L9Bfwgg0AU0gXGBumxsPisjKyjUCt3xftbhB4exdmDh92FRPur4EZZeWqoLOmMzY+Fi7oL6NvXxMPUhfB19sffuXkxopf0+Gt50OPbe3YspradArVHjzOMzkIqkSM1NxZ3kO4WyYi2cWuBG/A00c2yGJ7lPYGus7Q2Qn917NnB7NkOYf7E2OiMarhauGOkzEv229IOLuQu+6PoFLkRd0OvxcuTBkUKvWVFczV31xrTmqfJgLDYulCF8Vsc6HfHV2a8w/fB0LOuzrFAQDACP0x+XKksJAO3d22P19f+yrqFJoZh2aBqGNR2me6/fTLiJ5o7Ni9pFqcjEMizvuxzbb2/H/JPzcWD0AYPZ2FMRp/B9wPcwlhjjXb93MaDhAF0glD8tyLPvd6VaiVxVrt57Mj0vHWZSM6hJDalICiJCSFII3CzcYC41143/zL/Yu+/uPjxOf4wT40/g3/B/ERQfhOWXl0OhVqCRbSM8TH2IHp49MGb3GPz9xt8wkZhAQxqIhCI4mjoiMTtR9539OO0xVl5diRPjT+g+z/FZ8RALxbpMIaC9CBCbGavrNp2YnYgzj8/gs1OfwdrIGv0b9seyS8uwuv9qfBfwHWIyYzDFfwr+CPoDm25tgpuFGxZ2XYirMVfh5+wHJzMnxGXGISYzBh3cO+jGNt5Nvovxe8bjHb93MLbZWDSxb4JFZxbhauxVXWC+NnAtnMyc8K7fu3Axd0FcVhy+v/C99nd65F691zYuMw6OZo4QCoQYuG1gud4XrGw4IHxB7AzZCVsrW9xJuoNDDw4hOScZTe2bQq6SY+GZhfBx8IFQIERkeqS2K99jqbY7hmtrfHbqM+x4fQf23t2L6W2m40rMFfTc1BNN7ZsiNTcVbVzb4F2/dzHadzT61O8DpVqJtLw0JOck4629b0EmlsHW2BZN7ZtizvE56N+gP3699ivuJt9FA5sGWDtoLVzNXXE55jI+6/yZ7gffRGKCe8n30GtTL+x6YxdaOLWAhjT4+fLPGLlrJD5s/yGWX14Oc6k59o/aj7f2voU2rm3wUcePsDV4K24n3oa/sz8GNx6Mfg36ISQxBC2dW2LRmUXoVa8Xtt3ehlX9VyEqIwpTDk7Bkh5LMK75ONyIv4GfLv6EB08e4Ni4Y6hjWQd7Qvdg061NiEiNwPbh27E+aD3S5enY/NpmXIm5ApVGhb71++JG/A20cGqBD9p/gLAnYZh2aBrebvE2hAIh/hzyJ1zNXZGnysO6oHVQqpWITI/Eyn4rEZEWgXVB63Bw9EG8e+BdvNrgVSz3X45dd3Zh4LaBcDZzhqu5K35+9ecyHXeBQKB3kmdjbIMvu/83NcWRsf9VZkzLS8NPF39C/6390bNeT3R074guf3aBtbE1BjUchFbOreDv4o/Tj05j79292PLaFhx/eBytXVujqX1T3E68jU9f+RSZikzMPDITfs5+WHJ+CfaN3IeB2wbin1H/QCQQ4fSj05jfeT66e3ZHvwb9YCIxQWJ2IqYdmobw1HC83eJtzGo/C7tDd2N62+m4Hnsd/2v5P+y9uxeP0x6jb/2+GNRoUKHn+kGHD/BBhw8AAGOajYFIIIKp1BRqjRrBicFo4dRCN7YsP8NXsKtRn/r/XdV+9kSnoW1DNLRtiKMeR0FE+CPoD8RnxWP7sO347sJ3aPN7GziaOcLOxA5DGg3BwEYDsfjsYvzc72eDwZSLuYteF0iVRoUfA37EZ12085d9efZLLO6+GPWs66G+TX29+zqaOcLRzBE/9PoB7xx4BwdGHdD9yGtIg6ScpEJjo57lZeOFhOwEXIi8UCgojM+Kh7OZNgsiFoohlhb9M+Dt4I34rHi9k/So9CgYiY1wJ+kOfuj9Q7HtKC13C3ftOC0DWeNMRSYsZBZo5dwK24K3wdncGW1d21bI45ZGfmC8+tpqLOu7TG9dWl6a7jg3tWuKmwk3cSX2iu4z6GDqgNTcVF2XPQD45sI3GOE9Apej/ytYcy3uGj555ZNStym/WEhBRRWgyc+QVbZhTYah9+bemOw/WS+wjc3SBmL5U3M4mTnhwP0DegWC8s1uNxufnfysUFfPHGUOFGpFiUVnCmrj2gbzT87XBWf5k7B7WXshMC4QAHAv5R687bW9SfrW74tRu0ZhSuspCIwLhJ+zH3wdfLHp1iaoNepCwXoLpxZYc30Nxjcfjye5T3Tdtu2MtRcGnp0WIkuRpev5YSIx0Y0pLHhBb0bbGQhOCEY963pwMHFAQnaC7v216dYm/NyvdL8PEpEESo1S93euKve/aSfURWcIG9s1RlJOEjYP3YwtwVsMBoRytdxg92lDTCQmyFHm6P6+mXATXjZeCIgKQHfP7gC0BXRau7Qu1f6KIxKKMKbZGLiYu2DgtoHoV78fnM2cddnIs4/PYvG5xdg3cp/B7+yixsNJRJJC6/LfhyJog3WBQKDXjfrZ7u8Fs2+9vHqhl1cvzG4/G0q1EofCDuGH3j9AJBTBxdwFv1z5Be+3fV/3nnA2d0ZcZpwuIFx9bTU+7vSx3u++od8DY4mxXtdfT6knPK098VaLt3D28VlciLyAP4f8CSczJ/Ss1xNv7XsLwQnBMJWa4t/x/+Jmwk0svbgUG25uwIP3H8BMaoa4rDhEpEagoW1DKNQKPHzyEF+c+QJ/v/G33kWCbnW74VTEKXRw7wClWoldobtwdOxR3evoYu6CpX2XGny98zP0rBoQq9XS09MJAA34YwDVX1Gfph2cRh3WdaC/Q/6mW/G3yPkHZ/r4xMck+kJEC04toOE7htPc43Npy60tZPedHT188pBe+eOVQvv9KeAnavt7W1oXuK7ENkSmRVLr31rTm3vepNsJt3XL5/87n5RqZYn3V2vUen/nKHLo75C/Cy2/GnOVotKjStxfaShUCkrKTjK4vCyux16nVmta0c34m3rL1Rp1ofbXFBqNRvf/mIwYypRnPtd+5Co5peWmERGV6jgTaY+tSq16rserThl5GeW6v1qjpumHptOKSyuox4YeNOfYnFLd79vz39K24G26v0MSQ+iDox+U6r6xGbHUd3PfQp+Z/Xf305pra0rd9guRF6jPpj6kUqvoxMMT1GNDD3rlj1do1dVVpd5HScJSwqjL+i4GX+d/w/+lpReXkkKloEHbBtHnJz+ni1EXK+yxS0Oj0VCfTX0KLf/2/Ld07vE5IiI6++gsjds9jmYenqm3zbrAdfRH4B9ERJSel05Dtg+hqzFX6fOTnxMRUXJ2Mr3212uV/AyqxoYbG+i3a7/pLRu4dSBpNBpacGoBXY25SgqVgnps6KH3PVTQq1tepYy8DDodcZr6be5H24K30crLK+nPoD/L3J7ZR2bTncQ7RES05dYW2nJrCz1Oe0xTDkyhHEUODd0+VG/7ETtHUEJWAv0U8BMdfXCUsuRZ5PqjK224saHQvlVqFQ3YOoCIiI6EHaGVl1cSEdHCUwvpaszVQtuvD1pPu+7sIiKiifsmUnxmPBGRbh/P+v7C93Qq4pTu736b+5XpuRfc74zDM+jhk4f0d8jftD5ovW75wK0DDd5Xo9EU2a6i7lOUYX8NoxxFDhERfXD0A1p0epHesRy6fShlybPKtM+SJGcn08YbG2ng1oEUmRZJW29tpSHbh1BKTkqFPk5FU6lV1O3PbnTswTFacGoBERGtubaG9t/dT0RECVkJ9OqWV4v87JRHdHo0LTq9qNC+C57TDdg6gP4M+pN23N5Bd5PuUtc/u9KInSMK7UuuktPArQNJoVLQkO1DaMutLc/VpoFbB+rOcdPT059rH6z0OEP4gtgybAsuJl5EL69eCIoLgq+jL6QiKV5t8Crea/MeDoUdwvzO85GtyNZd3RrcaDBMpaY4/dbpQvub1X4WBjQcULoB7JbuuDLpSqHlBTNVxXm2a42xxBjDmg4rtF3BMY/lJRFJYGdiZ3B5WbRyboVrk64V6mZSmVUmy6tgW4srzFISqUiqu0pZ2lLUpb2yXNOUt3uiUCDET31+wldnv8I3Pb8p9Xv5/bbvY8j2IbqxhNdjr8PP2a9U93U2d8YU/yn4594/mNJ6im55Sm6KrntbaXRw74D6NvUx5K8hcDV3xfbh2w1+dsqjvk19TGs9TVttsEBbgf+6jEpEEqg1alyLu6bLtFYVgUAAe1P7QgViCnYZ9XPxw+jdo/H7wN/17jvadzQGbhuIt1q8hTOPzqCnZ080sm2EH1K02dVll5bhvdbvVdlzqUxveL+BoX8NxSS/SXrLBQIB3CzcEJUeBTsTOzS2a1xkV9TJfpMx4u8RsDWxxZ9D/sQfQX8gMj2y1Nmxgtq5tcPF6ItoYt8EUelR6ODeAW4Wbnic/lg3Nqqgd/zewc+Xf0bYkzC83fJtmEpNETEjwuDvQn5RESLSfqaeFpCqY1kHkemRhT7jWYos3fetucxc974uaiqUxnaNcTf5LrrW7YrI9Ei4mhcex1sSetotNVf5X4Ywf37CglnrZxXXTbisVS99HHxwK+EW2rq1RXhqOGa1m4Wzj8/q2penyjOYsSsPWxNbjGs+Dg1sG6DXpl4Y7TsaW17bUuOnqhAJRfiy25cY8tcQbBq6CYA2+5ffpX7v3b2Y0HJCmcdbloarhavB79Vn6zFEpEVgYMOBaGTXCBuHbDRYOE0qksJIbIQVl1egh2cPjPYd/Vxtyi+Uw6pGzT1rZWXWp34fCAVC+Ln46U7U1w5aCxdzF5x68xTEQrFel5v8L+GigpcGtg1q7DxYNUllfDmzF49YKMbCrgvLdGHDSGyEZo7NcPD+QQDQdmVzKV1ACGhPiC/FXNJbVpqpJJ41t+NczOuorcJY0cFgvvbu7XEj/kah5QW7q/o5+6GlU8tqmQurq0dX3RjVfAWLiZhITBA1K6pQV0gjsRGaOTRDSFIIguKD4OfiB3OZOZ7kPoGGNLgedx1d63atomdRuYzERnAxc0FUelShdd723ghODC6xquHARgNxaMwhbBq6CQ6mDpjXaR5+7f9rsdWji9LOrR0uRWvf/1EZ2gIzQoEQJhITHH14FG3d9Lsed6vbDZdiLiFDnqH7rSzuImEdC+30DgW7jOYHhL9e/RUT90/UbVuwy2j+BPbRGdG6ieGflR8QAtoiIoa62BYn/zEAIE+tHUNYcGL6kgrhCAVCqDVqvWX5gWVZdKrTCecjtcWclBol6lnX002JkZidWK6LkiVp59YOIVND8HmXz2t8MJivY52OGO0zGu3c2gHQDwj/jfhX19W2OjibOePA/QO6YQ7ulu5Fvq6fvvIpAuMDS10TwRCpSFpsF2dWsTggfEnkV65ijNUui7otwrLLy5CUnYSwJ2GFxhwWx8HUAUnZSXrLknOSy5QhBLQ//IYK1FQkV3NXRGdGF1qeKc+EuVSbof2i2xf4qvtXldqOovTy6oUDYQf0lqXJ04qcu64gfxd/3Ii/gVsJt3SFabp7dsfawLUwlZq+UBeV+tbvi6MPjxZa3sq5FQLjAhGZHgkPS48qaYubhZsu+IjJjNFl2YY1GYZll5YVGrsmEAjwWuPXMKHlhFLtv4VTCwTFBekFhB5WHjj84DD239sPuVqOxOxEAPoBobnUHJnyTESmRxYZENa1qotHaY8AaAOBsk5f4GDioHvs/CqjBYvKpOWlFTsm08XMpdBci0k5SbA3Kds0TO3d2utdlCoY4DxMfagbR1tZnudCQnVb3m+57nvFzcJNV/shS5FVqu+byvJ1j6/xy6u/lGosb3On5tjy2pZyTfEkExVfFZdVLA4IGWOsBjMSG2FWu1lYf2M9BAJBmbsj25nY6QWFKbkplZblKw+BQKCrRFlQUVUnq1odyzrIU+XpVUTNlGeW6oSnuVNzBEQF6FWanNluJu4k3cHsdrMrrc3VoWe9njgefhyAtphS/gm5TCwDgXAj/kapq1SWl0AggL2JPXaH7oZKo9Jl+0Z4j8BX3b8yeKF0SuspBocsGNLcqTluJdxCUnaSLiD0svbCVP+p2Dh0Izq5d8LFqIsAngkIn3YZLW5eQbFQDJVGBQCFpm8qjfwuzoC2e6hMJNOeYD/NuKTL04sNLgoGpPmSspMKFcspianUFDnKHF0bREIR1KTNPD588rBUk9y/zJzNnBGfHY9rsdfg71xxw2aeh52JXaGsemUyEhtBoVZU2eO97DggZIyxGq5nvZ7YeHMjGtg0KPN9C3abA6A33qmmqWddD+Gp4XrLakpACGi7FF6J0R8vXZrsXkPbhgh7EoaprafqlhmJjbCs7zK0d29f4e2sTtbG1siUZ0KpViI1NxXWRv8FXfM6zsP5yPNoaNuwytqzbtA6rLyyEjLRf8MfBAIB3mtT/nGb3vbeuJ10G3dT7urm7RMIBBjceDAcTB3Q3r29boL4ggGhjbENnuQ+0Zsn0RBjiTGi0qOe6/OaX9U1n0AgKJwhLKbLqMGA8DkyhPltCYwL1FXKzBeeGl7pGcLaLv/7ZWfIToPVt19kMpGs2GlSWMXigJAxxmo4qUiK7cO3Y16neWW+bx+vPtgVukv397OTHNckzR21GZeCalJAmD/3XFmJhWIcH3ccAxoOqPhG1UBtXNvgetx1va6UgHac6KWJl6r0goREJMGElhOe67NTEnOZOUISQ9DFo4vBzL23vbduvraCAaGruStiMmOK7TIKAA1tGuKXq7+glVPp5h8s6NmAEIDexPTpeWXPECZmJ+oVVSqtVk6t8OeNP9HErgkAwFhsjBxlDh6mPtSbGoEZJhVJcTflbpnGj78IZGIZZwirEAeEjDFWC/g4+JS5uxagnZMwS5GFJ7lPAKBGV21r5tisUECYqcissknoS+Lr4IvgxODqbkaN19mjM849PocnuU/0MoTVZUyzMRVapbqg1QO088IZIhKKIBQIoVArkKPMgbFYW2XZzcIN0RnRSMxJhKOZY5H7fsfvHQTGBeLtlm+XuV32JvZIytEfP1wwQ5guTy92LJihgDAuM043h2lZ9K3fF38E/YHOHp0B/Pf8n71gwAwb5TMKy/osq+5mVLmC71dW+TggZIyxF1wfrz44FXEKcpW8RlcO9nbwxu3E23rLMuQZuqIy1S1/PBQrXn5128C4QPg6+lZ3cypVpzqdii1c4m3vrasWmt/9z8nMCXFZcdCQptgxwR5WHjg27thzXRAxmCEsMIawpC6jDqYOiM2M1VsWnxX/XBOHN7BtgKmtp6KxXWMAgLuFO6IzCheQYoYNbzocDWzLPlygtiv4fmWVjwNCxhh7weUX+ohIi4CnlWd1N6dIJhKTQgGXhjQ1qlKghcwC6XnpUKgVZZ639GVhIjFBnioPpx+ffmGm1Hhe3g7eCEkM0VsmEUl0BWMqi6GAUC9DWEKXUYFAALFQjAdPHuB67HUAQFzW82UIAWBFvxW6gNjNwg2hSaG1ZioIVj1kYhkUKu4yWlU4IGSMsRecp7UnHqU9qhVV/fIrMNZUzR2b42bCTSTnJMPOuOZVa60pnEydoFArasz4z+qSP47w2eq5eaq8Sp1CwExqppuHMD8QMxIb6WcIS5g+oLljc0w+MBkHw7TzoGYrsytkEvkO7h3w06WfCk37wVhB3GW0anFAyBhjLwFPK0/8Hvh7ja9q6efsh2ux16q7GUVq5tgMwQnBiM6IhquFa3U3p8Ya3HgwPmj/QXU3o9o1tmuM049OFwr+JvtN1hVZqQwFq9/mjxuWiqT/FZUpYdoJAJjaeipUGhWSc5IrtG2uFq7wc/bDmy3erND9sheLTCSDQsMZwqrCASFjjL0EpredjtuJt9HcsXl1N6VYHd074kLkhepuRpHyC8vEZMQUKqPP/jOo0SBdEZGXmbHEGC7mLuhUp5Pe8mFNh+GTVz6p1McWQH9KFIFAAII2OCzN2Fxnc2fsH7UfKbkpBvdXHjte3/FcRbLYy8NIbMQT01chDggZY+wl0NS+KW5NuVWqefOqk7+LP67HXa/uZhQpv0JiTGYMXM05Q8hKtqTHEozwHlEtjy1XyQ2OdS3t2FxzqbYLd7Yim8f8sSolE/M8hFWJA0LGGHtJ1IYTOplYBqVGCQBQa9Q1qqAMoM2yyMQy3E68zV1GWal42XjB2rjqp9+wNrZGeGo4bIyef2qH/AtI5Skow9jzkIl4HsKqxAEhY4yxGiU/K5EuT68xU04UNNZ3LP65/w/qWNap7qYwViQHEweEJofC1sS23PuKz4qHk5lTBbSKsdIxEhvxND9VSFzdDWCMMcYKamrfFHeS7iBLkVUjxzwObTIUgxoNqnHZS8YKsje1R2hSKGyNyx8QxmXGPdcchIw9L4lIgg+PfVjdzXhpcIaQMcZYjdLHqw/2hO7B6Uc1dx47DgZZTedg6oC7KXcLZQg1pCnTWGITiQkePHnAXUZZleri0QUP339Y3c14aXBAyBhjrEZp49oGNxJuICAqAC2cWlR3cxirlRxMHQxmCLMUWTCTmpV6P03smuBg2EHuIs2qlEwsg50pz/VaVTggZIwxVqMIBAKM9B4JXwdfzsQx9pzsTewNjiFMz0uHlcyq1PvxdfDF3eS7aGjbsIJbyBirKXgMIWOMsRrnrRZvQaVRVXczGKu1Gtk1Qo4yp1CGMC0vDZZGlqXeTzPHZujs0bnGT1nDGHt+HBAyxhircQQCgcH50xhjpWMhs0DChwmwN7HXW54uT4eVkVWp99PAtgG2vLalglvHGKtJOCBkjDHGGHsBOZg66P0tFUmRlJ0ES1npM4QAYCwxrshmMcZqGB5DyBhjjDH2EjASGyE2MxY2xs8/WT1j7MXDASFjjDHG2EtAJpIhKiMK9qb2JW/MGHtpcEDIGGOMMfYSMBIbISojqlBXUsbYy40DwudQt25dCAQCvdu8efP0tomMjMTAgQNhamoKOzs7vP/++1AoFHrbBAcHo0uXLjA2NoarqysWLVoEIqrKp8IYY4yxl4RMJENUelShQjOMsZcbF5V5TosWLcKkSZN0f5uZ/TfJq1qtRv/+/WFvb4/z588jJSUFb775JogIP//8MwAgIyMDvXr1Qrdu3XD16lXcv38fb731FkxNTfHBBx9U+fNhjDHG2IuNxxAyxgzhgPA5mZubw8nJyeC6Y8eO4c6dO4iKioKLiwsA4Mcff8Rbb72FxYsXw8LCAlu2bEFeXh7+/PNPyGQy+Pj44P79+/jpp58we/Zsnu+HMcYYYxXKRGKCPFUeREJRdTeFMVaDcJfR5/Ttt9/C1tYWLVq0wOLFi/W6g168eBE+Pj66YBAA+vTpA7lcjuvXr+u26dKlC2Qymd42sbGxePToUZU9D8YYY4y9HIY0HlKmOQgZYy8HzhA+hxkzZqBVq1awtrbGlStX8PHHHyMiIgJr164FAMTHx8PR0VHvPtbW1pBKpYiPj9dtU7duXb1t8u8THx8PT09Pg48tl8shl8t1f2dkZFTU02KMMcbYC8zX0Re73thV3c1gjNUwnCF8auHChYUKxTx7u3btGgBg1qxZ6NKlC5o1a4aJEydi9erVWLduHVJSUnT7M9Tlk4j0lj+7TX5BmeK6iy5ZsgSWlpa6m7u7e7meN2OMMcZeHo3sGlV3ExhjNQxnCJ967733MHLkyGK3eTajl69du3YAgAcPHsDW1hZOTk64fPmy3japqalQKpW6LKCTk5MuW5gvMTERAAplFwv6+OOPMXv2bN3fGRkZHBQyxhhjjDHGngsHhE/Z2dnBzs7uue4bFBQEAHB2dgYAtG/fHosXL0ZcXJxu2bFjxyCTyeDn56fb5pNPPoFCoYBUKtVt4+LiUmTgCQAymUxv3CFjjDHGGGOMPS/uMlpGFy9exNKlS3Hjxg1ERERgx44dePfddzFo0CDUqVMHANC7d280bdoU48aNQ1BQEP799198+OGHmDRpEiwsLAAAo0ePhkwmw1tvvYXbt29jz549+Prrr7nCKGOMMcYYY6zKcIawjGQyGf766y988cUXkMvl8PDwwKRJk/DRRx/pthGJRDh48CCmTp2Kjh07wtjYGKNHj8YPP/yg28bS0hLHjx/HtGnT4O/vD2tra8yePVuvOyhjjDHGGGOMVSYB5VcyYbVSRkYGLC0tkZ6erss+MsYYY4wxVpvxOW7V4S6jjDHGGGOMMfaS4oCQMcYYY4wxxl5SHBAyxhhjjDHG2EuKA0LGGGOMMcYYe0lxQMgYY4wxxhhjLykOCBljjDHGGGPsJcXzENZy+bOGZGRkVHNLGGOMMcYYqxj557Y8Q17l44CwlktJSQEAuLu7V3NLGGOMMcYYq1iZmZmwtLSs7ma80DggrOVsbGwAAJGRkfxheQFkZGTA3d0dUVFRPAnrC4CP54uHj+mLhY/ni4eP6YuDiJCZmQkXF5fqbsoLjwPCWk4o1A4DtbS05C++F4iFhQUfzxcIH88XDx/TFwsfzxcPH9MXAyc7qgYXlWGMMcYYY4yxlxQHhIwxxhhjjDH2kuKAsJaTyWRYsGABZDJZdTeFVQA+ni8WPp4vHj6mLxY+ni8ePqaMlZ2AuJYrY4wxxhhjjL2UOEPIGGOMMcYYYy8pDggZY4wxxhhj7CXFASFjjDHGGGOMvaQ4IGSMMcYYY4yxlxQHhLXA2bNnMXDgQLi4uEAgEGDv3r1664kICxcuhIuLC4yNjdG1a1eEhIRUT2NZiZYsWYLWrVvD3NwcDg4OGDJkCO7du6e3DR/T2mXVqlVo1qyZbiLk9u3b4/Dhw7r1fDxrtyVLlkAgEGDmzJm6ZXxMa5eFCxdCIBDo3ZycnHTr+XjWPjExMRg7dixsbW1hYmKCFi1a4Pr167r1fEwZKz0OCGuB7OxsNG/eHCtXrjS4/rvvvsNPP/2ElStX4urVq3ByckKvXr2QmZlZxS1lpXHmzBlMmzYNly5dwvHjx6FSqdC7d29kZ2frtuFjWru4ubnhm2++wbVr13Dt2jV0794dgwcP1p188PGsva5evYrffvsNzZo101vOx7T28fb2RlxcnO4WHBysW8fHs3ZJTU1Fx44dIZFIcPjwYdy5cwc//vgjrKysdNvwMWWsDIjVKgBoz549ur81Gg05OTnRN998o1uWl5dHlpaWtHr16mpoISurxMREAkBnzpwhIj6mLwpra2tau3YtH89aLDMzkxo0aEDHjx+nLl260IwZM4iIP6O10YIFC6h58+YG1/HxrH3mzp1LnTp1KnI9H1PGyoYzhLVcREQE4uPj0bt3b90ymUyGLl26ICAgoBpbxkorPT0dAGBjYwOAj2ltp1arsX37dmRnZ6N9+/Z8PGuxadOmoX///ujZs6fecj6mtVNYWBhcXFzg6emJkSNHIjw8HAAfz9po//798Pf3x+uvvw4HBwe0bNkSv//+u249H1PGyoYDwlouPj4eAODo6Ki33NHRUbeO1VxEhNmzZ6NTp07w8fEBwMe0tgoODoaZmRlkMhkmT56MPXv2oGnTpnw8a6nt27cjMDAQS5YsKbSOj2nt07ZtW2zcuBFHjx7F77//jvj4eHTo0AEpKSl8PGuh8PBwrFq1Cg0aNMDRo0cxefJkvP/++9i4cSMA/owyVlbi6m4AqxgCgUDvbyIqtIzVPO+99x5u3bqF8+fPF1rHx7R2adSoEW7cuIG0tDTs2rULb775Js6cOaNbz8ez9oiKisKMGTNw7NgxGBkZFbkdH9Pao1+/frr/+/r6on379vDy8sKGDRvQrl07AHw8axONRgN/f398/fXXAICWLVsiJCQEq1atwvjx43Xb8TFlrHQ4Q1jL5VdJe/aKV2JiYqErY6xmmT59Ovbv349Tp07Bzc1Nt5yPae0klUpRv359+Pv7Y8mSJWjevDmWL1/Ox7MWun79OhITE+Hn5wexWAyxWIwzZ85gxYoVEIvFuuPGx7T2MjU1ha+vL8LCwvgzWgs5OzujadOmesuaNGmCyMhIAPw7ylhZcUBYy3l6esLJyQnHjx/XLVMoFDhz5gw6dOhQjS1jRSEivPfee9i9ezdOnjwJT09PvfV8TF8MRAS5XM7Hsxbq0aMHgoODcePGDd3N398fY8aMwY0bN1CvXj0+prWcXHZIUuMAAAKRSURBVC5HaGgonJ2d+TNaC3Xs2LHQdE3379+Hh4cHAP4dZaysuMtoLZCVlYUHDx7o/o6IiMCNGzdgY2ODOnXqYObMmfj666/RoEEDNGjQAF9//TVMTEwwevToamw1K8q0adOwdetW7Nu3D+bm5rormJaWljA2NtbNd8bHtPb45JNP0K9fP7i7uyMzMxPbt2/H6dOnceTIET6etZC5ubluTG8+U1NT2Nra6pbzMa1dPvzwQwwcOBB16tRBYmIivvrqK2RkZODNN9/kz2gtNGvWLHTo0AFff/013njjDVy5cgW//fYbfvvtNwDgY8pYWVVbfVNWaqdOnSIAhW5vvvkmEWnLKy9YsICcnJxIJpNR586dKTg4uHobzYpk6FgCoPXr1+u24WNau7z99tvk4eFBUqmU7O3tqUePHnTs2DHdej6etV/BaSeI+JjWNiNGjCBnZ2eSSCTk4uJCr732GoWEhOjW8/Gsff755x/y8fEhmUxGjRs3pt9++01vPR9TxkpPQERUTbEoY4wxxhhjjLFqxGMIGWOMMcYYY+wlxQEhY4wxxhhjjL2kOCBkjDHGGGOMsZcUB4SMMcYYY4wx9pLigJAxxhhjjDHGXlIcEDLGGGOMMcbYS4oDQsYYY4wxxhh7SXFAyBhjjDHGGGMvKQ4IGWOMMcYYY+wlxQEhY4wxxhhjjL2kOCBkjDHGGGOMsZcUB4SMMcYYY4wx9pLigJAxxhhjjDHGXlIcEDLGGGOMMcbYS4oDQsYYY4wxxhh7SXFAyBhjjDHGGGMvKQ4IGWOMMcYYY+wlxQEhY4wxxhhjjL2kOCBkjDHGGGOMsZcUB4SMMcYYY4wx9pLigJAxxhhjjDHGXlIcEDLGGGOMMcbYS+r/U7BezbXBpe4AAAAASUVORK5CYII=", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pn = PowderPattern()\n", "\n", "n_path = os.path.join(data_dir, \"pbso4-n.dat\")\n", "if not os.path.exists(n_path):\n", " os.system(\"curl -o {} https://raw.githubusercontent.com/vincefn/objcryst/master/Fox/example/tutorial-pbso4/neutron.dat\".format(n_path))\n", "pn.ImportPowderPatternFullprof(n_path)\n", "\n", "pn.GetRadiation().SetRadiationType(RadiationType.RAD_NEUTRON)\n", "pn.SetWavelength(1.909)\n", "pn.SetMaxSinThetaOvLambda(0.3)\n", "pdiffn = pn.AddPowderPatternDiffraction(c)\n", "\n", "#\n", "pdiffn.GetProfile().GetPar(\"W\").SetValue(0.001)\n", "\n", "\n", "pn.FitScaleFactorForIntegratedRw()\n", "\n", "# Plot\n", "pn.plot(diff=True, fig=None, hkl=True)\n", "\n", "# Fit profile - we keep the unit cell fixed as it was already refined\n", "pn.quick_fit_profile(auto_background=True,plot=True, init_profile=True, cell=False, verbose=True)\n", "pn.quick_fit_profile(plot=False, init_profile=False, cell=False, asym=True, displ_transl=True,\n", " backgd=False, verbose=False)\n", "\n", "print(\"Fit result: Rw=%6.2f%% Chi2=%10.2f GoF=%8.2f LLK=%10.3f\" %\n", " (pn.rw * 100, pn.chi2, pn.chi2/pn.GetNbPointUsed(), pn.llk))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a MonteCarlo object and add objects (crystal, powder patterns) for optimisation" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "mc = MonteCarlo()\n", "mc.AddRefinableObj(c)\n", "mc.AddRefinableObj(px)\n", "mc.AddRefinableObj(pn)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Disable profile fitting before Monte-Carlo\n", "..or else the crystal structure will not be optimised\n", "\n", "Note that the following display will be live-updated during the optimisation done below (the last plot is always updated)." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2cdebde08f134b76bfedd4d94f455b90", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAvulJREFUeJzs3Xd4VGX6PvB7UidtJgkhJCERkBop0rsEli4Igi66FGVlUUHJ+gOBRSOGZQV0lSKuiK5LZ1Gwi4IUCUKIBAJLqNIhkEbqpGeS8/sj33OcnpnJNCb357q8JGdOZt5JJsm553ne95UJgiCAiIiIiIiIGh0PZw+AiIiIiIiInIOBkIiIiIiIqJFiICQiIiIiImqkGAiJiIiIiIgaKQZCIiIiIiKiRoqBkIiIiIiIqJFiICQiIiIiImqkGAiJiIiIiIgaKQZCIiIiIiKiRoqBkIiIiIiIqJFiICQiIiIiImqkGAiJiIiIGoEpU6Y4ewhE5IK8nD0AIiIiIrKdBQsW6B0TBAHJyclOGA0RuToGQiIiIiI3sm3bNmzfvl3v+M8//+yE0RCRq2MgJCIiInIjzz33HGJjYxEeHq51/JlnnnHSiIjIlckEQRCcPQgiIiIiIiJyPC4qQ0RERERE1EgxEBIRERERETVSDIRERERERESNFAMhERERkRv5/PPP0a1bN0ydOhWbNm1C+/bt0atXL3z77bfOHhoRuSAuKkNERETkRvr06YOff/4ZKpUKXbt2xcWLFyGXyzFs2DD88ssvzh4eEbkYbjtBRERE5Eb8/Pzg7+8Pf39/DB06FEqlEgDg5cXLPiLSx5ZRIiIiIjfStWtX1NTUAAC2bt0KAKiqqkKTJk2cOSwiclFsGSUiIiIiImqkWCEkIiIiIiJqpBgIiYiIiIiIGikGQiIiIqJGICsry9lDICIXxEBIRERE1Ag888wzzh4CEbkgrj9MRERE5EZ69+6td0wQBFy+fNkJoyEiV8dASERERORGVCoV0tPT9fYdHD58uJNGRESujC2jRERERG5k2bJlUKlUescTEhKcMBoicnXch5CIiIiIiKiRYoWQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqS8nD0Aapja2lrcvXsXQUFBkMlkzh4OERERuaC//OUv+Pe//+3sYRCZTRAEqFQqREVFwcODNSx7kgmCIDh7EGS9jIwMxMTEOHsYREREREQ2d/v2bURHRzt7GG6NFcL7XFBQEIC6HxaFQuHk0RAREZEzdejQwWAl8PXXX0dSUpITRkRkneLiYsTExEjXumRHAt3XioqKBABCUVGRdGzVqlWCUqkUFAqFEBMTI1y7dk0QBEEYOXKkoFQqBX9/f+Hxxx/Xu6/WrVsL/v7+QkBAgDBo0CBBEARBqVQKmZmZWueVl5cLrVu3FhQKhfDwww/r3c+MGTMEb29vQalUCi1atNC7/d133xUCAwMFhUIhBAUFCUVFRVbd56pVqwRPT0/h2WeflcaqUCgEf39/YcqUKWZ89WznwQcfFDw8PARBEIRnn31W6Nmzp5CRkSFcv35deOKJJyy6r7i4OGHgwIHCwIEDhT/96U9CTU2N0XOff/556THT09OtfwIG/Pjjj8Kbb75p9Pb58+cLSqVSUKlUNn1cIiKyXkJCgpCdna13fM2aNU4YDZH1DF3jkn2wIdfNXL16FQkJCTh16hSKiorw6KOP4g9/+AMA4Msvv0RhYSEKCgrw448/oqqqSu/zt27disLCQqSmpiI1NdXgY7z55puIiIhAUVERKioqsH79er1zxo8fj8LCQty4cUPvtsTERJw5cwZFRUU4e/Ys/P39rb7Prl27YuPGjdLHly5dwu3bt7Fjxw6UlZXV89WynatXr0Iul0sfb9iwAc2bN7f6/n788Uf88ssv8PPzw7Fjx4yeZ+jr5CjvvPMOunbt6rTHJyIifUuXLkV4eLje8fj4eCeMhojuBwyEbubtt9/GiBEj0KpVKwDARx99hIyMDFRVVcHf3x8AUFhYCKVSCR8fH4P34eXlhaZNm+LMmTMAgMceewzBwcHo0qULAODnn3/GU089Jd323Xff6d3Ht99+C6VSafAPkKenJz766CMUFxfjgQcegJeXV4PvU1NoaCj8/Pxw7do16djq1avRpEkTREZGws/PD/PmzUNERAQCAgJw7tw5rc+/cOECmjVrhuDgYOnrqHk/YWFhiIiIgJ+fH7744guTYzHkxIkTGDJkCB555BG8++67Js8tKSlBUFAQamtrMWLECMTFxWH48OEoLi4GAPTs2dPo506fPh0zZ87E4MGDMWvWLPz9739HXFyc9PW7ffs2/vCHP+CRRx7BrFmzANS9NkaMGIFRo0Zh586d0n1t3LgRjzzyCPr374+DBw9a/JyJiIiIyDUxEOpYvnw5evXqhaCgIISHh+Pxxx/HpUuXtM6ZPn06ZDKZ1n99+/bVOqeyshJz5sxBWFgYAgICMG7cOGRkZGidU1BQgGnTpkGpVEKpVGLatGkoLCxs0Phv376N1q1bax2Ty+X47bffANQFiMjISHTq1MnofeTn5yM7Oxv9+/cHAEycOBGFhYUoLi7G1q1boVKppHcfmzZtivz8fK3Pf+ONN1BaWooLFy7gP//5D06fPq11+5dffomdO3eiSZMm6Ny5M9RqdYPvU9OlS5dQUVGBDh066N2WmZmJp556Cv/973+RlZWFkSNHYvny5VrnTJkyBdOnT0dhYSEuX76sdx+1tbXIysrCm2++iWXLlhkdhzELFy7El19+iV9++QVHjx5Fdna23jmjR4/Gww8/jOzsbHTq1AkeHh745ptvkJSUhMceewyfffaZWY81ePBgHDp0COfOncPDDz+MpKQkJCcno6KiAitWrMCCBQvwyy+/oKqqCklJSfj3v/+NJ598Env27EFERAQA4N69e/jvf/+Lw4cPY//+/Xjrrbcsfs5ERERE5Jq4qIyOpKQkvPTSS+jVqxfUajVef/11jBgxAufPn0dAQIB03qhRo7BhwwbpY91q2yuvvILvvvsOO3bsQJMmTTBv3jyMHTsWJ0+ehKenJwBg8uTJyMjIwJ49ewAAzz//PKZNm2awOmauFi1aaFXGAKCiogLt2rUDUFedKiwsRPPmzZGWlobu3btrnTt16lR4eXnhqaeeQmxsLADgySefBAB0794dqampUCgUyMnJAQBkZ2cjNDRUbwwAEBUVhY4dO+LAgQNarYV/+MMfcO3aNajVasTGxuLtt9+26j7Fr6Om9u3bQyaT4W9/+xu8vLRf3mK1r02bNrh+/bp07Pz581rn3b59G8899xwA6N0HADz44IMAgC5duuDTTz/Vu70+6enpmDBhAoC6NwVu376NZs2aaZ3z448/IjAwEK+++iq2bduGiRMn4oUXXsCtW7dQWFiIJ554wqzHEqu6UVFR0r/F1tyrV6+iV69eAIBevXrhypUruHLlCmbOnAkA6N27N06dOoVr167h/PnzGDJkCAAgNzfX4udMRETUWNTU1KC6utrZw3B53t7eBq/lyPEYCHWI4Uy0YcMGhIeH4+TJkxg0aJB03NfXV6qg6CoqKsKnn36KLVu2YNiwYQDq5ubFxMRg//79GDlyJC5cuIA9e/YgJSUFffr0AQB88skn6NevHy5duoT27dtbNf758+eja9euuHnzJlq0aIGXXnoJMTEx8PHxQXFxMRQKBRQKBby8vBASEqL3+Vu3bpXCiuirr77CggULcPr0aUycOBFyuRyfffYZ5syZg927d2Pu3Lla52dkZCA6OhpVVVW4dOmS9PxE+/btw/Dhw+Hl5YXg4GDU1NRg8ODBFt/niRMn9MZ/6dIlo98XTZp7Ngo6O6888MAD2LRpE5YtWwa1Wm0wFBr7XHM8/PDD2LVrF5RKJWpqakzurRMcHIz8/Hzs2bMHUVFR2Lp1K95//329Cqoxms9T9zm3adMGqampGDVqFFJTU/Hss8+ioKAAp06dQo8ePXDixAl4enriwQcfRJcuXfD9999DJpPxjxwRkQvbt28fEhIS4Onpifj4eDz99NMAgDFjxmD37t1OHp17EwQBWVlZDe72akyCg4MRERHBvbSdjIGwHkVFRQCgV7E6dOgQwsPDERwcjLi4OLz11ltSy+PJkydRXV2NESNGSOdHRUWhU6dOSE5OxsiRI3Hs2DEolUqtsNS3b18olUokJycbDYSVlZWorKyUPhbnkolat26NpUuX4uGHH4YgCFAqldIy0wMGDMDt27dRW1uLxx57TG9+nDGff/453nrrLbRo0QJTp05FRUUFOnbsCKVSiZYtW+L5558HAMTGxuLChQuYNm2atCDN8OHDMXDgQK37++tf/4pbt25JcxX/9re/oba21uL7NBQIbWHr1q2Ii4vDhx9+iCZNmuDq1asNur9ffvlFemNg5MiRWLFiBSZOnIja2lr4+Pjg66+/hp+fn9bnjB49Gh4eHvDx8cFnn32G8vJyvPXWW3j00UcRGRlpk70nFy5ciGeffRZvvfUWOnXqhEGDBqFLly6YNGkSdu7ciaioKLRo0QJhYWF4+umnERcXB09PT3Tu3Bnvv/9+gx+fiIhs780338TevXvh4+ODhIQEHD16FGvWrHHoQmuNlRgGw8PD4e/vz5BjgiAIKCsrk7rDIiMjnTyixo0b05sgCALGjx+PgoIC/PLLL9Lxzz77DIGBgWjRogWuX7+ON954A2q1GidPnoSvry+2b9+OP//5z1rBDYC02Mv69euxbNkybNy4UZrbJ2rXrh3+/Oc/Y9GiRQbHlJiYiCVLlugdLyoqanT7EP773//GnDlz8NRTT2mtNOoMrVu3RnZ2NkpKSvDqq6/i2LFj+Pzzzxu00qirW7BgAb799lukpaVJCxYREZFzPfLII1rXLBs3bsQXX3yBrKwso6uHU8PV1NTgt99+Q3h4OJo0aeLs4dw38vLykJOTg3bt2um1jxYXF0OpVDbKa1xHY4XQhJdffhlnzpzBkSNHtI6Lq2ECQKdOndCzZ0+0aNECu3fvxsSJE43enyAIRlv4jJ2ja9GiRVrtlOKmnY3RX/7yF/zlL39x9jAAQKuKWN/Koe7inXfewTvvvOPsYRARkYauXbvixo0baNmyJYC6hfBatGghrSZN9iFOp+AbpJYRv17V1dWcT+hEDIRGzJkzB99++y0OHz6M6Ohok+dGRkaiRYsW0oqUERERqKqqQkFBgdY8vZycHGnlzoiICIOrS+bm5uotMKLJ19cXvr6+1jwlIiIicnNr167VOzZkyBBcvHjRCaNpfNgmahl+vVwDt53QIQgCXn75ZXz55Zc4ePCgWfPs8vLycPv2ban/uUePHvD29sa+ffukczIzM3H27FkpEPbr1w9FRUU4fvy4dM6vv/6KoqIi6RwiIiIiIiJ7YiDU8dJLL2Hr1q3Yvn07goKCkJWVhaysLJSXlwOA1hyxGzdu4NChQ3jssccQFhYmrc6pVCoxY8YMzJs3DwcOHMCpU6cwdepUdO7cWVpcJDY2FqNGjcLMmTORkpKClJQUzJw5E2PHjrV6hVEiIiIiXQcPHsRHH31k8efdvXvXDqOh+8mhQ4cgk8m4cqqbY8uojnXr1gGo29Bb04YNGzB9+nR4enoiPT0dmzdvRmFhISIjIzFkyBB89tlnCAoKks5ftWoVvLy8MGnSJJSXl2Po0KHYuHGjVn/0tm3bEB8fL61GOm7cOHzwwQf2f5JERETUaAwdOhQA8MILLxht0fvhhx+0PhYEQVrI7tFHH7X7GInIeRgIddS36Kqfnx/27t1b7/3I5XKsXbvWYC+/KDQ0FFu3brV4jERERESGbN68Gf/85z/h7e2NSZMm4W9/+5t029WrV9GmTRuDnzd9+nT07NkTffv2la6FCgsLceLECQZCIjfHllEiIiIiN7Fu3TqkpaVJWwI9+eST0mrkpvbvvX79Oh555BFcvHgRI0aMwJtvvom2bdti8eLFjho6OUllZSXi4+MRHh4OuVyOgQMH6m1RcvToUTz88MOQy+Xo06cP0tPTpdtu3ryJxx57DCEhIQgICEDHjh31Ks7k2hgIiYiIiNyEh4cHvL29AQDx8fF48cUXpVXNCwoKjH5eQEAAFi1ahPXr1+PAgQOYNGkS5401EgsWLMAXX3yBTZs2IS0tDW3atMHIkSORn58vnTN//ny8++67SE1NRXh4OMaNGydttfHSSy+hsrIShw8fRnp6Ot5++20EBgY66+mQFdgySkREROQmxowZo7UP4dChQ1FbWwugrhJUn6CgICQkJKC4uJhbVdhAWVmZU76OHTp0MGtPxNLSUqxbtw4bN27E6NGjAQCffPIJ9u3bh08//RS9evUCALz55psYPnw4AGDTpk2Ijo7GV199hUmTJuHWrVt44okn0LlzZwDAgw8+aKdnRfbCQEhERETkJl577TWtj4uKiqBWqwGYFwhFCoUCvXv3tunYGqOLFy+iR48eDn/ckydPonv37vWed/XqVVRXV2PAgAHSMW9vb/Tu3RsXLlyQAmG/fv2k20NDQ9G+fXtcuHABQF0letasWfjpp58wbNgwPPHEE+jSpYuNnxHZEwMhERERkZvKycmR/m1JICTb6NChA06ePOmUxzWHuICQ7uqzgiDUu2m8ePtf/vIXjBw5Ert378ZPP/2E5cuX47333sOcOXOsGDk5AwMhERERkZsqLS2V/s1A6Hj+/v5mVeqcpU2bNvDx8cGRI0cwefJkAEB1dTVOnDiBV155RTovJSUFDzzwAIC6uai//fabVuiMiYnBiy++iBdffBGLFi3CJ598wkB4H+GiMkRERERuSjMEWhMIxb2SyT0FBARg1qxZmD9/Pvbs2YPz589j5syZKCsrw4wZM6Tz/v73v+PAgQM4e/Yspk+fjrCwMDz++OMAgFdeeQV79+7F9evXkZaWhoMHDyI2NtZJz4iswQohERERkZuqqKgAULePsqlAOGnSJL1jgiBobS9A7mnFihWora3FtGnToFKp0LNnT+zduxchISFa5/z1r3/F5cuX8fDDD+Pbb7+Fj48PAKCmpgYvvfQSMjIyoFAoMGrUKKxatcpZT4eswEBIRERE5KbEEKhQKEwGwtTUVBw8eBAeHr83jwmCgGnTptl9jORccrkc77//Pt5//3292wYPHizNMxw7dqzBz1+7dq1dx0f2x0BIRERE5KbECqFSqURVVZXR8+bPn4+goCCEhYVpHX/55ZftOj4icj4GQiIiIiI3ZW6FcPbs2QaPP/XUU3YZFxG5Di4qQ0REROSmzA2ERNR4MRASERERuSmxZTQwMJCBkIgMYssoERERkZuqrKyEr68v5HI58vLy6j333LlzyM/PR2hoKDp16iStJElE7ouBkIiIiMhNVVRUwNfXF76+viYrhFu2bMG6devQq1cvKBQKFBYWIi0tDbNmzcLUqVMdOGIicjQGQiIiIiI3VVlZCblcXm8gXL9+PY4cOaK17YRarcbgwYMZCIncHOcQEhEREbkpcyuEfn5+SEpKkj4WBAFJSUmQy+WOGCYROREDIREREZGbEucQmtMy+s0332DAgAHo27cvBg0ahO+//x5bt2514GjpfpOYmIiuXbs6exjUQGwZJSIiInJTYsuoj4+PyY3pIyIisHr1ascNjIhcBiuERERERG7K3JZRImq8GAiJiIiI3JS5i8pQ41VbW4u3334bbdq0ga+vLx544AG89dZbAICFCxeiXbt28Pf3x4MPPog33ngD1dXVJu/vP//5Dzp27AhfX19ERkbi5ZdfdsTToAZgyygRERGRm2KFkOqzaNEifPLJJ1i1ahUGDhyIzMxMXLx4EQAQFBSEjRs3IioqCunp6Zg5cyaCgoKwYMECg/e1bt06zJ07FytWrMDo0aNRVFSEo0ePOvLpkBUYCImIiIjclLmLylDjpFKpsGbNGnzwwQd49tlnAQCtW7fGwIEDAQAJCQnSuS1btsS8efPw2WefGQ2E//jHPzBv3jz89a9/lY716tXLjs+AbIGBkIiIiMhNVVRUwM/PD97e3qiuroYgCJDJZM4eVuNRVgb8X7XNoTp0APz96z3twoULqKysxNChQw3evmvXLqxevRpXrlxBSUkJ1Go1FAqFwXNzcnJw9+5do/dFrouBkIiIiMhNVVZWIjg4GN7e3gCAmpoaeHnx8s9hLl4EevRw/OOePAl0717vaX5+fkZvS0lJwdNPP40lS5Zg5MiRUCqV2LFjB9577z2L74tcG38jEBEREbmp6upq+Pj4SIGwurqagdCROnSoC2fOeFwztG3bFn5+fjhw4AD+8pe/aN129OhRtGjRAq+//rp07ObNm0bvKygoCC1btsSBAwcwZMgQ68ZNTsHfCERERERuSgyAmoGQlRwH8vc3q1LnLHK5HAsXLsSCBQvg4+ODAQMGIDc3F+fOnUObNm1w69Yt7NixA7169cLu3bvx1Vdfmby/xMREvPjiiwgPD8fo0aOhUqlw9OhRzJkzx0HPiKzBQEhERETkpqqrq+Ht7a0VCIk0vfHGG/Dy8sLixYtx9+5dREZG4sUXX8SMGTPw//7f/8PLL7+MyspKjBkzBm+88QYSExON3tezzz6LiooKrFq1Cq+++irCwsLw5JNPOu7JkFVkgiAIzh4EWa+4uBhKpRJFRUVGJ/kSERFR4/Twww9j0KBBGDFiBMaNG4fMzExEREQ4e1hup6KiAtevX0erVq0gl8udPZz7hqmvG69xHYcb0xMRERG5KUMto0REmhgIiYiIiNwUW0aJqD4MhERERERuSq1WMxASkUkMhERERERuSmwZ9fHxkT7WlZSUhGHDhmHu3Ln46aef0K1bNwwePBjHjh1z9HCJyAm4yigRERGRmzKnZXThwoXYuXMnCgsLMWLECKSmpsLf3x8TJ07EoUOHHDxiInI0BkIiIiIiN2VOy6hcLkdMTAxiYmIQGxuL6OhoAICnp6dDx+oOuHi/Zfj1cg1sGSUiIiJyU+asMhoREYGamhoAwMGDBwHUBcna2lrHDfQ+J359y8rKnDyS+4v49RK/fuQcrBASERERuSlzWkZ37Nihd8zLywv79u2z+/jchaenJ4KDg5GTkwMA8Pf3h0wmc/KoXJcgCCgrK0NOTg6Cg4NZjXYyBkIiIiIiN9WQVUa9vHiZaImIiAgAkEIh1S84OFj6upHz8CediIiIyA0JggC1Wq3VMlpVVeXkUbkvmUyGyMhIhIeHc3sPM3h7e7My6CIYCImIiIjckFqtBgDuQ+hgnp6eDDp0X+GiMkRERERuyNxAuG/fPvTp0wf9+/fXmk84ZswYxwyUiJyKgZCIiIjIxk6dOoWxY8diwoQJSE5Olo7PmDHDYWMQw199q4y++eab2Lt3L/bv34/jx49jzpw5qK2t5YqZRI0EW0aJiIiIbCw+Ph4bNmyAl5cX5s+fj5SUFMydOxfXrl1z2BjE8FdfhVBcIRMAVq5ciY0bN2L8+PEoKSlx2FiJyHlYISQiIiKyMZlMhjZt2qBly5bYuXMniouLMXPmTKmN0xHMbRnt2rUrbty4IX08ffp0zJ07FyqVyiHjJCLnYiAkIiIisrHw8HCtkJWYmIi4uDikpqY6bAyaLaMymQxeXl4GA+HatWvRsmVLrWNDhgzBxYsXHTFMInIyBkIiIiIiG9u1a5deyJo6dSoqKiocNgbNCqH4f64ySkS6GAh1LF++HL169UJQUBDCw8Px+OOP49KlS1rnCIKAxMREREVFwc/PD4MHD8a5c+e0zqmsrMScOXMQFhaGgIAAjBs3DhkZGVrnFBQUYNq0aVAqlVAqlZg2bRoKCwvt/RSJiIioEdCcQyj+39xAWFpaisrKSruNjYhcBwOhjqSkJLz00ktISUnBvn37oFarMWLECJSWlkrnvPPOO1i5ciU++OADpKamIiIiAsOHD9fqtX/llVfw1VdfYceOHThy5AhKSkowduxY1NTUSOdMnjwZp0+fxp49e7Bnzx6cPn0a06ZNc+jzJSIiIvek2TIKWBYIe/fujebNm0MQBLuNj4hcA1cZ1bFnzx6tjzds2IDw8HCcPHkSgwYNgiAIWL16NV5//XVMnDgRALBp0yY0a9YM27dvxwsvvICioiJ8+umn2LJlC4YNGwYA2Lp1K2JiYrB//36MHDkSFy5cwJ49e5CSkoI+ffoAAD755BP069cPly5dQvv27R37xImIiMitNKRl9Pz58wCA9PR0dOnSxT4DJCKXwAphPYqKigAAoaGhAIDr168jKysLI0aMkM7x9fVFXFyctM/QyZMnUV1drXVOVFQUOnXqJJ1z7NgxKJVKKQwCQN++faFUKrX2K9JVWVmJ4uJirf+IiIjo/qB5bWBv5raM9u7dW+8/Ea8ziNwfK4QmCIKAuXPnYuDAgejUqRMAICsrCwDQrFkzrXObNWuGmzdvSuf4+PggJCRE7xzx87OyshAeHq73mOHh4dI5hixfvhxLliyx/kkRERGR3U2aNEnvmCAISE9Pd9gYzG0ZValUSE9Pl84rLy+Hv78/AHAeIVEjwEBowssvv4wzZ87gyJEjerfJZDKtjwVB0DumS/ccQ+fXdz+LFi3C3LlzpY+Li4sRExNj8nGJiIjIsVJTU3Hw4EF4ePzejCUIgkPXCjC3ZXTZsmVQqVTSG9k5OTnSbY5cFZWInIOB0Ig5c+bg22+/xeHDhxEdHS0dj4iIAFBX4YuMjJSO5+TkSFXDiIgIVFVVoaCgQKtKmJOTg/79+0vnZGdn6z1ubm6uXvVRk6+vL3x9fRv25IiIiMiu5s+fj6CgIISFhWkdf/nllx02BnMrhBMmTND6WPP6hBVCIvfHOYQ6BEHAyy+/jC+//BIHDx5Eq1attG5v1aoVIiIisG/fPulYVVUVkpKSpLDXo0cPeHt7a52TmZmJs2fPSuf069cPRUVFOH78uHTOr7/+iqKiIukcIiIiuj/Nnj1bLwwCwFNPPeWwMejOIfTy8pKqhqawQkjUuLBCqOOll17C9u3b8c033yAoKEiaz6dUKuHn5weZTIZXXnkFy5YtQ9u2bdG2bVssW7YM/v7+mDx5snTujBkzMG/ePDRp0gShoaF49dVX0blzZ2nV0djYWIwaNQozZ87E+vXrAQDPP/88xo4dyxVGiYiIqMEMtYyaEwjz8vKkf7NCSOT+GAh1rFu3DgAwePBgreMbNmzA9OnTAQALFixAeXk5Zs+ejYKCAvTp0wc//fQTgoKCpPNXrVoFLy8vTJo0CeXl5Rg6dCg2btwIT09P6Zxt27YhPj5eWnFs3Lhx+OCDD+z7BImIiKhR0G0Z9fLyMmvbCZVKBR8fH9TW1rJCSNQIMBDqMGcDVplMhsTERCQmJho9Ry6XY+3atVi7dq3Rc0JDQ7F161ZrhklERET3IZVKpfUGsj0Z2nbCnAphcXExgoKCUFFRwQohUSPAOYRERERENrZ582Z07twZ3bt3x4oVK6Tj48ePd9gYdFtGzZ1DqFKpoFAoIJfLWSEkagQYCImIiIhsbN26dUhLS0NaWhr8/f3x5JNPoqyszKxOJFtpSMtoUFAQfH19WSEkagTYMkpERERkYx4eHlJlLj4+Hg899BBGjx6N/Px8h43B2pZRMRCWlJSwQkjUCLBCSERERGRjY8aMwY0bN6SPhw0bhg8//BDNmzd32BjUajVkMpm0oJ0lLaOsEBI1HqwQEhEREdnYa6+9pnesY8eO2LNnj8PGUF1dLbWLAnWB0JyKn0qlQkhICOcQEjUSrBASERER2dnZs2fxzjvvOPQxq6urpXZRwPJVRlkhJGocGAiJiIiI7Gz48OFYuHAhamtrHfaYarVaKxAaWlTm1KlTGDt2LCZMmIDk5GQAdRXClJQUVgiJGgm2jBIRERHZWVZWFgAgNzcXzZo1c8hjGmoZ1a0QxsfHY8OGDfDy8sL8+fORkpIClUoFT09PVgiJGglWCImIiIgcJDMz02GPZU7LqEwmQ5s2bdCyZUvs3LkTxcXFyMnJgUwmY4WQqJFgICQiIiKyI802zbt37zrscc1pGQ0PD9daDTUxMRGCICAjI4MVQqJGgoGQiIiIyI7KysqkfzsyEJrTMrpr1y60bNlS+lgQBFRXV+Nf//oXK4REjQQDIREREZEdaVbZHB0ILV1lVKwgyuVyVgiJGgkGQiIiIiI70gxVxcXFDntcc1pGdYkVQV9fX1YIiRoJBkIiIiIiO9IMhKWlpQ57XN2WUXMqhGIAZIWQqPFgICQiIiKyIzFkeXl5ac0ntDfdllFDcwg///xzdOvWDVOnTsWmTZvQr18/AHX7E7JCSNQ4cB9CIiIiIjsSq2whISEOrRCa0zL63nvv4ejRo1CpVOjatSt2796NHj164Msvv8SkSZNYISRqBBgIiYiIiOxIDFWhoaEu1zLq5+cHf39/+Pv7Y+jQofDx8ZHOZYWQqHFgyygRERGRHWlWCF2tZbRr166oqakBAGzdulUKgCEhIZxDSNRIMBASERER2ZGzKoTmtIyuXr0anp6e0sfiWNeuXStVCAVBcMyAicgpGAiJiIiI7EgzEDq6QmjtKqO+vr7w9fWV7oeI3BcDIREREZEdOXMOoaX7EIpjlcvlkMvlAMB5hERujovKEBEREdmRsyqEarUagYGB0sdeXl4QBAG1tbXw8Pi9JlBZWYlz584hPz8f58+fB6BdIeQ8QiL3xkBIREREZEdihS04ONjpq4wCdUFRXE10y5YtWLduHXr16gWFQoHjx48DAL7++mtER0drjZ+I3BMDIREREZEdVVZWwsfHBwEBASgvL9er0NmLoUVlgLqgKAbC9evX48iRI9J4NmzYgJ9++gn/+c9/8NZbb0njJyL3xTmERERERHZUWVkJX19fBAQEAADKy8sd8ri6cwg1K4QiPz8/JCUlSR+Xl5fDw8MDfn5+nENI1EiwQkhERERkR2Ig9Pf3BwCUlpZK4dCedFtGxX9rBsItW7ZgxYoVSEhIQE1NDXJycuDh4YGtW7ciMzNTGj8RuS9WCImIiIjsSAyEfn5+0seOYKplVBQREYHVq1fj6NGjSElJwfPPPw+FQoGIiAhWCIkaCQZCIiIiIjuqrKyEXC6X5u05KhCa0zKqSxwrAK4yStRIMBASERER2ZFYIRQDVlVVlUMe15yWUV3iAjgAWCEkaiQYCImIiIjsSAyEjq4QmtMyqquqqkoKrqwQEjUODIREREREdlRRUaEVCB1ZIbS0ZbSqqko6jxVCosaBgZCIiIjIjnRbRh05h9BQy2h9FUIxuLJCSNQ4MBASERER2ZFuy6ijKoTGWkZNVQg1N6339PSUjhGR+2IgJCIiIrIjZ1YIrWkZFQOhTCaDj4+PwwIsETkHAyERERGRHTmrQmhty6huiGSFkMi9MRASERER2ZGztp3QbRm1tEIIgBVCokaAgZCIiIjIjpyxMb0gCA2eQwiwQkjUGDAQEhEREdmRWCEUw5kjKm5i6GvIKqMAK4REjQEDIREREZEdifsQiou0OKJCKAbChraMskJI5P4YCImIiIjsSKwQAo6ruIkhztKWUd1FZXx8fBgIidwcAyERERGRHWkGQl9fX4dUCMUQZ2nLqKE5hGwZJXJvDIREREREduSMCqGtWkZZISRyfwyERERERHbkzAqhoZZRSxaVYYWQyP0xEBIRERHZkTPnEBpqGeUcQiLSxEBIREREZCe1tbWorq52eIXQUMuoh4cHPDw8LF5llBVCIvfGQEhERERkJ2KYksvlAJy7yihQVyW0ZFEZVgiJ3B8DoQGHDx/GY489hqioKMhkMnz99ddat0+fPh0ymUzrv759+2qdU1lZiTlz5iAsLAwBAQEYN24cMjIytM4pKCjAtGnToFQqoVQqMW3aNBQWFtr52REREZGjiNVAV2gZBeoCIiuERKSJgdCA0tJSPPzww/jggw+MnjNq1ChkZmZK//3www9at7/yyiv46quvsGPHDhw5cgQlJSUYO3YsampqpHMmT56M06dPY8+ePdizZw9Onz6NadOm2e15ERERkWNVVFQAgEu0jAJ1AdGSOYTcmJ7I/XnVf0rjM3r0aIwePdrkOb6+voiIiDB4W1FRET799FNs2bIFw4YNAwBs3boVMTEx2L9/P0aOHIkLFy5gz549SElJQZ8+fQAAn3zyCfr164dLly6hffv2tn1SRERE5HDOrhBa2jJqaNsJdi8RuTdWCK106NAhhIeHo127dpg5cyZycnKk206ePInq6mqMGDFCOhYVFYVOnTohOTkZAHDs2DEolUopDAJA3759oVQqpXMMqaysRHFxsdZ/RERE5Jp0A6EzN6YHTLeMCoJgcGN6VgiJ3BsDoRVGjx6Nbdu24eDBg3jvvfeQmpqKP/zhD9Iv+KysLPj4+CAkJETr85o1a4asrCzpnPDwcL37Dg8Pl84xZPny5dKcQ6VSiZiYGBs+MyIiIrIlZ1UIrWkZFY/rVgg5h5DIvbFl1ApPPfWU9O9OnTqhZ8+eaNGiBXbv3o2JEyca/TxBECCTyaSPNf9t7BxdixYtwty5c6WPi4uLGQqJiIhclKEKYV5ent0f15qWUTH4cQ4hUePCCqENREZGokWLFrh8+TIAICIiAlVVVSgoKNA6LycnB82aNZPOyc7O1ruv3Nxc6RxDfH19oVAotP4jIiIi1+TsOYSWtIyK42KFkKhxYSC0gby8PNy+fRuRkZEAgB49esDb2xv79u2TzsnMzMTZs2fRv39/AEC/fv1QVFSE48ePS+f8+uuvKCoqks4hIiKi+5sYCDX3IXT2KqPGKn7icc4hJGpc2DJqQElJCa5cuSJ9fP36dZw+fRqhoaEIDQ1FYmIinnjiCURGRuLGjRt47bXXEBYWhgkTJgAAlEolZsyYgXnz5qFJkyYIDQ3Fq6++is6dO0urjsbGxmLUqFGYOXMm1q9fDwB4/vnnMXbsWK4wSkRE5CYMtYw6e5XR+iqEmp/DCiGR+2OF0IATJ06gW7du6NatGwBg7ty56NatGxYvXgxPT0+kp6dj/PjxaNeuHZ599lm0a9cOx44dQ1BQkHQfq1atwuOPP45JkyZhwIAB8Pf3x3fffQdPT0/pnG3btqFz584YMWIERowYgS5dumDLli0Of75ERES2curUKYwdOxYTJkzQWjV7xowZThyV8+juQ+joRWWsaRkVxyqezwohkXtjhdCAwYMHQxAEo7fv3bu33vuQy+VYu3Yt1q5da/Sc0NBQbN261aoxEhERuaL4+Hhs2LABXl5emD9/PlJSUjB37lxcu3bN2UOzmaSkJCxduhRdunTBqFGjsHDhQiiVSixfvhz9+vXTOtfZ205Ys6gM5xASNS4MhERERGQzMpkMbdq0AQDs3LkTiYmJmDlzptGq1P1o4cKF2LlzJwoLCzFixAikpqbC398fEydOxKFDh7TOdfaiMta0jHIOIVHjwpZRIiIispnw8HDcuHFD+jgxMRFxcXFITU113qBsTC6XIyYmBp07d0ZsbCyio6MRGhqqNS1EJAZCMWQ5qkKoVqshk8ng4aF9qcdVRolIFwMhERFRA0yZMsXZQ3Apu3btQsuWLbWOTZ06VZpL5w4iIiJQU1MDADh48CCAugBWW1urd25lZSV8fHykPYYdWSHUrQ4ClreMskJI5P7YMkpERC7j1KlTeOONN+Dt7Y358+dL2/DMmDEDn376qVPHtmDBAr1jgiBoLZxCjcOOHTv0jnl5eWltNyWqrKzUWqTFkXMIDQVCayuEgiBIoZaI3AsDIRERuQxXXpBk27Zt2L59u97xn3/+2QmjIVeku6InoB8IHRWw1Gq1wfFYM4cQAGpqagzeHxHd//iTTURELsOVFyR57rnnEBsbi/DwcK3jzzzzjJNGRPeDyspKaVN64PewVV1drRW8bM1Uy6ixllVjFULxNgZCIvfEOYREROQyXHlBkqVLl+qFQaCuqkm/27dvH/r06YP+/ftrtVaOGTPGiaNynoqKCr2WUQB2n0doq5ZR8T44j5DIfTEQEhGRy2gMC5K4uzfffBN79+7F/v37cfz4ccyZMwe1tbUoKytz9tBsxpLQa6hlVDxuT6ZaRo2FO90VUTX/zZVGidwXAyERERHZjKenJ4KDg+Hv74+VK1eiR48eGD9+PEpKSpw9NJuxJPQaWlQGcF6F0Jw5hJrjZYWQyP0xEBIREZHNdO3aVavtd/r06Zg7dy5UKpXzBmVjloReYxVCV24Z1awsskJI5P4YCImIiMzAuXHmWbt2rV7b75AhQ3Dx4kXnDMgOLAm9xiqErtgyWlVVpbVnIsAKIVFjwEBIREQub8SIEc4eQqOYG0fmsST0ulqFsL6WUd2VT8X7YIWQyH1x/WAiInIZkyZN0jsmCALS09OdMBptYpsgAKxcuRIbN250u7lxZHvOWlTG2pZR3UCouU0GEbknBkIiInIZqampOHjwIDw8fm9gEQQB06ZNc+Ko6ohtgmJlaPr06WjRogVmzZrl3IHdJ7KyshAREeHsYThcZWUllEql9LGjFpVpSMuoJlYIidwfAyEREbmM+fPnIygoCGFhYVrHX375ZSeN6Hdr167VO+Zuc+Ps6ZlnnsFPP/3k7GHYTGVlJc6dO4f8/HyEhoaiU6dOBjear6ioQLNmzaSPWSEkIlfDQEhERC5j9uzZBo8/9dRTDh4JWat37956xwRBwOXLl50wGvvYsmUL1q1bh169ekGhUKCwsBBpaWmYNWsWpk6dqnXu/bbtBCuERI0PAyERERHZjEqlQnp6ul674vDhw500Ittbv349jhw5otXarFarMXjw4HoDoStvTM8KIVHjxFVGiYiIGiArK8vZQ3Apy5YtM7j9QkJCghNGYx9+fn5ISkqSPhYEAUlJSZDL5XrnulqF0NKWUVYIidwfAyEREbk8Vw5dzzzzjLOH4FImTJiAkJAQveNxcXFOGI19bNmyBd988w0GDBiAvn37YtCgQfj++++xdetWvXPv920nWCEkcn9sGSUiIpfnCguSNIa5cWSeiIgIrF692qxz78eN6TWxQkjk/hgIiYjIZbhy6GoMc+PIOiqVCqtWrcKMGTPQvHlzrdt0A6GnpydkMtl90zLKCiGR+2MgJCIil+HKoUucG6fbDulOc+PIOosXL8bq1avxyy+/YN++fVq36QZCmUwGHx8fp207YW2FkIGQyH1xDiEREbkM3QVJrly5gsLCQpcIXY1hbpy9TJkyxdlDsKuff/4ZAHDjxg292yoqKvQWm/H19TVYITRWubOGqZZRtVoNQRD0bjMUCD09PeHh4cGWUSI3xgohERG5jAkTJmh93LZtW8TExODWrVtOGpFpV65cQW1tLdq1a+fsobiEBQsW6B0TBAHJyclOGI3j5Obmws/PD/fu3dM6XltbC7VarVUhBKBVIUxPT8fChQtRWFgoVe/CwsKwbNkydO7c2eoxmWoZFcfm6empdVtVVRUUCoXBz2GFkMh9MRASEZFLEqslt2/fNlhlcbaMjAy0bdsWkZGRuHv3rrOH4xK2bduG7du36x0XK2juSBAE3Lt3Dx07dsSpU6e0KnNi6NMNhJoVwtmzZ2P79u2IiYmRbr916xamTJmCX375xepxmWoZFW83FAh1K4RAXYBlhZDIfTEQEhGRS7p9+7b07y1btmDmzJlOHI2+06dPAwAyMzOdOxAX8txzzyE2Nhbh4eFax915aw6VSoWqqiq0b98ep06dQkFBAZo2bQrAeCDUrBDW1NRAqVRq3a5QKFBTU9OgcRlrGRVDoqH2VGOBkBVCIvfGQEhERC7p2rVrAIAHH3wQX3zxhcsFwtzcXOnfrljBdIalS5caPB4fH+/gkTiO2CbaoUMH6eP6AqFmhXDFihUYO3YsfHx8oFAoUFRUBLVajbfffrtB46qvQmhJIGSFkMi9MRASEZFLunHjBmQyGQYOHIiLFy86ezh6cnJypH/fvHkT7du3d+JoyFnENwbEQJiXlyfdZk6FcNCgQTh8+DDKy8tRWFiIkJAQm7y5YE7LqC5WCIkaJ64ySkRELqmgoABKpRLh4eEoLCx09nD05ObmShfP169fd/JoyFl0K4TmBkLdipufnx8iIyNtVmm2tmVUd6zGxmsNzrUlck2sEBIRkUsqKyuDv78/goODXTIQ5uTkSAuJaIYAalzy8/MBAK1bt9b6GDCvZdRebNkyak2F8IcfftD6WBAEJCYmYsmSJXj00Uctui8isi9WCImIyCWVlpZKgbCgoMDgvmnOlJubixYtWsDT0xPFxcXOHo5LGzFihLOHYDelpaXw8PBAQEAAfHx8UFpaKt1WUVEBwHTLqL3YumXU0gA7ffp0fPDBBzhx4gRSU1Nx4sQJFBYW4sSJExbdDxHZHyuERETkksrKyhAQEIDg4GBUV1ejvLwc/v7+zh6WJDc3F927d4dSqURRUZGzh+MSJk2apHdMEASkp6c7YTSOIb5OZTIZAgICtAKhGPpMbUz/+eefY/ny5ejYsSOGDx+OZcuWQaFQ4I033sC4ceOsHpctVxn18fGxuEJ4/fp1vP/++0hPT8ecOXPQr18//Prrr1i8eLFF90NE9sdASERELkmzQggAhYWFLhUICwoKEBoaCoVCYbJCeOrUKbzxxhvw9vbG/Pnz0b9/fwDAjBkz8OmnnzpquA6RmpqKgwcPwsPj9wYkQRAwbdo0J47KvsTWZgBGA6GpCuF7772Ho0ePQqVSoWvXrrh48SLkcjmGDRvWoEDo7AphQEAAFi1aBJVKhTVr1mDVqlUu2fpNRAyERETkosQL7ZCQEAB1gTAqKsrJo/pdYWEhgoODoVQqTQbC+Ph4bNiwAV5eXpg/fz5SUlIwd+5caVsNdzJ//nwEBQUhLCxM6/jLL7/spBHZnzWB0NfXVwpHfn5+8Pf3h7+/P4YOHSrtSWioumcJtVpt020nrF1lNCgoCAkJCSguLnbJ1YKJiHMIiYjIRWm2jAJwqeqCIAgoKiqCUqmU9o4zRiaToU2bNmjZsiV27tyJ4uJizJw50+AF+f1u9uzZemEQAJ566iknjMYxSktLERAQAMC6CmHXrl2lTei3bt0KoC6YNWnSxOoxCYJg843pG7oIjkKhQO/evRt0H0RkHwyERETkksSWUbFi4kqBsKysDDU1NVIgNFUhDA8Px40bN6SPExMTERcXh9TUVAeMlOzN2pZRMWCtXr0anp6eerfv2rXL6jGJYc+SltHa2lqo1WqbVwiJyPUxEBIRkUsSL7QDAwMBQOtC29nEcGpOy+iuXbvQsmVLrWNTp06VVqCk+5u1LaP2XGXUVCA0ViEUA5+tK4T5+fm4cuWK1nYcRORaOIeQiIhcktiKJ15sl5WVOXlEvxNbRMUK4YULF5w8ItemUqkQFBTk7GHYhW7LqEqlkm4rLy+HTCbTC1m22ujdGDHcGWoZNTaHUByPsQqhpVurHDhwAIsXL0ZYWBgUCgUKCwtRUFCAJUuWYOjQoRbdFxHZFwMhERG5JLHy4u3tDS8vr/u2QtiYbN68Gf/85z/h7e2NSZMm4W9/+xsAYPz48Th48KCTR2cfZWVl0jzXgIAAZGVlSbeVl5fDz88PMplM63PMqRBmZWUhIiLCqjGJgdCSllFTgdCaCuHixYuxZ88erTcCiouLMXr0aAZCIhfDllEiInJJuq14rlohDAoKYiD8P+vWrUNaWhrS0tLg7++PJ598EmVlZRAEwdlDsxtTLaMVFRV6exAC5lUIn3nmGavHVF/7J2B5hdDSOYQeHh7Izc3VOpabm6u1JQkRuQZWCImIyCVptuL5+/u7ZCAMDg6Gv78/ysvLjZ67b98+JCQkwNPTE/Hx8Xj66acBAGPGjMHu3bsdMl5H8fDwkAJHfHw8HnroIYwePdqt54+ZWmVUrBDq0qwQGlp5UxAEXL582eoxieHOVIVQN5CK47FVhfDjjz/GvHnzkJWVBUEQIJPJEBkZiY8//tii+yEi+2MgJCIil2Sq8uJsRUVF8PDwQEBAgDQ28aJX15tvvom9e/fCx8cHCQkJOHr0KNasWeNSAddWxowZgxs3bkiL6AwbNgyXLl3Cjh07nDswOzL1OjUWCDUrhCqVCunp6Xrz/YYPH271mExV+8QFbixpGbWmQhgbG4uvvvrKos8hIudg3Z6IiFxOdXU11Gq1dKHtahXCkpISBAYGQiaTwd/fH4IgGJ0T5unpKVUSV65ciR49emD8+PEoKSlx8Kjt77XXXtNaUbWkpAQvv/yywyuEp06dwtixYzFhwgQkJydLx2fMmGHzx6qvZbS+CuGyZcu0FqIRJSQkWD0mUy2j4jHd16ut5xAS0f2DgZCIyI058sLYlsSLaldtGRUDIYB6V0Ht2rWr1j6E06dPx9y5cw2GAHfzww8/AIDBeXT2FB8fj9WrV2PVqlVYtWoVVq5cCQC4du2azR+rvpZRQ8/d19dXClgTJkxASEiI3jlxcXFWj6m+ap/mOeZ+DvchJHJfDIRERG7MkRfGtiSGK1dtGdUNAeIxQ9auXau3D+GQIUNw8eJFu47RFYjbcejuw2dvMpkMbdq0QcuWLbFz504UFxdj5syZegup2IJuhVCtVkvhylTLqFqtRm1trc3HA5ieQ+jp6QlPT0+nVQg1V2ElItfAQEhE5MYceWFsS2K4cvWWUaD+CmFjJl78Z2ZmOvRxw8PDtaqyiYmJiIuLQ2pqqk0fp6amBpWVlVqBEPj99WuqZRTQb9u0FVPhTnx8Z1UIG7J6KhHZBwOhAYcPH8Zjjz2GqKgoyGQyfP3111q3C4KAxMREREVFwc/PD4MHD8a5c+e0zqmsrMScOXMQFhaGgIAAjBs3DhkZGVrnFBQUYNq0aVAqlVAqlZg2bZq0txURkS046sLY1sRw5Q4to41ZdnY2gLpA6MitJ3bt2qVXlZ06dSoqKips+ji6r1PdQGisZdRY26atmJpDKB63d4Wwd+/eev/16tULx48ft+h+iMj+GAgNKC0txcMPP4wPPvjA4O3vvPMOVq5ciQ8++ACpqamIiIjA8OHDteaDvPLKK/jqq6+wY8cOHDlyBCUlJRg7dixqamqkcyZPnozTp09jz5492LNnD06fPo1p06bZ/fkRUePhqAtjW7ufWkbNCYSVlZVIS0vD/v37kZaW1mgW6MjKyoK/vz8qKytRUFDg7OHYnKHXKaAdCO+XCqH4O8FYgLW0QqhSqZCcnIzjx49L/6WmpqJXr14W3Q8R2R+3nTBg9OjRGD16tMHbBEHA6tWr8frrr2PixIkAgE2bNqFZs2bYvn07XnjhBRQVFeHTTz/Fli1bMGzYMADA1q1bERMTg/3792PkyJG4cOEC9uzZg5SUFPTp0wcA8Mknn6Bfv364dOkS2rdv75gnS0Tkgu6HllGFQgGg/jmEW7Zswbp169CrVy8oFAoUFhYiLS0Ns2bNwtSpUx02ZmfIzs5Gly5dkJKSgpycHISGhjp7SDZVXyA01jJq7wphfYHQUIXQVCC0pkIorp6qu2BOQ1ZPJSL7YCC00PXr15GVlYURI0ZIx3x9fREXF4fk5GS88MILOHnyJKqrq7XOiYqKQqdOnZCcnIyRI0fi2LFjUCqVUhgEgL59+0KpVCI5OdloIKysrNT6JV5cXGyHZ0lE5FyGWkZdqUJYUlKCqKgoAPVXCNevX48jR47Aw+P3phy1Wo3Bgwe7fSDMyspCXFwcUlJSnFIhzM/PR35+PkJDQ+0SRnVXw3W1CqGhRWUA7X0QRbauEE6YMMHg8YasnkpE9sGWUQuJE+SbNWumdbxZs2bSbVlZWfDx8dF7V0z3nPDwcL37Dw8PN7kC1/Lly6U5h0qlEjExMQ16PkTUOOTn5+PKlSsO3w/OWoYqL65UIbSkZdTPzw9JSUnSx4IgICkpyeFbMThaSUkJysrKEBsbCwAODYQHDhzAgAED8Oc//xlLlizBs88+i4EDB+LAgQM2fRxzWkaNbTsBOG8OoeY+iCIxEBpaEdbb2xtqtbpB80Crq6vx5JNP4j//+Y/V90FE9sEKoZVkMpnWx4Ig6B3TpXuOofPru59FixZh7ty50sfFxcUMhURk1IEDB7B48WKEhYVJ7YoFBQVYsmQJhg4d6uzhGSVeUIvVFVdsGRUXlRHHaKpldMWKFUhISEBNTQ28vb3Rs2dPbN261WHjdQbxzc2HHnoIABz6ZsTixYuxZ88eBAUFSceKi4sxevRom77uG9oyqhnK1Go1vLxsc1lmTsuooQqhr6+vwWsQsdJYXV1t9D7rs3PnTnzxxRe4c+cOnnvuOavug4jsg4HQQhEREQDq/tBFRkZKx3NycqSqYUREBKqqqlBQUKBVJczJyUH//v2lc8TV1zTl5ubqVR81+fr6Onw/JyK6fznqwtjWysrK4OvrC09PTwCut6iMZiCUyWQmA2tERATeffddm13s3y/Ev3GtWrWCXC53aCD08PBAbm6u1us+NzdXq23XFhraMnru3Dm89tprKCwshJeXF6qrqxEWFoZly5ahc+fOVo+rvpZRYxVCY1VrzTmP1gbCO3fuAIA095aIXEfj+utkA61atUJERAT27duHbt26Aaj7BZmUlIS3334bANCjRw94e3tj3759mDRpEoC6JbfPnj2Ld955BwDQr18/FBUV4fjx4+jduzcA4Ndff0VRUZEUGomIGspRF8a2ptmSCdRVYNRqNaqrq41e5DqSofHpBsL09HQsXLjQ5hf79wvNKRYhISEObRn9+OOPMW/ePGRlZUmdN5GRkfj4449t+ji6FUIfHx94enqave3EO++8g++//16r0+fWrVuYMmUKfvnlF6vHVVVVBS8vL6MdR8YqhMYCoWaF0FriGwL37t2z+j6IyD4YCA0oKSnBlStXpI+vX7+O06dPIzQ0FA888ABeeeUVLFu2DG3btkXbtm2xbNky+Pv7Y/LkyQAApVKJGTNmYN68eWjSpAlCQ0Px6quvonPnztKqo7GxsRg1ahRmzpyJ9evXAwCef/55jB07liuMEpHNOOrC2NbKysqki2xAe56eUql01rAAALW1tSgtLZUqhIDhCubs2bOxfft2m1/s3y+ysrLg7e2NkJAQhIaGOrRCGBsbi6+++sruj6MbCGUymfRaEAQBJSUlWm/GiMQKoVqt1ns9KxQKrS2qrFFfJa8hFUJrMRASuS4GQgNOnDiBIUOGSB+Lc/aeffZZbNy4EQsWLEB5eTlmz56NgoIC9OnTBz/99JPWL/1Vq1bBy8sLkyZNQnl5OYYOHYqNGzdK7U8AsG3bNsTHx0urkY4bN87o3odERNZw1IWxrekGQs1WPGcHwvLycgiCoBUIDVUIa2pq7HKxf7/Izs5GeHg4PDw8HB4IHaW0tBTe3t5aVWsxEIqh0FCLpBiwnn32WYwdOxY+Pj5QKBQoKiqCWq2WOo6sVd9cP2srhA0JhHl5eQDqOhSIyLUwEBowePBgkytpyWQyJCYmIjEx0eg5crkca9euxdq1a42eExoa6vaLChARWaO0tNRohdDZdOeNAYYD4YoVK+xysX+/yMnJkVbTdnTLqKPovnEBAIGBgSgpKYFKpQIAkxXCtm3b4vDhwygvL0dhYSFCQkJssvqsORVCcVVRkalAaItVUcU3BMrLyw1+3ci1TZkyBdu2bXP2MMhOGAiJiMjl6LbaiRePrrCwTElJCQDUWyEcNGiQXS727xcqlUqqkAYFBSEjI8PJI6obk6GAZi1DwUapVKKoqEjaJ9hQhVA3YPn5+RlcfMZaVVVVJufa+vj46O1jbCoQiscbsm9ifn4+2rRpgytXruDevXt44IEHrL4vsp8FCxboHRMEAcnJyU4YDTmKa68qQEREdmFqv1NXoFKp9OboAa5RITQUCE2tgurn54fIyMhGFQYB7ZVYxaqZo2zevBmdO3dG9+7dsWLFCun4+PHjbfo4upVsQD8QGgqghradsCVbzyEUA6xuVdESeXl5aNOmjfRvck3btm3DmDFjtP4bO3YsmjRp4uyhkR2xQkhE1Ag988wz+Omnn5w9DKNKSkq0LkDux5bRxq6kpERqGXV0IFy3bh3S0tLg7e2N999/H08++SQ2b97coI3VDSkrK9N6HQBAcHAwCgsLTbaM2jsQ2noOoRgIG1ohbNmyJQBIXxtyPc899xxiY2Oln13RM88846QRkSMwEBIRuTFxWxtNgiDg8uXLThiN+VQqlXTxCNwfLaPGVk/Mz89Hfn4+QkNDERoa6pAxuoKSkhI8+OCDABwfCD08PKSWyfj4eDz00EMYPXq0zRe2MdQyGhwcjIyMDJMtozKZDN7e3vjf//6HPn36wNPTE/Hx8Xj66acBAGPGjMHu3butHpc1FcLKysp6W0atrRCq1WqUlZVJK+7qtquS61i6dKnB4/Hx8Q4eCTkSAyERkRtTqVRIT0/X2xR9+PDhThqReTTbDYH7s2X0wIEDWLx4McLCwqBQKFBYWIiCggIsWbIEQ4cOdeiYnUGz7dfRgXDMmDG4ceOG9KbCsGHDEBkZiXnz5tn0cYzNIayvQgjUhazvv/8ep0+fho+PDxISEnD06FGsWbOmwa9zc+YQGqoQGmsLbGiFUPxaREdHA2AgJHI1DIRERG5s2bJlUKlUCAkJ0TqekJDgpBGZR3fxD3HBDVcIhOa2jC5evBh79uzReh7FxcUYPXp0owiEhuYQinth2ttrr72md6xjx47Ys2eP2fdhzqqKpaWlRltGi4uL4e3tLYUpXWLVLTg4GACwcuVKbNy4EePHj29weLb1HMKGVgjFQNisWTN4enoyEBK5GAZCIiI3NmHCBIPH4+LiHDwSy+hWCD09PSGXy12mZdTT01PrQt9QIPTw8EBubq5WIMzNzYWHR+NYz01zpdjAwEDU1NSYbEu0t6+//hpdunSR2lhFDVlVsaysDGFhYVrHxEVlxDc1jAVgPz8/NG3aVKuSOX36dLRo0QKzZs0y81kZ5mpzCDXbZxUKBQMhkYthICQiamQuXbqEmJgYl90HTBAEg9sDuMrCLWJY1bzQN9Qy+vHHH2PevHnIysqSKmORkZH4+OOPHT1kp9AM9WIVraSkxCmB8M6dO9KbI7oLy2zbtg3bt2/X+5yff/653vs1NoewoqJC780AXXK5HHFxcVpzZQFgyJAhuHjxYr2PbUp9LaPOqhAGBQUxEBqQlJSEpUuXokuXLhg1ahQWLlwIpVKJ5cuXo1+/fg4dy+eff47ly5ejY8eOGD58OJYtWwaFQoE33ngD48aNc+hYyHEYCImIGpGioiJ069YNS5cutfl8KluprKyEWq3WqhACrhUIddsEDY0tNjYWX331lSOH5jKqqqpQXV2t1TIK1H3tdCtqjvDbb79J/y4vL9fa868hqyoaahkV9168cuUKmjZtavRz/fz8GrSNgymmwh1geYVQDJesENrHwoULsXPnThQWFmLEiBFITU2Fv78/Jk6ciEOHDjl0LO+99x6OHj0KlUqFrl274uLFi5DL5Rg2bBgDoRtjICQiakS+/PJLlJeX49KlS84eilHi/Cnd6oqpvf4cqbS01GhYddQcOVenu/COZiB0hitXrkj/vnnzJjp06CB93JBVFQ1VCMUQeO7cObRv397o58rlcpSXl9f7GNaorKw02QFgaYVQJpNBLpezQmgncrkcMTExiImJQWxsrLT4jqenp8PH4ufnB39/f/j7+2Po0KHSGxy6C5ORe2kcExmIiAgApNa4a9euOXkkxhlbndGVKoSGAiEAu13g329cLRBevnxZmrt58+ZNm92voUAYFRUFALh69ape1VGTqQphQ/fpq6ysNLqYDWB5hRAwHCLNJQZABkLDIiIiUFNTAwA4ePAggLqtOmprax0+lq5du0pj2bp1K4C6ij83pndvDIRERI1Efn4+Dh48iMjISJcOhIa2dQDqQpcrVAgNtYxasi1GY9iU29UC4Y0bN/DII4/Aw8PDpoHQUMtoZGSk9G9TgVAul+PSpUvo3LkzunfvjhUrVki3jR8/vkHjMifc1dbWQq1Wm/05crm8QdtO+Pn5wcvLi4HQgB07duhVA728vLBv3z6Hj2X16tV6Y/Hx8cGuXbscPhZyHAZCIqJG4ubNm6itrcWYMWNw69YtrYtBV2KsQhgQEOASFUJjLaOAdiDcvHmzXS727weuFgizs7MRHR2NyMhIZGRk2Ox+DVUIfX19pXmS9VUIr169irS0NKSlpcHf3x9PPvmk1HrcEOZUCAFoVQnNCZHWtowWFxdDoVAAAAOhBdimSY7CQEhE1EhkZWUBALp3746amhrk5eU5eUSGmaoQukIgNNUyqjm+devW2eVi/37gaoEwJycH4eHhCAsL03vdf/755+jWrRumTp2KTZs2oX379ujVqxe+/fZbk/dZXV2N6upqg3P1xHlXzZo1M/r5crkctbW10oIt8fHxePHFFzF69GgcOnQIa9eutfRpSioqKswKhGLFT61WQ61W261lVHPVYAZCItfDtx6IiBoJMRA+9NBDAIB79+6ZvGB1FlMVwoKCAmcMSUtJSQmaN2+udUxsG9RsafXw8NC62H/ooYcwevRo5OfnO26wTiJ+D8UgKJfL4eHh4RKB8N69e1q3Wbuqohj+dVtGAaBFixa4evWq9LNmiJ+fH5RKpdY+hMOGDUN1dTUOHz6MzZs3Y86cOVY8W9S736MYFsUKoRj06msZZYWw8TK0FRC5D1YIiYgaiaysLDRp0kRa9EL3wthVuHqF0NyW0TFjxuDGjRvSx8OGDcOHH36oFybdke73UCaTITAw0CmBsLq6Gvn5+WjWrBmaNGmiVyEUV1Vs1qyZtKqir69vve164vfaUIVw48aNOHXqFLp372708+VyOZo0aaK1D2FVVRWef/55AGjQIh7mtoyKQVAMevdrhfDUqVMYO3YsJkyYgOTkZOn4jBkzbPo49mJtldoeGnOre2PGCiERUSORlZWFiIgIaX5Tbm6uk0dkmEqlgo+Pj3TRKnKVQGhuy+hrr72m97kdO3bEnj177DtAF1BSUgIPDw+t/f6cFQjF17lYIdTdckVcVdHT09OiVRVNBUJxCwFT/Pz89FalPXfunDTHsbq62uTnm1Jfy6huhdCcQGjLCmFpaan0NbeF+Ph4bNiwAV5eXpg/fz5SUlIwd+5cl148S5Mz9v5Tq9UG3/QQW929vb3x/vvv48knn8TmzZsbRat7Y8YKIRFRIyEGwuDgYHh6erp0hVA3cAGusw+hqVVG6xvfunXrMHfuXLuNzVWI30PNPRmdFQhzcnIA1AVCQxVCa1dVFL/XhlpGzWEoYN25cwdAXWhqyOI39bWMOrtCKB6zFZlMhjZt2qBly5bYuXMniouLMXPmTJddOEuXtVVqS6Wnp+PRRx9F//798Yc//AH9+vXDY489hvT0dOkc3VZ3cV6rq/69INtgICQiaiTu3buHpk2bQiaTGZxL5SqMzVVxlQqhuS2jukpKSjB79mysWrXK7beeMBTqnRUIxTmboaGhNn3dm6oQmsNQhfDOnTvw9PTE4sWLkZGRYXVVxtUqhCqVSqtCCMCmbaPh4eFa7dmJiYmIi4tDamqqzR7Dnhy199/s2bOxfv16JCcn4/Dhwzh27Bj+9a9/Yfbs2dI5jbnVvTFjICQiaiTy8/MRGhoKAAgLC3PpllFXDYS1tbUGA6Gvry9kMpnJ8d2+fVv699WrV+02RlfgSoFQDB4KhQJhYWGoqKiwyeuooYHQUMDKyMhAREQEWrRogbKyMqsWUaqtrUV1dbVLVQiLi4v1KoS2DIS7du3SmosJAFOnTrU6wDqao/b+q6mpkVbAFSkUCimMAnWt7rpfy8bS6t6YcQ4hEVEjoRkImzZt6rIVwvpaRgVB0GpFdCRjK0vKZDL4+/ubbBnVDYRdu3a1yxhdgSsFQrEaq1AoEBISAgAoKCjQCnKVlZU4d+6c9DPSqVMnvTmsuhraMmqsQti8eXNER0cDqAuI4s+sucSqnz0qhNZuVWPvCiGZZ8WKFRg7dix8fHygUChQVFQEtVqNt99+2+L7SkpKwtKlS9GlSxeMGjUKCxcuhFKpxPLly9GvXz87jJ7siYGQiKiR0K0QumogNFUhFASh3vlR9iSGAGOB1VTl6datW5DJZJDL5bhy5YrdxugKjAVCZ+x9WVxcDG9vb/j6+moFQrEFbsuWLVi3bh169eoFhUKBwsJCpKWlYdasWZg6darR+7VFhbC6ulprcZW7d+/qBcIuXbpYdL9iuHOlVUbtXSEk8wwaNAiHDx9GeXk5CgsLERISYvXv0oULF2Lnzp0oLCzEiBEjkJqaCn9/f0ycOBGHDh2y7cDJ7hgIiYgagaqqKpSUlGgFQlddgc9YhVC88C4tLXVaIBQrXIaqQvW1tN6+fRsRERGIiYnB2bNn7TZGV2AsEN68edPhY9Fc4TI4OBgAUFhYKN2+fv16HDlyBB4ev8+iUavVGDx4sF0Doea8UzEs5eTkoE+fPoiIiICHh4dVC8uYs6egtRVCawKhWq1GeXm59D0QnysDoTZrqtTW8vPz01oB2BpyuVxaTTc2NlZ6E8NWK8eSY3EOIRFRIyDORbqf5xCKIcyZ8wjF9kNr5jjeuXMH0dHR6N27N44fP263MboCV2sZNRUI/fz8kJSUJH0sCAKSkpLqfdOhtLQUvr6+Vl8AG3o95+TkIDw8HF5eXoiMjLQqENqzQmjNnDzdnxnxdWHLhZVcaR8/a2zZsgVDhgzBpk2bkJSUhA0bNmDIkCHSAjOuKCIiQpp7ePDgQQB14b+2ttaZwyIrsUJIRNQIaK60CNyfcwjNWcnT3kwFwvq2xcjOzkZERAT69OmDDz74AAUFBVILo7tRqVR44IEHtI4FBgY6ZXVVzXZFMRBqLtayZcsWrFixAgkJCaipqYG3tzd69uxZ78V4WVmZ1dVBQH+rEkEQpEAIANHR0Q2qENp6DqG1LaOacziBugqSv7+/TV8LztjHz5asrVLbwqlTp9CtWzeLP2/Hjh16x7y8vLBv3z5bDIscjIGQiKgR0A2EYWFhKC8vb/BFrT3UVyF05l6EDakQZmVloVu3bmjbti2AujmF7hoIS0pK9L5GCoXCaYFQDCNyuRxyuVyrQhgREYHVq1dbfL8N/dnRbIEGgKKiIlRXV+sFwrt37yIqKsrs+zWnZdRYhdBUiLR22wmxNVTz9RAUFGTTarG4j5+/v7+0jx8Am+/jZy9ilXrIkCEAzK9SW+rDDz/U+lgQBKxbtw6zZ8/W2nrCGlOmTMG2bdvum685aeN3jYioETAUCIG6vQl1KznOZihMAK5fIawvEGZnZ6NZs2Zo2rQpALhshdYWDFV5FQoFiouLHb5KrGbLKFBXJdQMhLpqa2sxbtw4zJ8/H3FxcUbPKy0ttXqFUUD/DQ6xhfvq1av44YcfUF1djQsXLmD8+PFYsmQJHn30UbPu15xwJ248rlkh9PHxMfl9sVWFELB9tVjcx8/T09Ou+/jZi7VVakv961//QosWLTBp0iTpe+3h4WGwI8OYBQsW6B0TBAHJyck2Gyc5HgMhEVEjIAZCsSIlBsLc3FyXC4QqlcrlW0aNrTJqbKEMQRCkllExELrqHE5bMBYIa2pqUFZW1qAgZani4mLpaw7UBUJT+/tduHABu3fvxu7du01uDG+rllHx9ZyTkwMA+OGHH1BVVYXy8nLk5ORALpfjxIkTZgdCc1pGZTIZfHx8pHNLSkrq/Z7YukJoy0BoqMJrj3387MXaKrWlzp49i//+97/YuXMnJk2ahKeeegqfffYZnnnmGbPvY9u2bdi+fbve8Z9//tmWQyUH46IyRET3CbVabfXn5ufnIzAwUGoVc9UqVU1NDcrLy126ZTQgIEBrro/IVIWwsLAQVVVVaNasGQIDA+Hr69voAqHYxufo1SU1W0aBujdFTFUIjx07Jv1brKAZYus5hNnZ2QDqtga4ePEiBg4ciKqqKrRq1QqLFy82+37FvQ3rW0XS19dXen7GqvK659uqQmjrQOiOioqKpDfybEUmk2Hy5Mn44osvoFarMW7cOIv/Bjz33HOIjY1FVVUVFixYgEWLFiEzM1MKlWPGjLHpmMkxWCEkInJh6enpWLhwIQoLC+Hl5YXq6mqEhYVh2bJl6Ny5s9n3o7uAidhK5WqBUJxX5MoVQmMXzqYCoXix36xZM8hkMpde5bWhqqurUVlZabBCCNQFtMjISIeNR/d7Vl/LaFpamvTvu3fvomXLlgbPa2jLqO4cwszMTHh7e2Pp0qUoKSnB3LlzAfxeOTSXudth+Pr6SuHRWFVek1wuh1qt1to30RziGwCa92/rOYTuqGfPnrhy5YrJKrW1PDw8MG3aNEyZMgVZWVkWfe7SpUsBAG+++Sb27t0LHx8fJCQkoLq6GrW1tU79/UzWY4WQiMiFzZ49G+vXr0dycjIOHz6MY8eO4V//+pfFCwBobkoPQFqAwdUCoak5enK5HDKZzOkVQlOB0NjYxIuuiIgIAK69ymtDiV8DU4HQkXQrhPW1jN66dUta+Of27dtGzystLbXpojKZmZmIiIiATCZDUFAQ/va3vwEAZs6cadH9mhsINbcBMbdCCMDiKqFKpYK/v7/WYiOOWnFWN+wkJSVh2LBhmDt3Ln766Sd069YNgwcP1qoKu4orV64AqHtd2IuHh4dFCxYBdW+SAHWrxQYHB8Pf3x8rV65Ejx49MH78eAb9+xQrhERELqympkZqtROJc7EsoRsIAdfci9BUhVAmk9W7cIu9mQqEAQEBZlUIgbpA6Gpfe1sx9j10ViDUXVQmJCQEFy5cMHp+RkYG+vbti8uXL5vc9qGkpKRB8289PT0hl8ul10xmZqZW5VT8t+7Pf33MbRnVrNKZWyEE6hagsSQIa277ofnYN27cMPs+rPXMM8/gp59+kj5euHAhdu7cicLCQowYMQKpqanw9/fHxIkTcejQIbuPx1yae/kdOXIEf/zjH50yjh9++EHrY0EQkJiYiCVLlqBr1664ceOGVEGfPn06WrRogVmzZjlhpNRQDIRE5FJOnTqFN954A97e3pg/fz769+8PAJgxYwY+/fRTJ4/O8VasWIGxY8fCx8cHCoUCRUVFUKvVePvtty26H0OB0BWrVKYqhED9K3nam7Uto1lZWfDz85M+t2nTprhz547dxulM9QXCoqIih42lpqZGr/pVX8vo7du38dRTT0GhUJgMhKZeC+bSrCrrBkJ/f38oFAqLK0RlZWXw8fGpt61Tcx6fOc+lIRVCzUCu+9i20Lt3b71jgiDg8uXLWsfkcjliYmIQExOD2NhYREdHA4BFLbCOoFmZFitytlJZWYlz585JfxM6deokzS3XNX36dPTs2RN9+/aVWlcLCwtx4sQJrF27Vu/8IUOG4OLFizYdLzkGAyHRfUDc36cxiI+Px4YNG+Dl5YX58+cjJSUFc+fOxbVr15w9NKcYNGgQDh8+jPLychQWFiIkJMSqvany8/P1qhlhYWEuFwjFMGFNW6YjNGQOoTh/EKgLhKdPn7bXMJ3KmgphUlISli5dii5dumDUqFFYuHAhlEolli9fjn79+jV4LOa2jJaVlSE/Px/R0dGIiYmpt0JoyXL9hgQEBGgFwr59+wKo+3nNz89HeHi4xXO8zF3sRrdlVFx52Bjx946lgdBYhdCWrYUqlQrp6el6e+ANHz5c6+OIiAhpDuTBgwcB1C3WpVmRcwVXr16V/m3LltEtW7Zg3bp16NWrFxQKBQoLC5GWloZZs2Zh6tSpeudfv34d77//PtLT0zFnzhz069cPv/76q8FFjkaMGKFVjaX7CwMhkQvh/j51bYFt2rQBAOzcuROJiYmYOXNmg1bYdAd+fn71toCZYqxl1NQcKWcwta0DYLot0xFUKpXRBVECAgJQXl6O2tpavVVIxUAocsUwbivGqrw+Pj6Qy+UGK4T2auUztMJlSEgIiouLDX6fxKptdHQ0oqOjTf582KJCqPl6zszMRHl5OQYMGICwsDAoFArk5+dj8+bNePTRRzF06FCz7tPcQKhbIawv3IoVQku3njBUIbT1HMJly5ZBpVJpLZwFAAkJCVof79ixQ+9zvby8sG/fPpuNxRbE12H37t1tWiFcv349jhw5ovW6V6vVGDx4sMFAGBAQgEWLFkGlUmHNmjVYtWoVjh8/jkmTJmmdJwgC0tPTbTZOcjwGQiIXwv19gPDwcK15CYmJidi6dSu2bNni3IHd5wwFwpCQEJf7Iy5Wj3QvIEWu0DLarl07g7eJF+Hl5eV6q09mZWVJC8oAdRXCvLw8g6HkfmdqHmhgYKDBCq+9WvkM7YEXHBwMQRBQXFyM4OBgrfPFimBMTAyio6Nx5swZo/dtqwphSUkJ1Go1cnJycOTIEZw6dUoa75/+9CdkZGRg8eLFZgfC8vJyswOhWH2y56IyxiqEKpUKgiBIVfOGmDBhgsHjcXFxZn2+bmXR2e7evYvg4GC0bt3apoHQz88PSUlJGDJkCIC6IJeUlFRv10lQUBASEhJQXFyMDh064O2339b6vSUIAqZNmwbANm+UkOO5118hovucuL9PXFyc1n+WbBp7v9u1a5feMu9Tp061akNkqlNTU4PCwkK9QFjfXCpnyMvLg1wuN1oN1Wyxc4b6WkYBw9ti6FYImzZtipqaGpOrXd6vxEBoaEsGY4FebOUDYNNWPkNvMIgh0NDXXgyEzZs3R3R0tNGW0draWrNCVH3ESnFubi4EQdDbn7Jp06bIzs626E2DsrIys7oJNKt0li4qYwljcwhramr4e92Iu3fvonnz5oiKirJ5y+g333yDAQMGoG/fvhg0aBC+//57bN261azPVygUSEhIQFBQEJKSkjB27FhMmDABO3bswMsvvwwAGD9+vM3GS47jWm+JEDVy4v4+uuLj4x08EnIV+/btQ0JCAjw9PREfH4+nn34aQN3mv7t37zbrPoqKiiAIgl4gVCqVDl3gwxz5+fnSHomGuEKF0NQqo0DdNgJNmzbVui0rK0svEAJAbm6uyed7PyoqKoKnp6fBQGgs0Nurlc9Qy6gYCA29GXL79m00adIEfn5+iI6ORlZWFqqrq+Ht7a11nvgabGiFMDw8HNeuXZMu+hMTEzFv3jxkZWVBEATcuXMHubm5+Oabb8y+T0taRjVXGXV0hRCoe/OgIa3w7uru3buIiopCZGSkTSuEERERWL16dYPuQ9zyaN26dUhLS4O3tzfef/997Ny5E4899phd9k0k+2OFkIjIhYmb/+7fvx/Hjx/HnDlzLN78Nz8/HwAMVgjFuVSuIi8vT2+cmlw5EBqrEAqCgJycHK2WUXEBD3ecR1hUVASFQmGwFdDS719DW/kMtYyK88wMBcKMjAypXTU6OhqCIBi8IK9vrqu5mjVrhpycHCkQ9u/fH1999RWOHTuGlJQULFq0CDU1NejQoYPZ92npHMKamhqUlZU5tEIoPpYj9iI0x4gRI5w9BC137txBVFQUoqKiUFhYKG0l4ko8PDykN0ri4+Px4osvYvTo0W75O60xYIWQiFySuMpeaGioyYDg7sTNfwFg5cqV2Lhxo8Wb/xoLhEqlEoIgQKVSWbzXmb3UVyEMCAiQ9vRztPraBI0FwoKCAlRXVxutELqboqIio68nR7f8Glrgpr6WUTEQit+v3NxctGjRQuu8+lbDNVd4eLgUCGUymdZrBKh7najVahQXF5v9M2rpKqPi74f6KtWmWqJNMVUhdHQg1F0MBXDNBVGys7PxyCOPSJvGZ2Zm4sEHH3T4OEx1qIwZM0Zrvv+wYcMQGRmJefPmOXyc1HAMhETkUg4cOIDFixdLq+wVFhaioKAAS5YsMXtRBXdii81/TVUIgbpKiasEwry8PJdtGRWDjLEQIFY9dLdVELcN0KwQhoSEwMPDwy3fTTcVCB39/cvPz0dgYKBWy6c4NkMVwqysLHTp0gWA6dBuqwpheHg4ioqKcPHiRURFRelVRDUryeb+jJaXl5t1blBQECoqKqTqpG6bsy6xBdjS7SKMzSEUb3Ok1NRUHDx40OiCKK5CfGNMXNH47t27TgmEYoeKj48PEhIScPToUaxZswalpaV47bXXAPy+x6pSqUTHjh2xZ88eh4+TGo6BkOg+0Jj291m8eDH27NmjddFdXFyM0aNHN8pAaIvNf01VCAHHbhRen/z8fL1qjCZn7kNobDsFkfj11a08iRVNzeqPp6cnQkND3TIQmnqDQVxV01wN/d137949vf31vLy8EBQUZDAQar4hYSoQ2rJCCAB79uxBt27dAGhvHJ6Xlyc9j9atW5t1n2VlZUa3RtEkviEkbt5eXyD08/ODTCaz6OdPrVajvLzc5BxCR5o/fz6CgoL0XhPigiiuQFwErEmTJloVQmcw1KHSuXNnXLt2DePHj0fv3r3x9ddfIyAgAFOmTMHMmTOdMk5qOAZCIhdyv7Sz2JOHhwdyc3O1LiByc3Pdbml+R8rPz4ePj4/e4g2mFtdwlvoqhM7ch7C+QCiGIN1AmJOTA+D3i3+Ru+5FWF+F0FDLr71+9xkKhIDxzek1X3++vr4ICgoyGAjFnxlj26OY64EHHgAAnDt3Dk8++aTexuHifnSff/45+vTpY9Z9mtsyKr4ez58/D6D+QCiTySxu+TW0qA/gvDmE4oIoup566imHjsMU8XUZGhoKpVIJPz8/my4sYwnNDpXk5GQ888wzePvtt/HAAw9g+/btaN++Pa5duwZvb28MGjSIgfA+xkBI5ELul3YWe/r444+1VtmTyWSIjIzExx9/7Oyh3bfEi2LdRT5Mtc45iysvKlNfIPT09IRSqdQLGvn5+fD09NT7PHcOhLpbx4iMBXp7/e4zFQh1X/dqtRpFRUVab0iEhYUZDITGqu6Weuihh6R/x8XF4Y033tDaOLy6uhobNmzAt99+i/fee8+s+ywtLTW4wqsusWKdnp6uVQkyRZx3aC5Di/qI9wPYJhCeOnUKb7zxBry9vTF//nz0798fADBjxgx8+umnDb5/R9Oc0ymTyZz6e0LsUDl58iQGDBiA9evXo1mzZjh06BAA4Omnn4aPjw8A19vLkSzD7x6RC7kf2lnsLTY2Fl999ZWzh+FSNFvIQkND0alTJ+mPsDlyc3MNvvvvai2j1dXVKC4urrdC6Koto0BdQBAv6EQFBQUICQnRC+TuHAhNVQgNff/s9bvv3r17BluQDQVCQ4urNG3a1GggDAwMtOjn0BCZTIa///3vOHPmDAYPHqy3cbiXlxeCg4MtWgm4uLjYrMqlGAjPnj2LsLAws7owbFUh9PLygp+fn00CYXx8PDZs2AAvLy/Mnz8fKSkpmDt3Lq5du9bg+3YGsU1YfLMhJCTE6W/apaWlAQCOHz+O0aNHo6amBp6ennj33XcBAFVVVejYsaMzh0gNxB4sIhcye/Zsg+9mu1I7CznWli1bMGTIEGzatAlJSUnYsGEDhgwZYvZGwkBdIDT0upLL5fD19bX4YmPKlCkWnW8uzVYpY/z9/VFRUeGUrTLMCYQhISF6FUIxEOoyVn2631mzqIy9fvcZqxAa+j6JF+LmBkJbrX78xhtvYOfOnZDJZAY3Dvf29sbAgQPNvj9zVyQNDAyEv78/Lly4YPBrZOxzLAmExiqE4jFbzCGUyWRo06YNWrZsiZ07d6K4uBgzZ86EWq02+z5cZfsLQP+NCWPtzY6UmpoKAPjxxx8xY8YMeHp6at3u4+ODDz74wBlDIxthhdAKiYmJWLJkidaxZs2aSSvJCYKAJUuW4OOPP0ZBQQH69OmDf/3rX1rvnlRWVuLVV1/Ff//7X5SXl2Po0KH48MMPpeWuiYgAYP369VotZEBda9vgwYMxdepUs+7j3r17esvZi4KDg41WCBcsWKB3TBAEJCcnm/W4ljJn+XtxblR5eblZbXG2JF6UmWqtszQQumuF0NjXyNFzQE21jF69elXrmLFAaGgBJ1sGQk2GNg4fO3as2YFArVajrKzM7LmNzZo1w/Xr19G+fXuzzrd0USBTb6IEBgbaJIiFh4drrcScmJiIrVu3YsuWLQB+3+QdADZv3ox//vOf8Pb2xqRJk/C3v/0NADB+/HgcPHiwwWOxBfH3oPg7wxUqhMePH8fw4cNx5MgRbNy4EVOnTtVaNZnuf6wQWqljx47IzMyU/tOc+P7OO+9g5cqV+OCDD5CamoqIiAgMHz5c6xffK6+8gq+++go7duzAkSNHUFJSgrFjx6KmpsYZT4fIpVRWViItLQ379+9HWloaqqqqnD0kpxFbyESCICApKUnaJNocxlpGgbq2UWMXG9u2bZP2mxL/Gzt2bL37lVlLt1XKEDEEOqNtND8/HwEBAfD19TV6TmhoqNmBsGnTpm4XCA3Nw9PkyFVia2trkZeX5/IVwvpERUWZvaiIsRZNY8Q3inr27GnW+ZZWCHXDjaagoCCbBMJdu3ZJYfCHH37ADz/8gNDQUHz55ZfYvXs3xo8fjx9++AEAsG7dOqSlpSEtLQ3+/v548sknUVZWBkEQGjwOW8nNzUVAQID0O97Qa7WhLKmelpWV4ezZs3jiiSfQuXNnnD17Fs888wwAICkpCcOGDcPcuXPx008/oVu3bhg8eDCOHTtm0/GS/bFCaCUvLy+D744IgoDVq1fj9ddfx8SJEwEAmzZtQrNmzbB9+3a88MILKCoqwqeffootW7Zg2LBhAICtW7ciJiYG+/fvx8iRIx36XMi1NHS+2P1Od5W9wsJCpKWlYdasWWZXxNzJli1bsGLFCiQkJKCmpgbFxcXo0aOHxS2jxgKhqQrhc889h9jYWL3VMcWLAVuzpELojIVlzAkBISEhenOXCgoKDFZow8LCoFKpUFlZaTJk3k/q+x4GBARILb/mzFnLysqyuhJRWFiI2tpag4EwNDRUCoCaj+Xp6al1vqlAaK83RnQ1b94c33//vVnnii2a5gbCJ554AikpKejevbtZ51taIczLy4O3t7fB/RptFQg1TZ8+HT179kTfvn2lkFdYWIgTJ07g0UcfhYeHh7QnZXx8PB566CGMHj1ab96vM2VnZ2u95m3VMpqeno6FCxeisLAQXl5eqK6uRlhYGJYtW4bOnTsb/JzevXujpKQENTU1WLt2LbKzs3H27Fnpa7hw4ULs3LkThYWFGDFiBFJTU+Hv74+JEydKC8/Q/YGB0EqXL19GVFQUfH190adPHyxbtgwPPvggrl+/jqysLIwYMUI619fXF3FxcUhOTsYLL7yAkydPorq6WuucqKgodOrUCcnJySYDYWVlJSorK6WPdTdApvsbw5BtWiTdiWYLWUVFBfz8/HDp0iWpHao+tbW1RtvmANMVwqVLlxo8Hh8fb9ZjW8qcCuH9EAgNVQg7dOigd674PcnLy5Na2u539X0PNTckN2ee2zPPPGP1PoRi9dXQa79JkybIy8uTVjIGgIyMDERFRWnNj2ratCmKi4tRVVWl9cZcfn6+wzYKj4qKQnZ2NtRqdb0rOVoaCOfOnYuHHnoIw4cPN+v8gIAAi6ra4jYeugsqAbabQ6jp+vXreP/995Geno45c+agX79++PXXX7F48WIAwJgxY7TaS4cNG4bIyEjMmzfPpuNoCN03QWzVMjp79mxs374dMTEx0rFbt25hypQp+OWXXwx+jkqlwoIFC/Dcc88hNTUVH3zwAZYsWYJevXoBqJuHHhMTg5iYGMTGxiI6OhpTpkzRm2NIro+B0Ap9+vTB5s2b0a5dO2RnZ+Mf//gH+vfvj3PnzknzCHXfDW7WrBlu3rwJoO6H3cfHR6+FQnMeojHLly/Xm79I7oNhCHqr7FnTIumu9u7dC6Au5JlbObl37x5qamqMnmtotUVnycvLq3flRrFl1NEbWgMNC4TG5hACdd8jdwuExqpnms9ZMxD27t1b71xBEKRN061RXyBUq9VQqVRSeMrIyNCbxy9W1nW/R45uGa2trUVOTk69rxNLA6GHhwceffRRs8diacuoqX1FAwMDbd4KGRAQgEWLFkGlUmHNmjVYtWqV1u+31157Te9zOnbsiD179th0HA2h+7vdVhXCmpoavTdhFAqFyalKy5Ytw6lTpxAaGgo/Pz907NgRpaWlmDlzJhYsWIDs7Gy8+uqr8PDwQM+ePTF//nwcPXoUrVq1avB4ybEYCK0wevRo6d+dO3dGv3790Lp1a2zatAl9+/YFAL13wzTfhTTGnHMWLVqEuXPnSh8XFxdrvdtD9zeGIf0WSW9vb/Ts2dOiFklXY4t9sgRBwNtvv42WLVvixo0b2Ldvn1l7tIkbWxtbsEqpVOLGjRvmPRE7q29TeuD3BV2cEWLNCQGhoaFSq6KHhwcEQUBOTo7BUKIZjtyFJYGwdevW0nGVSoX09HS9Cpi5lStD6guEQN331JxAmJub69RACGgvjmKMGAjNqb5aw5qWUWOvhaCgINy6davBY9q3bx8SEhLg6emJ+Ph4PP300wgKCsKxY8fw3//+1+CiQK4sKysLbdu2lT4OCQlBRUUFKioqGnQtsGLFCowdOxY+Pj5QKBQoKiqCWq3G22+/bfRzJkyYgAMHDqB58+YAft83MygoCNu2bcP27dv1Pufnn3/Gvn37rB4nOQcDoQ0EBASgc+fOuHz5Mh5//HEAdT/QkZGR0jk5OTlS1TAiIgJVVVV67xrn5ORIF4rG+Pr6us1cE9LnjmHIUoZW2bvf2WKfrG3btuHYsWPYt28f5s+fj/3795sVCDMyMgAYD4Sm5hA6mqm5jiLxd6YzlmHPz883uKedppCQEAiCgKKiIoSEhODevXsoLy83+HliUHGnrSfq27Dd2HNetmwZVCqVXiU1ISHB6rGIgdBQIBGP5eXlSe2Dt2/f1ptLpRkIReLCOY4OhHfu3Kl38RdLK4SWUiqVFk1VqS8Q2mIO4Ztvvom9e/fCx8cHCQkJOHr0KNasWSOttmqo+uzKdCuEmq3lYjCzxqBBg3D48GGUl5ejsLAQISEhZgXMO3fuSI/7wAMPwN/fH+fPnzc5x5yb1N9/uMqoDVRWVuLChQuIjIxEq1atEBERofXuSFVVFZKSkqSw16NHD3h7e2udk5mZibNnz9YbCMm9iWHo6NGjSElJwS+//IJVq1Zxeef7nC32yfr2228xYMAADBs2DH369MGZM2fM+ryMjAx4eXnp/dEWmZpDuG/fPvTp0wf9+/fHjh07pONjxowxe9yWMCcQBgYGwsPDw2mB0FDrpybdwCpWXw0FwqCgIHh7e7tdhVChUEiLTugyVhWdMGGCwa9tXFyc1WPJzc1FSEiIwYtTzUAI1FXg66sQisSfF0cFwqZNm8LLy8uslUaLioogk8nstiWLpe2L9QVCW7R+e3p6Ijg4GP7+/li5ciV69OiB8ePHO6WtvKFqampw7949rd/X4mswJyfHJo/h5+eHyMhIs6uNmoHQw8MDnTt3xq+//oqlS5ca/LtirznmZF8MhFZ49dVXkZSUhOvXr+PXX3/Fk08+ieLiYjz77LOQyWR45ZVXsGzZMnz11Vc4e/Yspk+fDn9/f0yePBlA3QXYjBkzMG/ePBw4cACnTp3C1KlT0blzZ2nVUSIAQF4ekJgIuFEFoTES98kSJSYmIi4uTtrs1xy//fYbOnXqBABo06YNLl++bNZS6Xfu3EFkZKTRSf7iBZ6h+xLfed+/fz+OHz+OOXPmoLa21m4LupgTCD08PJwy71EQBGRnZ9c7PjEkiJUyce64WIXSJJPJ3G7rCVMLGAGQ2tXqe86rVq1Cv379GnRRb2osuoGwqKgIpaWleoFQXP5fMxCas/iRLXl4eCAyMtKsQCi+aVHf9BNrBQcHo7KyEhUVFWadX98cQltUCLt27ar1+3X69OmYO3euS202b66ioiK9lXHF0GWrQGgpzUAIAI899hh+/PFHs18DdH9gILRCRkYG/vSnP6F9+/aYOHEifHx8kJKSIr0DvGDBArzyyiuYPXs2evbsiTt37uCnn37S2ph11apVePzxxzFp0iQMGDAA/v7++O6777gyE2mbORNYsgTYtcvZI6EG0NwnSzR16lSz/6DW1tbit99+kzaPbtOmDUpLS5GdnV3v5xqqemgKDQ1FdXW1wZDn6HfezQmEgH325aqPGBjqm7OtWyG8efMmAgICTLZQulMgNGexI2NbOYju3buHuXPnIiUlBR988IHVYzEVCMWgJ/4Mia3Vut9fmUyGsLAwrfHW1xZrD+buRWhs30VbsbRl25yW0YbuAbh27Vq9369DhgzRmjuouaq7KzP02rJ1hdASarUaWVlZWoFw5MiRKCkpwZkzZ/D555+jW7dumDp1KjZt2oT27dujV69e+Pbbbx0+VmoYNvlaQbN1yhCZTIbExEQkJiYaPUcul2Pt2rVYu3atjUdHbiMvDxD3nrpyxbljIae6c+cOysvL0a5dOwCQFhy4fPlyvRff5gRC4PdN1zWJ77yLF1vTp09HixYtMGvWLGufikn37t1z2UBY3+I8It0L5osXL6Jt27ZGKzaNMRDW95xTUlIAAO3bt8eRI0esHoupQCiTyRAdHS19X03NtdUNsK4cCO/du2fX/RE1F3XSXCfBkOrqahQXF5sMhGq1GpWVlTZbOG3SpEl6xwRBQHp6uk3u35YMLRJkqPrs5+eHoKAgu801HjFihNGtXbKzs1FbW6sVCMXFoG7evIn33nsPR48ehUqlQteuXfHZZ5+hT58+GDZsGMaNG2eX8ZJ9MBASuaqkJKC6GujcGWjA0uv3I3P223KmKVOmYNu2bQ57PLHtUNz3rE2bNvDy8sLZs2fxyCOPmPzcO3fuoEuXLkZv1wwwutURQ29Y6b7zbivV1dUoKCgwKxDaahl2S9S3OI9IoVDAy8tLung7c+aMya+/OwbCAQMGmDynvgrhsWPH0KxZMzz55JP497//bdYK3Ibcu3cPsbGxRm+Pjo6Wvq8ZGRnw8PAwGGaNBcL65pPaUlRUlNG94jSZs1JvQ1iyyq/4dTIVCIG6hXBsFQhTU1Nx8OBBra2bBEEwawEue/rhhx+0PhYEAYmJiViyZInWth/G3mxo2rRpgyuE1oRl8Q0TzUAYHBwMhUKB7du3o6CgABs3bgRQV12fPXs2Zs+e7dJ/v8kwfseIXNXx40B0NDB4MLB/v7NHY3fp6elYuHAhCgsL4eXlherqaoSFhWHZsmV6K/85yoIFC/SOCYKA5ORkh45DvGgV/yj7+vqiY8eOOHnypMnPEwQBt2/fNrkyne6cN2cR3xk3t0Lo6PFmZGRAJpPVWxURK08ZGRmora3F2bNnDV6IicLCwnDp0iVbD9dpzK0QmnrOp06dQs+ePdGzZ0+89dZbuHv3rlWrK9Y3nzE6Olqae3br1i1EREQYXAynadOmuH37ttb9+vv7w8/Pz+IxWSsqKkq6ODclLy9Pa8sCW7OkZbS+LUg0F+wxtuiVpebPn4+goCCEhYVBpVJJofPll1+2yf1ba/r06ejZsyf69u0rtcgWFhbixIkTZgXC8PDwBgdCa8KyoUAok8nQsmVLJCUlQaFQQC6Xw9PTEy+99BLee+89yOVyu74pQfbBOYRErurXX4HevYFWrYAbN4AGzrNwdbNnz8b69euRnJyMw4cP49ixY/jXv/6F2bNnO21M27Ztw5gxY7T+Gzt2rM3+2Jk7ryUjIwNBQUFaS8n36NGj3kBYXFxscKEMTeKFhzNW7dQkVmDMCYShoaFOCYTNmjWDj49PvefGxMTg9u3buHbtGsrKyhpNhbCmpga5ubkNnkN47tw5dOrUSdpi4cSJE1aNx5xAKL7Z8ttvv0kt2fWN9/bt2w7f/7d58+bIy8tDZWWlyfNcqUJYXyAUt+IyZy60KZs3b0bnzp3RvXt3FBcXS9/z8ePHS+c89dRTDXqMhrp+/ToeeeQRXLx4ESNGjMCbb76Jtm3bYvHixVrn5efnQy6Xw9/fX+u4LQKhGJZbtGgh/deyZUuTYfnOnTvw8fHR+zlq2bIl+vbti2XLluG7776Dj48Ppk2bhujoaDz33HPYZaN1DzIzM21yP1Q/VgiJXFFNDXDiBPDGG0BkJFBeDqhUgJ32lnIFNTU1epspKxQK1NTUOGlEMLnPkiUaOq/lzp07eqGuY8eO2LFjh8l2OnPmvYkXeMYCVmVlJc6dOydtxN2pUyezQpGlLAmEzghRGRkZZlepYmJicOvWLWlrEHMCobVtka4kNzcXtbW10oW+Maa+f8XFxbh16xY6deqE5s2bo1mzZjhx4oTWxb05qqurUVhYaDIQPvDAA7hz5w6qqqpw6dIlo/vVNW/eHLdu3ZK+Rzdv3sQDDzxg0XgaSpxrlpmZaXDFWlF9Ibih/P394eXlZdYbSPW1jNoqEK5btw5paWnw9vbG+++/jyeffBKbN29u8GI1thQQEIBFixZBpVJhzZo1WLVqlcFQLf6e1RUeHo7//e9/DRqDsTdXTYXl8+fPo02bNnq/m1q2bIn9+/dj8uTJePrpp7Ft2zaMGzeuQb+XDbXVvvHGG1bfH1mGgZDIFV24AJSU1FUIxV/EmZluHQhXrFiBsWPHSsvSFxUVQa1W4+2333bamJYuXWrwuKX7LDV0XouhhWFatmyJsrIykwux6LaaGuLp6QmlUmkwEG7ZsgXr1q1Dr169oFAoUFhYiLS0NMyaNQtTp041a+zmsiQQOmOrBkOh3JiYmBgkJyfjzJkzCA8PNxmQmjZtisrKSpSWliIwMFDrtqSkJCxduhRdunTBqFGjsHDhQiiVSixfvhz9+vVr0POxB3Gua31hqWnTpigsLER1dbVei6Z40dupUyfIZDKzKuGGiK9nU+GoW7duqK6uxpkzZ/Dbb78ZfU23b98epaWlUuvqrVu30LVrV4vH1BBiILx7967RQFhTU4OCggK7VgjFrVLMWeCkvu05AgMD4efn1+BA6OHhIb2O4uPj8dBDD2H06NFOb4M3JCgoCAkJCSguLjY4FzsvL89oIHTGKqNpaWno0aOH3vGWLVvixo0bEAQBHh4emDZtGqZMmYKsrCyrH8tQW21RUZHV90eWYSAkckXHjwMeHkDPnoA4byQrC/i/bQfc0aBBg3D48GGUl5ejsLAQISEhNltowNk057VoMndey7Vr19CtWzetY+JF4Y0bN+oNhLor2elq0qSJwYC1fv16HDlyRCvIqtVqDB482C6B0MfHR2t7HmPCwsJQXl6O0tJSu23ArSsjIwODBg0y69y2bdvi1q1b+M9//mOyOghob9SuGwgXLlyInTt3orCwECNGjEBqair8/f0xceJEHDp0yKrnYU9iIBS3YDJGfM55eXl67aU///wzgoODpXnDPXv2xLp16yyuoIqtZqbCeNeuXeHl5YUtW7agrKwMHTt2NHieuN3LpUuX0Lx5c9y8edPhKyhqBkJj8vLyzKrQ2mIs5q54qlQqjS4wIpPJ0KxZswYHwjFjxmithjxs2DBERkZi3rx50jnmzG11JIVCYbAinZGRYfD3tbkh3JbUajX+97//4emnn9a7zdAbkh4eHtLYrfl6X79+He+//z7S09MxZ84c9OvXD0ePHsW1a9ca/mSoXpxDSOSKfv0VeOghIDCwrmUUqKsQNgJ+fn6IjIx0mzAI1LXqGKpUmDOvpaamBufPn5c2pReJFz/iRbghd+7cMWve2wMPPKC1sbPIz88PSUlJ0seCICApKcku3xtxD0JzLvo1F6NwlPq279A0depUtGvXDrdv38bAgQNNnqsZCHXJ5XLExMSgc+fOiI2NRXR0NEJDQ112v9obN24gKChIakM2xtT3LykpCXFxcdJz7NmzJ3Jzc7UWdTGHeBEprsxriFwuR/fu3fH+++9DLpcbDfytWrWCl5cXLl68iNLSUuTm5pps27SH4OBgyOVyk0FMrM7YOxA2b97crEBozs+MLQLha6+9pvf96NixI/bs2SN9bGmbv7MYm58aHh6OsrIylJaWNuj+Ndtos7KyTFbgMjMzUVFRIb0hoknzDUlDrPl6i22169evx4EDBzBp0iRWCB2IFUIiV3T8ONCnT92/g4IAf/9GEwhJ2/Xr11FRUaFXvQgJCUFQUJDRP8iA+fPeWrVqhXPnzukd37JlC1asWIGEhATU1NTA29sbPXv2xNatWy1+HvUxd1N64PdAce/ePYdcmJeWlqKgoMDsQOjr64vHH38cK1asqHcLBlOBMCIiAjU1NfD09MTBgwcB1L1rX1tba+EzcIybN2+iRYsW9YZ68Xt29epVvRWEz507p7XPZffu3QEAp0+ftmje3tWrVxEYGFjvfLohQ4bg+PHjGDlypN5CHiJvb2+0bt0aly5dklZHNXSRbE8ymazelUbFYOWICqG4V6Qpt27dqnfxHVsEQk1S1U2trpuL7+sLQRBw+T7Zuun27dsYO3as3nFxHntOTg5atWpl1X2vWbMGn3zyCVq3bo3evXvj66+/RkBAAKZMmYKZM2fqnW9ohVGR+DP89NNPw8/PT9oqSlx5tyFfb8222pMnT+IPf/iD1fdF5mOFkMjVlJYC6el18weBujmEERF1LaPkEsxdHdQWxIVJdCuE4tLf9QVCc0JMq1atcP36db3jERERWL16NY4ePYqUlBR8/vnn+Oc//2mX1qvMzEyzl54XL/IdVSE0d1N6Ta+//jreffddDB482OR54nwvQ89lx44detVALy8v7Nu3z+xxONK1a9fMulht1qwZlEql3hyqoqIiZGdna632GRUVhaCgIIv3vrx27Rpat25dbzidPHkyfH198fe//93kee3bt3dqIATqLszFNnBDHBkIzakQ3r59u94Qb+tAqFKpkJycjF/z83H8zBkUFxQgKSkJvXr1stljWGPfvn3o06cP+vfvjx07dkjHx4wZI/27srIS2dnZRiuEQMMW4Nm+fTvS09Oxfft2rFu3DkePHsXPP/+MzZs3GzzfVCAMCQlBYGAgbt26hSFDhuCPf/wjhgwZAh8fH/z1r3+1yddboVAYnL9I9sEKIZGrSU2te2ezf//fj0VGNtoK4YgRI/DTTz855bEbujqoJmtX6/z111/RvHlzg/vf1RcIz58/j4kTJ9b7GK1atUJubi5KSkr05rGJsrOzERUVhT59+iA5OVlrXqEtpKenmz0vS6wQOmqRBWsCYWBgoNYcJmP8/PwQEBBg0SI5rrrp8/nz5/GnP/2p3vNkMhk6dOiACxcuaB03FLbEcy0NhFeuXDHZLirq0qULKioq6j2vffv22LlzJy5evIiIiAi9FZEdoW3btjh9+rTR27OzsxEYGGi00mkrUVFRyMnJMbgokKZbt25hwoQJJu/L1oFw2bJlUJ09i5D/a6WPvnIF//nPf5CQkGCzx7DGm2++ib1798LHxwcJCQk4evQo1qxZg7KyMukc8feMoUAohjJz9qI0xs/PDzKZDAEBAXj66afh4+MDQRCQnZ1tsEPjzp078PX1NbookIeHB/r27Yu///3v0v6UarUacXFx+Mc//mH1OMk5XPOvClFjlpxct5roQw/9fiwiwu0DoS3Dl600dHVQUUNW6zx27JjRFSVbtmwptRLqysrKwo0bN9C3b996xye+i5+RkYEOHTro3V5SUiLNd/z111+xa9cuk5utW6qoqAhXr141e+VGcePjhlwcWcKc1VobwhmrptqaSqXCrVu38JDm7y0TYmNjcf78ea1jYtuy7sbq1gTCCxcu4Nlnn7Xoc0zp0KEDbt68ic8//9xp1abOnTtj+/btUhuxruzsbJtt8G6K5sIhxlpCy8vLce/ePbNaRnNycmy27cqECRNwY+VKhAColckwJzYWr7z3ntNbRj09PaW5tStXrsTGjRsxfvx4lJSUSOeI82QNfc1CQ0Mhl8tNVojrM3r0aOm18+677wKo22v38uXLWLlyJZYvX651/t27dxEVFWX0+xIYGIicnBwpDIpzzK9evYpZs2bhyJEjVm2Bkp+fL71x6qpvfrkjfqWJXE1yMtC3b90qo6LISOD/3j13V7YKX7bU0NVBRdau1llbW4uTJ08iMTHR4O2aS3/r/tEWV6E0Z3sCMejcvXvXYCB8/fXXkZqaih9//BEffvgh5syZg+HDh0sXAg2VlpYGAHorqZqiuam4vWVkZKBJkybS/BhbCwsLc/gKgrYmVvuMrdSpq0OHDvjiiy+0XrsHDx5Et27d9Faa7dChA77//nuzQ0NRURHu3Lljdjg1x9ChQyEIAi5evKh34ewonTt3RkVFBS5fvmzw5/TSpUto3bq13ceh+fvCWOATw405LaNVVVXSytK2cPfAASgAKMeOxR+ysnDj/Hl8/vnnmDx5sk3u3xpdu3bVWgl1+vTpaNGihdZ8WVOBUCaTITo6ukFvgi1cuFDv2H/+8x8AwKlTp/Ruu3nzpsmuiBkzZmD58uUYMGCANMc8JiYG2dnZyM7OxkcffWRRZfbAgQNYvHgxwsLCpDdO7/c3yu4nnENI5EoEATh2TLtdFGgUFUIxfLVo0UL6r2XLlhaHL1tqyOqgmqxdrfPatWsoKyvDww8/bPD2Vq1aobS01GDr5Nq1azFw4ECz2hzFdlRjFxs//PADZsyYgVGjRuGjjz5CQUGB0Xkn1vjpp5/QtGlTs8MEUHfRZOnKk9ayZFN6azzwwAMG53Aa48g5rOYSq32GgoohsbGxUKlU0vYQgiDgwIEDGDZsmN65HTp0QEFBgdmhWQyntgyELVq0wMCBA9GzZ0+Hbzkh6tGjB7y9vbF//36Dt586dcqiN1WsZc4WGKbCjSZbbU6vSZ2ejgyFAp79+yPowgWMGDoU//73v212/9ZYu3at3gJYQ4YM0ap83759GyEhIUa30rH1m2DFxcU4cuQIHnzwQRw6dEj6WRSdOXNGb9EnTb169YJarcZnn32GlJQU/PLLL1CpVOjQoQMmT56M7du3WzSexYsXY8+ePfjmm2+wZcsWfPfdd9i5c6dVz40sx0BI5ErOnQPy8/UDYWQkkJcHVFU5Z1wOYKvw5Yq2bNmCb775BgMGDEDfvn0xaNAgfP/99/Wu1im2yxr7oyxefOvOxSooKEBycjL+8pe/mDU+f39/BAcHG7zAKyoqwpUrV9CzZ08AdReDY8aMwa5du8y6b3Ps378fI0aMsGheoiMrhOfOnUObNm3sdv/t27fHb7/9pnd80qRJev/98Y9/dGobtTHnz59Hy5Ytzd4XUve1m5mZiczMTIMVbfFcc9tGT58+DU9PT7PDqbkOHDiA48eP23z+rLmCg4MxbNgwfP7553q35eXl4fbt2w4JhE2aNIG3t7fJatWtW7cA1D/vVlygSjeMWEsQBCgzM1H54IN1nTYlJZjctStSUlJQXV1tk8ewF2NbToiaN29u0zfB5s+fDy8vL3zzzTfw8/PDqlWrpNvKyspw8eJFk68n8edLnPt7584d/PDDD5g7dy7GjRuHCxcuWBT0PTw89N70YYXQcdgySuRKdu+u22LikUe0j4vViYwMwIyFEsi1iKt1AkBFRQWysrLM2i7hf//7H5o0aWJ0Vc82bdrAy8sLFy5c0FrN8vjx4wCA/rpvLJhgbOVAsbIpLv8v/nvt2rVm37cpgiDg0qVLFs9JjImJcci7x2q1GqmpqViyZIndHqNdu3a4desWysrKtBYEccU2amPOnz9vUYX3wQcfhLe3Ny5evIihQ4dKLWuGLkBbt24NT09PXLx40ehegZpOnDiBzp0727zF15xFoOxt0qRJeO6555CZmam10JS42Iy583AbQtwCo74KYXh4eL1dEGJL6fXr1zFkyJAGj+3ypUtoq1bjVq9eQM+egIcHBvr4oLy8HGlpaegjbufkgurbpqNt27bYs2ePTeZbCoKAL774AnPnzkWnTp0wffp0bNy4Ef/4xz/g4+OD06dPo7a21uTrqVWrVvD29saFCxcwdOhQfPnll/Dy8sIf//hHaW7k0aNHzVrYDAA+/vhjzJs3D1lZWdJztGYOIlmHFUIiV/L998Dw4YDuH1GxOnH1quPHRHqyGrAFyP/7f/8PrVq1Qnx8fL3nJicno2/fvkb/+Ht7e6NNmzZ6ewimpKQgNDTUoqpW8+bNDW5yv2DBAgwaNEjrYr9t27bIzc1FYWGh2fdvTH5+PlQqlcX7CUZHRyMvLw/l5eUNHoMpZ86cQVlZmVlzMa0lrqqpWyV0xTZqY86fP29Ri6aXlxfatm0rVQhPnDgBpVKJFi1a6J3r6+uLBx98UK8SbkxqaqpU0XY348ePh5eXF7744gut46dPn4a/v7/egjz20qJFC5MLtVy7dq3edlGgboGo5s2b49q1azYZ16lvvoE/gJhRo4DAQKBrV7S6ehVBQUFO366lsrISaWlp2L9/P9LS0lCl0/Fz7tw5k9uZPPzww8jLy7NJNfXGjRvIy8uTfq89/fTTyM3NleZz7927FyEhISYDoZeXF7p06YJjx44BqHvzsE+fPggODkZ0dDRiYmLw66+/mj2m2NhYfPXVVzh27BhSUlJw7NgxbNu2zfonSRZhICRyFXl5dQvKGNiUFi1aAF5ewJUrjh+XkzUkfNnLM888Y9Xnffvtt/joo4/g5eWFtWvXmrwIqqmpwbFjxzBw4ECT9xkXF4evv/4aNTU10rGUlBT06dPHoneR+/Xrh0OHDmm1Vd26dQuXLl3CK6+8onVf4kWnLVbuE+fOWbrZsnixae+20WPHjsHb21urQmprnTp1gkwm01vY4X5poy4tLcX169ctnrMXGxuLixcvoqamBps2bcLYsWONvmbFc+tTVlaGc+fOuW0gDAkJMdg2eurUKXTp0sXg6qP2MHDgQCQlJaG2tlbvttraWuzduxdxcXFm3Vfr1q1x1UZvdmb8X+gLEPeve/xxePz4I0YNGYIff/zRJo9hjS1btmDIkCHYtGkTkpKSsGHDBgwZMkSaNpCfn48bN26Y3HdPnEv+v//9r8HjSUlJAQDp56Rbt26Qy+VSuNuzZw+GDx9e7yqfw4YNw1dffYVXX30VX3zxhVYFv2vXrjYZKzkGAyGRqxDnZGlsVCvx8gJatQKcvHS2M1gbvmyhd+/eev/16tVLasm0xN27d/GnP/0JzZs3x5kzZyCXy/Hcc89h9+7dBs9PTk5GSUlJvRub//nPf8adO3dw5MgRAHUXxAcPHjRruwlNjz32GIqKiqQLAuD3lUof0WlhbteuHTw8PGzyx97aQCjOTXJEIOzatavdVhgFgKCgIMTGxiI1NdVuj2FPYlCzpGUUqJuDdO7cOaxYsQI3b97E3LlzTZ5rTiA8ffo0ampqnL4RuT1NnDgRR44ckSr0RUVF+O6772zScmmuP/zhD8jNzcWJEyf0bjtx4gSysrLq3YNQ1Lp1a7Orv/VKS0OZry8grm46cSKgUuG5Fi2QkpKCgoIC2zyOhcSVptesWYOlS5di7dq1SEpKwkcfffR/w66rzJkKhC1btoRCobDJ792dO3eiR48e0qI+Pj4+6NmzJ/bu3Yvc3FykpqZi9OjR9d7P5MmT4eHhgffeew+tWrXCCy+8IN328MMPMxDeRxgIiVyBIAAfflhXHTSwATkAoH17QGffLndiy/BlKyqVCsnJyTh+/Lj0X2pqqlUXm1u2bAFQ1xYUGxuLhIQEJCUlYfLkyVrVPdE333yDiIgI9O7d2+T99uzZEwqFAkePHoUgCHjsscdQXV2NUaNGWTS+bt26ITAwUAqEtbW1eP/99zFo0CC9KlVQUBB69+6NvXv3WvQYhpw6dQpNmzY1uvmxMWIgtPdKo6mpqQ6Zd9SzZ0+DF9f3A7Fl2dJFXB555BFkZWUhISEBc+bMMVmF7dSpE27evFnvGwDHjx+Hj48POnXqZNFY7ieDBw+GIAjSz+rSpUtRVVXl0FbiuLg4tGrVSpobrenQoUMICAgw++dm3Lhx+N///md09VRz3b17F20KCqBq1w4QK80PPQS0a4eB2dmora11WttofStNHz58GKGhoSZbfmUyGbp06YIzZ840aCwFBQXYvXu33pZHL774Ivbu3Ys///nPEAQBI0eOrPe+unTpgkuXLuGll15CSkoKYpo0Af6vatyjRw9kZWUxFN4vBLqvFRUVCQCEoqIiZw+FGuLIEUEABGHvXuPnvPmmIDRpIgi1tQ4bliN16NBBqK6u1js+bNgwJ4ymzpdffink5+frHT906JBF91NbWyv06NFDmDhxotbxY8eOCQCEb775Ru/81q1bC88//7xZ9z9ixAhhzJgxwv79+wUAwq5duywan2jw4MHSGD/55BMBgHD48GGD5/79738XgoKChOLiYqseS9StWzdhypQpVn1ukyZNhH/84x8NenxTKioqBA8PD2H9+vV2ewzR2rVrBR8fH6GyslJvDCdPnhT27dsnnDx5Uu92VzBr1iyhXbt2Fn9eVVWVEBwcLAAQrl+/bvLc4uJiISgoSFi8eLHJ84YOHSoMHz7c4rHcT2pra6Wv26OPPioAEJYsWeLwcbz77ruCr6+v9DsyMzNTEARBGD58uEXfg9raWiE2Nlb485//3KDx/PuTT4RMQCiJj9e+YfFiQQgMFHp26CBMnz69QY9hrczMTOGvf/2r0L9/f6FPnz7CwIEDhVdeeUX6mg0YMEDv74MhL730kvDQQw81aCwff/yx4OHhIT22qKamRmjXrp0AQFi4cKHld1xVJQht2wpC166CUF4uVFVVCQ8++KAwbdo0sz5906ZNQqdOnYRu3boJy5cvFwSB17iOxEB4n+MPixuorRWEuDhBiI0VhJqa/ztUK+Tl5Wmft3t3XWi8csXxY3QAW4UvVyQGte+++07reG1trTBs2DDhgQceENRqtXQ8JSVFACDs3r3brPtPTEwUQkNDhWnTpgnt2rUTaq180+D1118XAAht2rQROnXqJEyYMMHouTdv3hQ8PT2Fjz76yKrHEgRBuHDhggBA+O9//2vV5w8ZMkR49NFHrX78+pw5c0YAIPzyyy92ewyR+ObAiRMnpGObN28W+vXrJ8THxwsJCQnCyy+/LPTv31/YsmWL3cdjiYceekiYOXOmVZ979epV4c6dO2adO2XKFKF79+5Gb79165bg6ekprFu3zqqx2N369YIwe7YgmPl8Tfnhhx+ESZMmCQAEAMLt27dtMEDL3L17V/Dy8hKmTZsmLF++XAAgjBw5UgBg8Wt04cKFQtOmTQ2+KWiO3377Tejj41P3N/LAAe0bb9wQBJlM+GzkSCEiIkLrd60zVVdXC999953w4Ycfmv17cMOGDYKHh4eQk5Nj9ePGxcUZDeznz58X/vvf/1r3N+Tjj+u+/oAg/F+gW7RokdC0aVOh5v+ubUzp27evUFVVJQiCIKxZs0Z44oknhMzMTF7jOggD4X2OgdAN/Pe/etXBDz74QAAgrFq16vfz8vIEwcNDED75xPFjJKGgoEDYsWOHsHLlSov/WE6fPl2IjY01+HlHjx4VAAh79uwRamtrhRdeeEEICAgQHn74YbOrQT/99JN0YZiYmGjR2DRduXJFuh9zLuqGDh0qjBo1yurHe+mll4Tw8HChoqLCqs9fvXq14OPj0+AqpTGbNm0SAOi/OWMHZWVlgp+fn/C3v/1NOjZgwAC9C6nq6mphwIABdh+PudatW2ewym0PGzduFAAI//znPw3e/sorrwhNmjSx2+uhQT755PeL5YcfFoTSUsPnVVXVXUwvXCgIubn13m1KSorw9ttv23asFli8eLHW7wyxumTp78i0tDQBgLB9+3arwsikSZOENQqFUBsUJAiGfm+OGiWUxMYKAITHHnvM4JuPjvaPf/xD+ppNnz7drOednZ0teHh4CJ9YeR1w8eJFAYCwcePGugM1NXVvUDS086iiQhBiYgRh0iRBiI8XhKAgQcjOFg4ePCgAEE6fPl3vXfTv31/r43379gkDBgzgNa6DMBDe5+oLhN98841w/vx5YdKkSVZfdJEdXbwoCMr/396dx8d47Q8c/8wkk0ky2TcRiT32fblqK6Wlira3VEt7qXKV0qJVqhtXLV3pbbVc6tdLq6WXWrpQsTQoRWOLpYggQiKyJ2Oyzvn98ZiRSKi0mpjk+369ntfMPM8zM2fmPMv5nnOe53grNXCgfZbValW1atWynyiGDh2qLtsKBl27KtWvX8WktbyZzUqtX6/UyZMVmoy0tDQ1a9YsFRoaas+TV155RQ0aNEjFxsb+7vsLCgpUcHCweumll0pdXlhYqJo0aaI8PT3tFQGTJ08u0Z3nZmzHAUCd/JP/15YtW1SDBg1UaGjo7xas33vvPeXq6vqHTtYZGRnKZDL9bhfAmzlz5owC1Ndff/2HP+NG8vLyVOPGjdU999xz2z/7Rl599VXl6upqL6zee++9auvWrfblVqtVbd68WfXs2bPc0vR7mjdvrgYNGlQu35WWlqZCQ0OVt7d3qZUlTZo0Uc8880y5pKVM9uxRysVFqWeeUerQIaXc3ZV64omShfCcHKUefFApJyel3NyUatBAqVs4xlS0ixcvqlmzZql58+bdcmtvabp27aoANWDAgDK978CBA8qk1yuzp6dSY8aUvtLmzUqB+uaRR5STk5Pq37+/Nv+XX5SaPFmp6Og/nO4/4rXXXrMHp2vXri298u8GQdp9992n7rrrrj/0vQMGDFBhYWHKYrEolZioVPv2WiXFE0+UHkjfqg8+0Cqsjx1TKjlZKR8fpUaNUjk5OcrNze2GlThFzZo1q0TXcVtvGQkI/3oSEDo4W0Fwz5496sknn1Tnzp1Tzz33nNqzZ49KSkoqVmu3atUqtWvXLvt7bdej3KjguXLlSnXq1Kny+ilVz4kTStWurVTjxuqLTz5RgwcPVt9++616++23FaBWr16tgoKC7Pk3btw4Zf3wQ6WcnZWqgO5B5erYMaXq1dNOVF5eSsXFVVhShg8frgDVrFkzFRUVpQYPHmzPkzE3KnwUMWvWLKXX61VUVNQN10lJSbFXAjRp0uQP1ZBHRkaqjz/+uMzvK43FYrmlLj7x8fHKzc1NTZ061d7V51Z98cUXClBxv5e3+/cr9eKLSt3gWsZWrVqpIUOGlOm7b8XChQuVTqdTBw4cuO2ffSMJCQnK2dlZzZ8/3/76ZtcdVbSDBw/aj1Xl5dChQwpQ/fr1U+vXr1dWq1UlJyerixcvKkAtW7bsxm+2WrUWuPKSk6PU8uVK+fkpdddd2mullFqxQju2PfqoFixevqzU7t1Kde+ulKurUj/8oF0aULeuFjw+/bR2nXklvX7cxmw2q4kTJypA+fj4qLFjx6pt27apKVOmqB07dpQaNJnNZlW9enX1WWCgsrq4KHWzMsvgwUqZTGrH+PHKCdSZf/1Lew8o5eGhVJHu2n8Vi8Vir/ibNWvWjY/1y5drlcUtWih1Xeva+vXrFaA+/PDDMn23rYX9v//9r7bNNW+uVPXqSr3+ulZh0aOHUmVtObValVq3TqvAKHo+nD9f+18nTlR/79FDdevWrWyfm5Gh1A8/qIz0dAkIy4lOKaX+2O1oxJ0gMzMTb29v/g7kAi4+PpxPT0fv4cGrc+Yw/LnnyAby0e4MmJWVhclkYs6cOTz//PN06tSJXbt2ER8fT40aNQBt/LOXX36Z9957j5o1a5Y6WHVRO3fu5I033uCee+7hqaeeIiwsjJycHGbNmsXLL7+MyWQq8+9SSpUYjyorKwsXFxeMRmOZP++vopTinXfeoW/fvrd+VzurFb78Ep5/nlw/PxrGxnKulN0wPj6egoICHnnkEfstqbd//z1dnngC3cCBsHjx7fwpd45Nm1CDBpHq7s7rAQG8Fx+Pe7t2sGEDlNMYW6+//jqnTp1i6tSptGnThjfffJMpU6bg5OTEr7/+yvDhw2ndujVffPEFb775JpMnT8ZgMNjfn5GRwapVq9iyZQtfffUVkydP5u23377pd168eJEdO3bQo0cPAgMD/+qfeNu8/PLLvP3229SsWZPDhw/j7e190/Wzs7O5dOkSo0aNIjs7++YDF0dGwv33Q24umEywfz9cdxe+f/3rX0yfPh2DwcDixYsZNmzYn/5NCQkJ9O7dm7CwsBsOC/JX6dWrF9nZ2Tz22GMMHjyYoKCgYsuVUvZB4MsyzuSfZbFY2Lx5M82aNSM/P5+MjAyeffZZMjMziY6OxsXF5a9NgFJw5QoqO5vhgwYRtX07JqCWvz85KSmYgEBXV2ZMmYK3szNkZ4PZrE0pKXDmDMTGwpUrEBysDUtQs6b23MlJuyulXg8FBZCff20yGsHbW5sMhmt3r9TptGN5Rgakp2uT2ay9ByAxEU6ehKwsePBB+OwzKHon3S+/hClToOhdU2vWhKVLwTbUTGYmfPghLFkCZ89Chw4wdaq2T5TlPKiU9n4/P+133MzOnTB2LMTFwTPPwGuvaQO8lxOlFJ6enpjNZkwmE2az2b7MaDTyn//8h5MnT5KQkEBCQgLxsbEMO3WKSUrBO+/ASy/d+MPNZnjySVi71j7rGw8P3q9Zk09iY2ng5ET8zJnUHDOG3NxcPD09iYmJIT093X5naaUUBQUFxY732kebcXNzQ6/X2+8abRsTcsaMGcTGxvLSSy8xcOBATv/2Gwvat+fpnBx0JhM89hgMGABBQdp2ungxzJ0LDz+svT55Et54A4YOhZAQlFJMmDCBDz/8kGeffZaMjAyqVavGtGnT8PLyAiAnJ4fLly9To0YNDh48yPjnnuO3Xbt4tl8/pnXujP6jj7Rt9aeftDuxbt8Of/+7tk0PGADNm4Ovr7bNWyyQk3Ntsr3OzNTGTj5yBB54AP73P3B3t2UkvP8+vPEGhfn5/FJQgKVGDdo+8ADphYXsPXqU8MaNaWkbO1MpMJuxXt1X8zZuxNVi4ZeFC+k4ejQZGRn23yb+GhIQOjhbQJgB3GxXyQeyAXORx6LPO/TowfnUVMLbtCFbKT767DP78lnz5qFMJuo2b64Vyjw8wGQi12Dgx+3b+fp//2P58uU4OTnRsmVLVqxYwQMPPEBMTAzu7u7s3bv3huNTXb58mSVLljBhwgT77ZeXLFnCyJEjWbduHZ6enri4uNC5c2d0Oh1dunRhx44dAJw9exYnJyf7ANU2WVlZuLm52QdUVUrx22+/0bhxY/s6u3fv5tdff+XZZ5+1H7QTEhI4cuQI99133y399wUFBYwcOZKlS5cyYMAAVtnGEQSioqKwWq00adIEd3d30tPTSTt7lhr79pHyyiuEpKSQP3Ag98fEsPXgQe666y5Gjx7NU089Zf8Mq9WKTqcjLy+P+Ph4+vfvz7Fjx3ivXj1ePH0aFi7UTthlVDTYvnjxIm5ubvj6+pb5c/Lz87FarRiNxlID+NK+98SJE/j7+5ca8ETv2UPsyJH0P3qUfb6+9E5LwyMkhJZJSXxntWL9xz/I+eADTN7eJb7P9vpW0wGUWK+wsJA1a9awZMkSNm7caJ/v7e3NhQsXSlRsWCwWHnnkETZu3MjTTz/NkiVLANi2bRs9evQAICQkhIEDBzJz5kw8TSbtJGo2ayfSrCytAHp1f8LDQzuZlmMh/3a4dOkSXbp0ISYmhjfeeIPp06cD2niI7u7uxf7nvLw8wsPDiYuLA+Dbb7+lX79+pX/wrl3Qu7dWCF6xAjp1Ai8vbX6R4OPw4cP2AZsB1qxZw8MPP1zi4+Lj4/m///s/Jk2ahJubW7Ht5fDhw6SkpNC9e3fi4uKoXbs2APPmzWPChAl/6v8pq1mzZvHaa68B2rhjrVu3pqCggAYNGmA0Gtm2bRu7d+9m8eLFjBw5ktTUVLKysjhy5AiNGzfGaDTi5eWFp6cnFouFt956i9DQUBISEnjppZcwGo3odDpiY2OpV68eq1at4vTp09StWxdfX1/at2+Pm5sbBoMBnU7Hs88+y/bt2zl37hzZ2dnF0urv78/GjRtLHwS+oAAuX4akJLh0SXvMyoLCQm2y7Qtm87XgrWgQd/3zK1e0QuPvKXKOsj/38dHGca1XT9uGzp/XAp64OC1ttqv7rFZtzFeD4dqUk6MFfRkZ14I92/o6nfbZtslk0t6jlFa4Dw/XhhK60fiM+fmwbx8kJEBoKLRtq33/9axW2LQJpk+HPXu07b9ZM6hbF6pV0yYvL3B1BTc3LcC9ckVL89GjEBEBFy5o8zt1gj59tP0qMFCbZ7HA6dOwZo22r3XsCHfdBQsWaEHBM8/AkCFQv365HJ8OHz5MZGQkffv25fXXX2fmzJmcOHGCGTNm8Mvu3TRwc6NX9ercXVBAz8uX8c7LQ//WW/Dii7+fPqVgzx52/ec/TPn8c3ZeDd58gc+BvsABIBI4BiQDaUCdli25nJZGUkoKWVeuUD00lELgiccf55edO9m3ezetmzenZvXq7Nu9Gyel+Fvr1uSmpBB/7Bg+gA/QwWSil7s7hsuXtcCrsBC+//7atgXaNvvqq1qFgcUCkydrQWJenpYfgYEUenlx6uxZMrKysOTmYgV0gI+bG34mE5nJyRgBF8AN8AfsW5bBAIMHw4wZUKvWte+Nj4f58+GHH7QgNDf32jKDQdu+bJObm3a+atFC+6zevUv/7y9cQK1ezcnPP+fK4cP4KoUH4Jqfjx7Q6/Xo9HrteOzmRlxWFheU4jQwAugI/AISEJYDCQgdnC0g9AD7ZLrBo7eTE66FhfbXTWvVIvncuWLreep0uF/dYW+lTtCKFlAqd3f0Xl6cTkwsEXha3d1p1LYtp+LjCWvYkLOJiRQYDNRp0oSIn38mOiaG3g8+yOiJE0nMyGD8yy+z/7ffMHp7k5CRgQXY/NNP9gG69+7dy/vvv8/KlSsBLTBLS0vju+++Y9CgQZhMJrp27crOnTv56aef2LNnD5MnT6ZWrVp8//33nD17lqFDh5KamsrChQsZPnw4r7/+Ou+88w4Aa9eu5Z133qFRo0ZMmTKFAwcOkJ6ezqhRo9i7dy/t27dHp9PxxRdf2AdNb9iwIevXryc8PJzs7GyCvbyoC9QHnm3XDp/ffqNFdjZGYCMwCzC3bs3x48fZuXMnLVq0wNnZmfj4eJRSnD9/ns6dOxf7r3ft2mWft9jdnZFXrhDXpw8nBw3i3iKB5I3Ex8czadIkNm/ezJgxY2jatCmDBw8mJCSEjz/+2F6ItlqtfPPNN3Tu3JmTJ09y9913FyvUHzp0iDfffBMPDw+WL1/O0qVLGTZsGNHR0TRq1IhVq1ZRo0YNOnbsaC9wX7hwgRYtWpCamkp4eDjR0dFMnz6djs2bE7NyJdX37aNHQgJ+wL+ABV5erFq7lpYtW1K3bl0GmM0sLijgmJMTp++/n515eVw0GHh/0SKWLV/Ou+++yw8//MBTTz1FtWrVGDNmDAMHDuRKdjbpSUl4GY08MXAgzRs0wM/Dg8hNm+h77738vHUrb8+Ywenjx/klMpLdkZEYgYH9+1MnJIRVy5fz6EMP0apRI+1knJtbfMrJIfb4cX47eJB2TZsS6OnJiUOHwGLB5OREqL8/Olutal7eLexRaAU0vV57LDrdyrxbWcdg0E7mtpN6aY83W+bmphVYvLy01oarwdmoUaNYvHgxPj4+tG7dmqNHjxIYGEiPHj3o06cPGzZsICkpyb7fjhs3jo8++qjk78/Oho8/htdf1wqlGzZoBe2oKK2g+txzWs1zEXv27MHb25sHH3yQS5cusWfPHjw9PXnhhRc4c+YMAwcOZNGiRZw+fdr+nieffJI1a9bg6elJYmIiADVq1ODChQsYDAa6d+/O0qVLqX6jcUH/IjExMYwYMYKpU6cybdo0e7BmG7S+R48ebN261f784MGDpKenY7069hdAcHAws2bNYtKkScUG4q5duzapqan4+PgQFxdHt27diIyMxNnZmYKCgmLp8PT0JCwsjGPHjuEMvDVpEh3q12fj8uU81LkzATodNVxdccnK0lrgkpO1x6LPr1d0O3R1LR60lRbI3cryovPc3LTtvTI7cgS2boVDh64FtJcuafuNxVI8aPbw0ILSbt2gZ08tKNywATZv1gLt6zVpAuPGwahRWh6dPQszZ8LKldrne3trQaG/vzZ5emr7v9GoPdqe2/KgaGuqzfUtrEVbY4tOtuNtRgakpUF6Oio9HeuFCzjZttUaNbSAe/x4KFLhWxbnzp2jdu3afP755+yPiqJmdDQ9L12i+sWL+KWm3rbBuq1GIxYXF1yaNsXQsSOMGHGtoiA5WavoSk/XgvuuXa+1tNlcvqy14p08qe1bqalQWIhSClVQQHpqKkeOHiUlO5vE9HTy0HqN5QHOJhMP//OfNOjSBX1YmNb65+b2+4nOzdXywtW19IqKMjp9+jRt27YlIyODd999Fz8/P0aMGFFsHQ8PD7Kzs3ltyBDe/PJL3n/wQSatXy8BYTmQgNDB2QJCgKFDhzJ8+HBWrVqFq6sr718tNO3YsYPDhw/j4+PDE088YX/v119/zaBBg0r93M2bN9OhfXuqeXtjovQgs2FICAPuv59je/fSu0sXqplMbF63joSYmBLrewAeej0uVituaDVWZTnQFgCWq1OuXs8Vq9X+ulZ4OLHx8WRaLLh4eJCWnU0e2oEw/waPvkFBZOXkkJKZidFoJCc3FwX4+/mRnJoKaBeJFX1sXK8e8adP07dnT2KOHiUtMZF6oaG0rl+fQz/9hD8QoNPhpxRF278SgN1AbGgo/46Pp/3f/45er2f16tV06tSJn3/++Zb/h9TUVPz9/dEBr/j48FJ6Oh5AQatW6Lp25aRez8wvv8S9bl2GjB3LvM8+wxQQwN133826detuOvBvQEAAL774Iu+++y6pqano9Xp7IfOhhx7i1KlTtGnThv3793Ps2DGcAANaDaQBqBEYiIeLC6kXLuAB/LByJbOmTsXPaCQtLg6d2UwQEALUdnEhJC+P+kX+o0P16lF3/nwCO3TA2dkZT09PQKstXr58OS6HDnHvli10Liig6KkpF8hB2570gNPVyVmnQ/dnDm96PcpoRGcr7BiNxScXF3BzQxmN7DtyhNiLF7miFBaleOCRRwgLD8fZw6NkoGUyacGUp6dWILK1gNhaRAoKtPm2lpSiz2/H6/z84l2AbM+vf7zVAPZql7p8d3dOJCaSlJPDFbR9s8DZGaurK0nZ2ViAK4BXtWpMnDoVg4uL9lsLCrTfff681qVv1y6tIDJunNYFrGhXxHnz4IUXYNgwrXa7Zs1iSUlOTqZbt27ExMTg4+ODs7MznTt3Zt26deTl5WEwGMgvWhOPNuD5PffcQ/PmzZk7dy6JiYn8/PPPNGnS5I9vO3+B9PR0jh8/TseOHUlLS+O///0vERERnDp1iqFDh3L48GFcXFxo1aoVn3zyCWfPnuW+++5j7ty5pKenk5KSQsSmTcSfOEFhUhIXoqPxB57q149H77mH/RERHImMpJ6PD6acHLwLC3HJzMSfm/Q+8fW9FhwEBBR/Xq2a1kpmewwKKlnIFbeXUtr+XVCgHWtuFBzn5WnBZHKydnwwGiEsTMuj0mRna8HIwYNw7ty1gN9svha4Fa0ws7Wg2tJUNH1FH3W64q2xLi7FXxuNxVtgfX217al+fWjYUGv1vQ0tlrbuqSUUFEB6OtHbtxNgNBLs78+x6Gga1KuHQa8nLyeHNevX06V7d2rUrk308eOcOnOGRwYNYu/+/Rz57TeeHj++WMXZX+3KlSusXbuWNm3aULt2bZRSODk5/fVdum9RVFQUq1ev5sUXX8TPz4+IiAiCgoKIjY3l888/56OPPsLJyYmgvDycatcmc9UqvAcOlICwHEhA6OBsAWFCQgIBAQH2bpKgtQiZzWYaNmxon5ednW0vaCul2LdvH/Xr12fw4MH8+OOPANStW9dek/7pp59iNBqZOXMmJ0+exMPDgwMHDlCnTh17V8vrnTlzhuDgYL755huOHj1Kr169OHbsGKNGjWLTpk2MHDkSJ72eFcuWEeTpSXhoKAs/+IAt331Hi/BwrGYzz48aRdSOHTStWxd3vZ6F8+bhYrWiz8khMymJvj160LROHbZt2MDlixcxGQyEBgWRdOECnq6uhAQEoC8sxKAUBiDz8mV0hYW4AK5OTgT7+pJrNlNgsQDgYjDY+7Hn5+fjpNejlMJaWIherwelyFOKHLQAJBfwCQ7GKzAQvYcHSQUF/HrmDMlKcTEnh+NmM6eBLkOHciI9nZatWjFt2jS2bdtG8+bN8fHxYciQIYwZM4aePXuWKc9//vlndu3axeTJk3m4Z098t2zhXqCrszM1CgpKBNp5RSYMBjz9/cm1Wsm8coVAf38SExPJu9o1RAcYnJ1xc3XFfLV7mC3wc3d2RldQgAH4I1dxWk0mCAxkT1wcF6xWmt5/Pz9nZdF9/HhUixbUrlu3xHUZ14uJiaFdeDgd/fz4+KWXuBQbi1NODtV9fTl3/jy16tbFLyCA2W+/TXJ6OrXq1OG+fv04HR9Pu86dmTh1Ktn5+Xz2xRf4Va9OusXCdxEReAcF0X/gQLwCAq4FfGWoEbVYLIwbN46QkBBq1qzJiBEjtO3GkRUWaoW70gLG7Gyt5j4zs9hjbnIysQcOYCwsxGo2Uz8kBGWxkBIXhyugy8nBzWpFb+uK5OystUS4u2td5mrW1Lq0Pf54iWAP0AqSS5dqLQLZ2dC6tdZqGB6uFQ5r1SJVp2PklCl4BAQwe/Zse3fJkydP0qZNG/Ly8vDy8mLZsmU0a9aMDh06FPl4VewYeUe5WjglPV37z68P6m0tKWlppJ87x8UjR2gUHIy+SAsLaWnFu6bZGAzg74/y90dXJKjL8fAg39MTz9q1SwZ+vr7ldk2vEKKKuXQJgoPJ/OorvAcPloCwHEhA6ODs1xCWYWfZunUrwcHBxWrA8/LysFgsfPDBB3To0IH777+/xPs+/fRTGjVqRJcuXW5b+svKYrGwf/9+/va3v2EwGEhOTmbdunX07t0bq9VKrVq1Sr3uJzk5mbi4ONq2bcvEiROZO3cuSilSU1PZv38/PXv2LFGA/+STTxg7diyrV6+madOmzJs3j2nTpjFy5EjGjh3LAw88UGoac3Nz2bJlC3q9nh49evwlNXO5ubl89dVXPP7447z22mt89913nD59mt7du/PvF18k4dAh1nz2GWOHDMFHr4e8PLLT0ggJDMS5sFCrzS0o0GpXdToUcOnyZb779lseevhhAgIDidiyBVdXVxo1aUJQaCgYDOzYs4e9Bw7w8KOP4hUQQMaVK/y0axfDn3kGJ6NRK1iaTLTs0oVs4Kv160nMzsbJw4O+/fsD2rWfmZmZtGjRosy/WylF48aNeeqpp3j55ZdvuN7zzz/PqlWriIqKKtbl7+jRoxgMBho0aFDm7xZ3kKwsWLUKtm2DvXu1Gy9c36Lp5qbdRMPPr/TuhUW7Hrq7X+vyZptsLRbXz/u9QN9qLR6o2abMzGuBWXq6tq6t1dh2Td3VbshYLMWDuLQ0LQD+PV5eWqDm63utReX656W16nl4ONy1q0KISiwtDfz8yFy6FO9hwyQgLAcSEDq4PxIQVmYJCQkEBwff8MYiycnJeHl53VKQZrFYWLJkCaNHjy7W8ip+36ZNm7h48WKxm+TcLoVXW21vdvOYvLw88vPz/9AdboUDslq1G3OcP69dW2ObbNfa3OxmJWazdgOOvLxbu2nJH+Xici0g8/bWAktbsOjsrAWGRuO1LsZFu8kVDeps84t2Q3Z11bogS4udEKIyMJvBw4PMxYvx/uc/pYxbDiQgdHASEAohxG1iaz0vOtlucGGbfu+UqdMVvzGPbbqDhssRQog7Wn4+uLiQuWAB3mPGSBm3HEizhxBCCAFaC5stgBNCCFExbL2ybvXmZuJPc/C7HgghhBBCCCEqDdsdaCUgLDcSEAohhBBCCCHuHC4upd8VWfwlJCAUQgghhBBC3DlcXKSFsBxJQCiEEEIIIYS4c0gLYbmSgFAIIYQQQghx55CAsFxJQCiEEEIIIYS4c0iX0XIlAaEQQgghhBDiziF3GS1XEhAKIYQQQggh7hzSZbRcSUAohBBCCCGEuHNIQFiuJCAUQgghhBBC3DnkGsJyJQGhEEIIIYQQ4s4hLYTlSgJCIYQQQgghxJ1DbipTriQgFEIIIYQQQtw5pMtouZKA8A7wySefUKdOHVxdXWnbti07duyo6CQJIYQQQghRMaTLaLmSgLCCrVy5kgkTJvDqq69y4MABunbtSp8+fYiLi6vopAkhhBBCCFH+JCAsVxIQVrC5c+cyYsQIRo4cSePGjfnggw8ICwtjwYIFFZ00IYQQQgghyp90GS1XEhBWoLy8PKKioujVq1ex+b169WLXrl2lvic3N5fMzMxikxBCCCGEEJWGwQDHjlV0KqoMCQgrUHJyMoWFhVSrVq3Y/GrVqpGYmFjqe+bMmYO3t7d9CgsLK4+kCiGEEEIIUT4GDYKOHSs6FVWGBIR3AJ1OV+y1UqrEPJupU6eSkZFhn86fP18eSRRCCCGEEKJ89O4NK1dWdCqqDOeKTkBVFhAQgJOTU4nWwKSkpBKthjZGoxGj0VgeyRNCCCGEEEJUctJCWIFcXFxo27YtERERxeZHRETQqVOnCkqVEEIIIYQQoqqQFsIK9sILL/CPf/yDdu3a0bFjRxYtWkRcXByjR4+u6KQJIYQQQgghKjkJCCvYY489RkpKCjNmzCAhIYFmzZrxww8/UKtWrYpOmhBCCCGEEKKS0ymlVEUnQvxxmZmZeHt7k5GRgZeXV0UnRwghhBBCiD9NyrjlR64hFEIIIYQQQogqSgJCIYQQQgghhKiiJCAUQgghhBBCiCpKAkIhhBBCCCGEqKIkIBRCCCGEEEKIKkoCQiGEEEIIIYSoomQcQgdnGzUkMzOzglMihBBCCCHE7WEr28oIeX89CQgdXEpKCgBhYWEVnBIhhBBCCCFur6ysLLy9vSs6GZWaBIQOzs/PD4C4uDjZWSqBzMxMwsLCOH/+vAzCWglIflY+kqeVi+Rn5SN5WnkopcjKyiIkJKSik1LpSUDo4PR67TJQb29vOfBVIl5eXpKflYjkZ+UjeVq5SH5WPpKnlYM0dpQPuamMEEIIIYQQQlRREhAKIYQQQgghRBUlAaGDMxqNTJs2DaPRWNFJEbeB5GflIvlZ+UieVi6Sn5WP5KkQZadTci9XIYQQQgghhKiSpIVQCCGEEEIIIaooCQiFEEIIIYQQooqSgFAIIYQQQgghqigJCIUQQgghhBCiipKA0AFs376d/v37ExISgk6nY+3atcWWK6WYPn06ISEhuLm50b17d44ePVoxiRW/a86cObRv3x5PT0+CgoJ4+OGHOXHiRLF1JE8dy4IFC2jRooV9IOSOHTuyYcMG+3LJT8c2Z84cdDodEyZMsM+TPHUs06dPR6fTFZuCg4PtyyU/Hc+FCxd48skn8ff3x93dnVatWhEVFWVfLnkqxK2TgNABmM1mWrZsyfz580td/s477zB37lzmz5/Pvn37CA4O5r777iMrK6ucUypuRWRkJGPHjuWXX34hIiKCgoICevXqhdlstq8jeepYQkNDeeutt/j111/59ddf6dGjBw899JC98CH56bj27dvHokWLaNGiRbH5kqeOp2nTpiQkJNin6Oho+zLJT8eSlpZG586dMRgMbNiwgWPHjvH+++/j4+NjX0fyVIgyUMKhAGrNmjX211arVQUHB6u33nrLPi8nJ0d5e3urhQsXVkAKRVklJSUpQEVGRiqlJE8rC19fX/Xpp59KfjqwrKwsFR4eriIiIlS3bt3U+PHjlVKyjzqiadOmqZYtW5a6TPLT8UyZMkV16dLlhsslT4UoG2khdHBnzpwhMTGRXr162ecZjUa6devGrl27KjBl4lZlZGQA4OfnB0ieOrrCwkJWrFiB2WymY8eOkp8ObOzYsfTt25d777232HzJU8d06tQpQkJCqFOnDo8//jixsbGA5KcjWr9+Pe3atePRRx8lKCiI1q1bs3jxYvtyyVMhykYCQgeXmJgIQLVq1YrNr1atmn2ZuHMppXjhhRfo0qULzZo1AyRPHVV0dDQeHh4YjUZGjx7NmjVraNKkieSng1qxYgX79+9nzpw5JZZJnjqeDh06sGzZMn788UcWL15MYmIinTp1IiUlRfLTAcXGxrJgwQLCw8P58ccfGT16NM8//zzLli0DZB8VoqycKzoB4vbQ6XTFXiulSswTd55x48Zx+PBhdu7cWWKZ5KljadiwIQcPHiQ9PZ3Vq1czbNgwIiMj7cslPx3H+fPnGT9+PJs2bcLV1fWG60meOo4+ffrYnzdv3pyOHTtSr149li5dyl133QVIfjoSq9VKu3btmD17NgCtW7fm6NGjLFiwgKFDh9rXkzwV4tZIC6GDs90l7foar6SkpBI1Y+LO8txzz7F+/Xq2bdtGaGiofb7kqWNycXGhfv36tGvXjjlz5tCyZUv+/e9/S346oKioKJKSkmjbti3Ozs44OzsTGRnJhx9+iLOzsz3fJE8dl8lkonnz5pw6dUr2UQdUvXp1mjRpUmxe48aNiYuLA+Q8KkRZSUDo4OrUqUNwcDARERH2eXl5eURGRtKpU6cKTJm4EaUU48aN45tvvmHr1q3UqVOn2HLJ08pBKUVubq7kpwPq2bMn0dHRHDx40D61a9eOJ554goMHD1K3bl3JUweXm5vL8ePHqV69uuyjDqhz584lhms6efIktWrVAuQ8KkRZSZdRB5CdnU1MTIz99ZkzZzh48CB+fn7UrFmTCRMmMHv2bMLDwwkPD2f27Nm4u7szZMiQCky1uJGxY8fy5Zdfsm7dOjw9Pe01mN7e3ri5udnHO5M8dRyvvPIKffr0ISwsjKysLFasWMFPP/3Exo0bJT8dkKenp/2aXhuTyYS/v799vuSpY5k0aRL9+/enZs2aJCUlMXPmTDIzMxk2bJjsow5o4sSJdOrUidmzZzNo0CD27t3LokWLWLRoEYDkqRBlVWH3NxW3bNu2bQooMQ0bNkwppd1eedq0aSo4OFgZjUZ19913q+jo6IpNtLih0vISUJ999pl9HclTx/L000+rWrVqKRcXFxUYGKh69uypNm3aZF8u+en4ig47oZTkqaN57LHHVPXq1ZXBYFAhISHqkUceUUePHrUvl/x0PN9++61q1qyZMhqNqlGjRmrRokXFlkueCnHrdEopVUGxqBBCCCGEEEKICiTXEAohhBBCCCFEFSUBoRBCCCGEEEJUURIQCiGEEEIIIUQVJQGhEEIIIYQQQlRREhAKIYQQQgghRBUlAaEQQgghhBBCVFESEAohhBBCCCFEFSUBoRBCCCGEEEJUURIQCiGEEEIIIUQVJQGhEEIIIYQQQlRREhAKIYQQQgghRBUlAaEQQgghhBBCVFESEAohhBBCCCFEFSUBoRBCCCGEEEJUURIQCiGEEEIIIUQVJQGhEEIIIYQQQlRREhAKIYQQQgghRBUlAaEQQgghhBBCVFESEAohhBBCCCFEFSUBoRBCCCGEEEJUURIQCiGEEEIIIUQVJQGhEEIIIYQQQlRR/w/A/iuv9kQzagAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "520f49b8897442e2864315c49d358bb5", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAvuVJREFUeJzs3Xl8TPf+P/DXZDJZJZNNEtFYWkqKlqoltJaLoLbq7dX+ENW6uriVutarReP2NqjWUm5V1UWD69vlaqt6U0EbS5AQeqNFKYoSQVayJ/P7IzmnZ5bELGfmzGRez8cjD+bMmZnPTGYm53Xen0Wl0+l0ICIiIiIiIrfjoXQDiIiIiIiISBkMhERERERERG6KgZCIiIiIiMhNMRASERERERG5KQZCIiIiIiIiN8VASERERERE5KYYCImIiIiIiNwUAyEREREREZGbYiAkIiIiIiJyUwyEREREREREboqBkIiIiIiIyE0xEBIREREREbkpBkIiIiIiIiI3xUBIRERERETkphgIiYiIiIiI3BQDIRERERERkZtiICQiIiIiInJTDIRERERERERuioGQiIiIiIjITTEQEhERERERuSkGQiIiIiIiIjfFQEhEREREROSmGAiJiIiIiIjcFAMhERERERGRm2IgJCIiIiIiclMMhERERERERG6KgZCIiIiIiMhNMRASERERERG5KQZCIiIiIiIiN8VASERERERE5KYYCImIiIiIiNwUAyEREREREZGbYiAkIiIiIiJyUwyEREREREREboqBkIiIiIiIyE0xEBIREREREbkpBkIiIiIiIiI3xUBIRERERETkphgIiYiIiIiI3BQDIRERERERkZtiICQiIiIiInJTDIRERERERERuioGQiIiIiIjITTEQEhERERERuSkGQiIiIiIiIjfFQEhEREREROSmPJVuAFlPp9OhqKgIxcXFCAgIgEqlUrpJREREREQ20+l0KC4uRlRUFDw8WMOyJwZCF1ZcXIygoCClm0FEREREZBeXL1/GPffco3QzGjUGQhcWEBCAy5cvIzo6GpcvX0ZgYKDSTSIiIiIisllRURGio6MREBCgdFMaPQZCF6ZSqcQQGBgYiMDAQHz//ff405/+hJCQEEREROD06dO47777UFlZiRYtWuDWrVsoKSnBuHHjMG3aNL37mzhxIn788Ud4eHhgyJAhWLhwIfr164evv/4aTZo0EferqqrCn//8Z/zyyy94+OGHsXLlSr372bhxI9566y0UFxejqKgIJSUl4n1/8cUXSEtLw9SpU9GhQwdUV1dj7969UKvVDd5n+/bt8euvv8LLywvBwcE4f/489u3bh/j4eCQmJmLSpEno168fqqurcfr0abz11ltIT0/HzJkz0bFjR9le85SUFBw+fBiJiYl62ydMmIC9e/di7Nix+PDDD3HlyhW914yIiIiILMchUfbHDrmNTFFRETw9PXH48GHs27cPoaGhaNmyJfbv349jx45h9+7dOHz4MNatW4fq6mqj22/YsAGHDh3CV199hStXrph8jB07duCee+7B/v37UVJSgvT0dKN9Xn31VeTk5OCBBx7Qu+/mzZvj3XffRe/evbFv3z5888030Gg0Zt3nP/7xDxQWFmLAgAE4dOgQAODpp5/GpEmTxH3++9//4tKlS0hKSkJNTY3Fr5+1Pv74Y0RGRuLtt99G586dHfa4RERERES2cLtAuG/fPowYMQJRUVFQqVT44osvjPY5deoURo4cCa1Wi4CAAPTs2ROXLl0Sry8vL8fUqVMRFhYGf39/jBw50ig85efnIz4+HlqtFlqtFvHx8SgoKNDb59KlSxgxYgT8/f0RFhaGhIQEVFRU2PT8Dh06hJiYGAQHBwMAIiIikJGRAS8vL0RFRSEvLw9lZWW49957sX//fsTFxWHUqFF46KGHcPHiRbzyyivo0aMHWrVqhd9++w0AsHDhQvTq1QutW7dG37598frrryMuLg4AMGTIECQnJ2PIkCEYOXIkOnfujCtXruD999/HY489hry8PKM2enp64saNGygvL4dWq4WHhwe2b9+OnTt34rHHHkN5ebnJQLhu3To89thj+OmnnxAQEICamhp89tln6Nu3LwYNGiQG3MceewzNmjVDeXm5eNvvv/8ecXFxaNGiBUJDQ9GhQwe0atUKzZs3R2xsLBISEgDU9lN/9NFHERISgqioKIwfPx4FBQWIi4vDkCFD8N5772Hz5s0YOXIkWrRogYcffhi9evXC3r17bfq9EREREREpwe0C4Z07d/DQQw9h9erVJq//5Zdf8Oijj6J9+/b4/vvv8cMPP2D+/Pnw8fER95k2bRq2b9+Obdu24cCBA7h9+zaGDx+uV3EbO3YsTpw4gZSUFKSkpODEiROIj48Xr6+ursawYcNw584dHDhwANu2bcPnn3+OGTNm2PT88vLyjLoqhoWF4cyZM7h+/TqWLFmCtm3bonv37gBqZ3D68ssvkZCQgPPnz2P16tUYM2YMjhw5gnvvvRcAMGjQIPTo0QPR0dFYtmwZevfuLXZV1Wq1KCoqQmVlJb766issXboUV69excmTJ/HNN9/g+vXruHbtml573n77bVy9ehXt27fHX/7yF9TU1GDPnj1YuXIl9u/fj19++QWXL182eg5hYWHIz8/Hjz/+iNDQUHh4eOCJJ55AWloaRowYgdzcXAC1XVqvX7+u9zsTnusf/vAHPPnkk7j//vvRokULDB06FM899xzS09NRVlaGxYsXo2nTpli/fj2GDh2KSZMm4aOPPsJTTz2FlJQUhISEoKamBv/6178QHh6Ovn37Yvfu3Xjrrbds+r0RERERESnB7cYQDh06FEOHDq33+tdffx2PP/443n77bXGbEIwAoLCwEOvXr0dycjIGDhwIANi8eTOio6Oxe/duDB48GKdOnRLHmvXo0QNAbXUrNjYWZ86cQbt27bBr1y789NNPuHz5MqKiogAA7777LiZOnIi33nrL6gliQkNDcfbsWb1t2dnZeOmll7By5UqMGDECSUlJePTRRxETE4MHH3wQANC8eXOEhITgueeew507dxAbG4umTZsCALp27Yrly5dj8ODBOHfuHEJCQlBUVAQAKCgoQGBgICIjIwEA0dHRKC0thYeHBwICAhAQEIBTp07ptadly5bo1q0bPvnkE0yaNAmpqanIz89HQkICgoKCcOXKFTzyyCN6t/H09BTHMnbv3h2rV69Gnz59sGvXLvTp0wcFBQUoLy/H0KFD8csvv2Dr1q34/PPP9e7jwQcfxK1bt/Dwww8jJycHZ86cQZcuXZCfn4/IyEgUFhbil19+QVVVFR577DFcv34d58+fx7lz5zB58mQAtWMZf/nlF5w/fx5XrlzBv//9bxw/fhw3btyAr6+vVb8zIiIiajyqq6tRWVmpdDOcnkajgVqtVroZBDcMhA2pqanBzp07MXv2bAwePBjHjx9H69atMXfuXDzxxBMAgGPHjqGyslLsMgkAUVFR6NixI9LT0zF48GAcOnQIWq1WDIMA0LNnT2i1WqSnp6Ndu3Y4dOgQOnbsKIZBABg8eDDKy8tx7Ngx9O/f36rn0LNnT2zcuBEFBQUICgrC9evX8cQTT+Df//632IXS29sbfn5+8Pb2Nhqou2HDBpw+fRrnzp0Ttx0/fhwxMTFITU3FkCFD4OnpKQaxb7/9Fp07d8aFCxfE/YXHqa6uxp07d/QCNQBxXw8PD4SFhaGmpgZt27bFoEGDsHTpUvz5z3/G008/rXebqqoq8T5v3LgBjUaDjIwM+Pv7Y9++fXjvvfewbNky/Pe//0W/fv0wYsQIo0AoPFeVSqX3f51OB6C2gtimTRtcvXoVBw8eRGZmJuLj45Gfn4/jx4+ja9euOHPmDFQqFe699160a9cOrVu3xsaNG1FZWYnY2FgrfmNERETUGOh0OuTk5BgNEaL6BQUFITIykhPHKIyBUCI3Nxe3b9/G4sWL8Y9//ANLlixBSkoKnnzySXz33Xfo27cvcnJyxJkupSIiIpCTkwMAyMnJQXh4uNH9h4eH6+0TERGhd31wcDC8vLzEfUwpLy/XGxsnVOoEgYGBeOyxxzBq1CjodDrcunVLrHZOnz4dP/74IyorKzFhwgSzp/H973//i0OHDuHatWuYPn06WrRoAQ8PDzz22GPo0qULOnTogAsXLuDFF1/EX//6V/z000/o2bMndDodgoKC0KpVK737++ijj/Dll18iODgYvr6+CAsLw4cffognnngC69atg1arxapVqwAAL774ItauXYsrV66I4blZs2aYNm0a9uzZg/fffx+PP/44mjVrZtZzuZs5c+bg//2//4fnnnsOPj4+qKqqwsqVKzFmzBh8+umn4hdWWFgYHn/8cSxbtgz9+/dHp06dZHl8IiIick1CGAwPD4efnx9DTgN0Oh1KSkrE4T5yHceRdRgIJYRZKUeNGoW//vWvAIDOnTsjPT0dH3zwAfr27VvvbXU6nd4H39SXgDX7GFq0aBEWLlxY7/U+Pj44ffo0EhIS9GbfBIB//vOfRvv369cPQO3kMEOGDAEAvWUavv/++3ofy9T9AMCJEycA1C7FIFTfwsLC8OKLL+KTTz7Bli1bsGXLFqP7MBxrCABr164FAFy8eNHouujoaERGRuKPf/yj3nM9evQogNrlL6Ttk7axIQcOHDDatmvXLqNtc+bMwZw5cwDUPlcPDw/Mnj0bOTk58PBwu+G5REREbqu6uloMg6GhoUo3xyUIQ21yc3MRHh7O7qMKYiCUCAsLg6enp95SCQAQExMjhoTIyEhUVFQgPz9fr0qYm5uLXr16iftcv37d6P5v3LghVgUjIyNx5MgRvevz8/NRWVlpVDmUmjt3LqZPny5eFhbtFPTs2RM//PCDuU/Zrj7++GPx/++8847s9++sz1U6/pSIiIgaP2HMoJ+fn8ItcS3C61VZWclAqCCWMSS8vLzQrVs3nDlzRm/7zz//jJYtWwKonWBFo9EgNTVVvP7atWs4efKkGAhjY2NRWFiIjIwMcZ8jR46gsLBQb5+TJ0/qVcV27doFb29vdO3atd42ent7i4vQCz9EREREpDx2E7UMXy/n4HYVwtu3b+tNmHLhwgWcOHECISEhaNGiBWbNmoWnn34affr0Qf/+/ZGSkoIdO3aIXSe1Wi0mTZqEGTNmIDQ0FCEhIZg5cyY6deokzjoaExODIUOGYPLkyWKXxxdeeAHDhw9Hu3btAABxcXF44IEHEB8fj6VLlyIvLw8zZ87E5MmTGfKIiIiIiMgh3K5CePToUXTp0gVdunQBUDvRSpcuXbBgwQIAwOjRo/HBBx/g7bffRqdOnfDRRx/h888/x6OPPirex/Lly/HEE09gzJgx6N27N/z8/LBjxw69UveWLVvQqVMnxMXFIS4uDg8++CCSk5PF69VqNXbu3AkfHx/07t0bY8aMwRNPPGGXrpVERM7m+vXrmD17tjh2m4iInM/3338PlUrFmVMbOZVOmPWDXFJRURG0Wi0KCwtZWSQilxEfH4/Nmzfj559/Rtu2bZVuDhGRTcrKynDhwgW0bt0aPj4+SjdHNt9//z369++P/Px8BAUFyX7/Db1uPMZ1HLerEBIRkeMdP34cw4cPx+jRo5Geni7OxDt37lyFW0ZEROTeGAiJiMjuEhISsGLFCixfvhzLly/HqVOnAACXLl1SuGVERO6tvLwcCQkJCA8Ph4+PDx599FFkZmbq7XPw4EE89NBD8PHxQY8ePZCdnS1e9+uvv2LEiBEIDg6Gv78/OnTogG+++cbRT4NswEBIRER2p1Kp0KZNG7Rq1QqffvopqqqqANSu3UVERMqZPXs2Pv/8c2zatAlZWVlo06YNBg8ejLy8PHGfWbNm4Z133kFmZibCw8MxcuRIcamNv/zlLygvL8e+ffuQnZ2NJUuWoEmTJko9HbKC280ySkREjhceHo6LFy+iVatWAIBHHnkEx48fx8mTJ5VtGBGRHZWUlOD06dMOf9z27dubtSbinTt3sGbNGmzcuBFDhw4FAKxbtw6pqalYv349unXrBgB44403MGjQIADApk2bcM8992D79u0YM2YMLl26hD/+8Y/o1KkTAODee++107Mie2EgJCIiu/vss8/0LguzMh86dEiJ5hAROcTp06cbXF/aXo4dO4aHH374rvv98ssvqKysRO/evcVtGo0G3bt3x6lTp8RAGBsbK14fEhKCdu3aiV3/ExIS8PLLL2PXrl0YOHAg/vjHP+LBBx+U+RmRPTEQEhGRwwmBkMtOEFFj1r59exw7dkyRxzWHsNiA4QLxOp3urovGC9f/+c9/xuDBg7Fz507s2rULixYtwrvvvoupU6da0XJSAgMhERE5nDDLKMcQElFj5ufnZ1alTilt2rSBl5cXDhw4gLFjxwIAKisrcfToUUybNk3c7/Dhw2jRogUAID8/Hz///LNe6IyOjsZLL72El156CXPnzsW6desYCF0IAyERETmcEAhZISQiUo6/vz9efvllzJo1CyEhIWjRogXefvttlJSUYNKkSfjhhx8AAH//+98RGhqKiIgIvP766wgLC8MTTzwBAJg2bRqGDh2K+++/H/n5+di7dy9iYmIUfFZkKQZCIiJyOKHL6KuvvoqMjAyFW0NE5L4WL16MmpoaxMfHo7i4GI888gi+/fZbBAcH6+3z6quv4uzZs3jooYfw1VdfwcvLC0BtT4+//OUvuHLlCgIDAzFkyBAsX75cqadDVlDphM7D5JKKioqg1WpRWFiIwMBApZtDRGTSmDFj9C7/73//w5kzZxASEoJbt24p1CoiInmUlZXhwoULaN26NXx8fJRujsto6HXjMa7jsEJIRER2l5mZib1794pdRZcsWYIzZ84gKipK4ZYRERG5NwZCIiKyu1mzZiEgIABhYWEAIHZFGj58uJLNIiIicnsMhEREZHdTpkzRuyxUCnv16qVEc4iIiKiOh9INICIi9yNMKlNVVaVwS4iIiNwbAyERETkcAyEREZFzYCAkIiKHE7qM3rhxQ+GWEBERuTcGQiIicjihQvj+++8r3BIiIiL3xklliIjI7rp37653+dq1awCA8+fPK9EcIiIiqsMKIRER2V1xcTHS09ORkZGBjIwMTJ06FQDQsmVLhVtGRETWSkxMROfOnZVuBtmIgZCIiOwuKSkJxcXF4mWdTgcAGDx4sFJNIiIiIrDLKBEROcDo0aP1LtfU1AAAWrVqpUBriIiISMAKIREROZwQCCsrKxVuCRGRe6upqcGSJUvQpk0beHt7o0WLFnjrrbcAAHPmzMH9998PPz8/3HvvvZg/f/5dv7f/9a9/oUOHDvD29kazZs3wyiuvOOJpkA1YISQiIocTAqHwLxERKWPu3LlYt24dli9fjkcffRTXrl3D6dOnAQABAQHYuHEjoqKikJ2djcmTJyMgIACzZ882eV9r1qzB9OnTsXjxYgwdOhSFhYU4ePCgI58OWYGBkIjIhRw/fhzz58+HRqPBrFmz0KtXLwDApEmTsH79eoVbZz4GQiIi5RUXF2PlypVYvXo1nn32WQDAfffdh0cffRQAMG/ePHHfVq1aYcaMGfi///u/egPhP/7xD8yYMQOvvvqquK1bt252fAYkBwZCIiIXkpCQgA0bNsDT0xOzZs3C4cOHMX36dJdbvkGYVIaBkIgatZISoK7a5lDt2wN+fnfd7dSpUygvL8eAAQNMXv/ZZ59hxYoVOHfuHG7fvo2qqioEBgaa3Dc3NxdXr16t977IebndGMJ9+/ZhxIgRiIqKgkqlwhdffFHvvi+++CJUKhVWrFiht728vBxTp05FWFgY/P39MXLkSFy5ckVvn/z8fMTHx0Or1UKr1SI+Ph4FBQV6+1y6dAkjRoyAv78/wsLCkJCQgIqKCpmeKRE1RiqVCm3atEGrVq3w6aefoqioCJMnT0ZVVZXSTbMIK4RE5BZOnwa6dnX8j5kh1NfXt97rDh8+jGeeeQZDhw7F119/jePHj+P111+v91i1ofsi5+Z2FcI7d+7goYcewnPPPYc//vGP9e73xRdf4MiRI4iKijK6btq0adixYwe2bduG0NBQzJgxA8OHD8exY8egVqsBAGPHjsWVK1eQkpICAHjhhRcQHx+PHTt2AACqq6sxbNgwNG3aFAcOHMCtW7fw7LPPQqfTYdWqVXZ45kSOUVVVBU9Pt/tqcZjw8HBcvHhRnJ0zMTERmzdvRnJysrINs5AQBKurqxVuCRGRHbVvDxw7pszjmqFt27bw9fXFnj178Oc//1nvuoMHD6Jly5Z4/fXXxW2//vprvfcVEBCAVq1aYc+ePejfv7917SZFuN1R29ChQzF06NAG9/ntt9/wyiuv4Ntvv8WwYcP0rissLMT69euRnJyMgQMHAgA2b96M6Oho7N69G4MHD8apU6eQkpKCw4cPo0ePHgCAdevWITY2FmfOnEG7du2wa9cu/PTTT7h8+bIYOt99911MnDgRb731Vr3leCJnlJ2djTlz5qCgoACenp6orKxEWFgYkpKS0KlTJ6Wb16h89tlnRtvGjx+P8ePHK9Aa67FCSERuwc8PePhhpVtRLx8fH8yZMwezZ8+Gl5cXevfujRs3buDHH39EmzZtcOnSJWzbtg3dunXDzp07sX379gbvLzExES+99BLCw8MxdOhQFBcX4+DBg5g6daqDnhFZw+0C4d3U1NQgPj4es2bNQocOHYyuP3bsGCorKxEXFydui4qKQseOHZGeno7Bgwfj0KFD0Gq1YhgEgJ49e0Kr1SI9PR3t2rXDoUOH0LFjR70K5ODBg1FeXo5jx47Ve2alvLwc5eXl4uWioiI5njaRTaZMmYKtW7ciOjpa3Hbp0iWMGzcO+/fvV7Bl5KwYCImInMP8+fPh6emJBQsW4OrVq2jWrBleeuklTJo0CX/961/xyiuvoLy8HMOGDcP8+fORmJhY7309++yzKCsrw/LlyzFz5kyEhYXhqaeectyTIaswEBpYsmQJPD09kZCQYPL6nJwceHl5ITg4WG97REQEcnJyxH3Cw8ONbhseHq63T0REhN71wcHB8PLyEvcxZdGiRVi4cKFFz4nI3qqrq6HVavW2BQYGsjsg1UuYVIbvESIiZXl4eOD111/X6xoqePvtt/H222/rbZs2bZr4/8TERKOA+OKLL+LFF1+0R1PJThgIJY4dO4aVK1ciKysLKpXKotvqdDq925i6vTX7GJo7dy6mT58uXi4qKtKryhApYfHixRg+fDi8vLwQGBiIwsJCVFVVYcmSJUo3rdHKy8tDXl4eQkJCEBISonRzLMYKIRERkXNgIJTYv38/cnNz0aJFC3FbdXU1ZsyYgRUrVuDixYuIjIxERUUF8vPz9aqEubm54npgkZGRuH79utH937hxQ6wKRkZG4siRI3rX5+fno7Ky0qhyKOXt7Q1vb2+bnieR3Pr06YN9+/ahtLQUBQUFCA4Oho+Pj9LNapT27NmDBQsWICwsDIGBgSgoKEB+fj4WLlzoUlN9MxASERE5BwZCifj4eHGiGMHgwYMRHx+P5557DgDQtWtXaDQapKamYsyYMQCAa9eu4eTJk2JJPTY2FoWFhcjIyED37t0BAEeOHEFhYaEYGmNjY/HWW2/h2rVraNasGQBg165d8Pb2RteuXR3yfInk5uvry2mn7WzBggVISUlBQECAuK2oqAhDhw5lICQiIiKLuV0gvH37Ns6dOydevnDhAk6cOIGQkBC0aNECoaGhevtrNBpERkaiXbt2AACtVotJkyZhxowZCA0NRUhICGbOnIlOnTqJYTImJgZDhgzB5MmTsXbtWgC1y04MHz5cvJ+4uDg88MADiI+Px9KlS5GXl4eZM2di8uTJnGGUiOrl4eGBGzdu6AXCGzduwMPDtZaV5bITREREzsHtAuHRo0f1ZvAUxuM9++yz2Lhxo1n3sXz5cnh6emLMmDEoLS3FgAEDsHHjRnENQgDYsmULEhISxNlIR44cidWrV4vXq9Vq7Ny5E1OmTEHv3r3h6+uLsWPH4p133pHhWRJRY/Xhhx9ixowZyMnJEcccN2vWDB9++KHSTbOIMKkMK4RERETKcrtA2K9fP/FAxBwXL1402ubj44NVq1Y1uIB8SEgINm/e3OB9t2jRAl9//bXZbSFyNXFxcdi1a5fSzWhUYmJi7roOlCtgl1EiaowsOcYkvl7Owu0CIRHJTxhPK6XT6ZCdna1Aa8gVsMsoETUmGo0GAFBSUsKx9BYoKSkB8PvrR8pgICQim2VmZmLv3r1649h0Oh3i4+MVbJV7qKqqwk8//YQHH3xQ6aZYhBVCImpM1Go1goKCkJubCwDw8/OzeAkzd6LT6VBSUoLc3FwEBQXpDbsix2MgJCKbzZo1CwEBAQgLC9Pb/sorryjUIvexdOlSvPbaa/jhhx9cKhRyDCERNTaRkZEAIIZCurugoCDxdSPlMBASkc2mTJlicvvTTz/t4Ja4nwsXLgAAXnzxRRw6dEjh1piPFUIiamyESb7Cw8NRWVmpdHOcnkajYWXQSTAQEhG5EGFtU8GlS5cAACdPnlSiOVbjGEIixxk3bhy2bNmidDPchlqtZtAhl8JASETkQoqLi5GdnQ1Pz9qv78TERCxcuBBt27ZVuGWWYYWQSH6zZ8822qbT6ZCenq5Aa4jIVTAQEpHd5OTkcGyAzJKSklBcXIzg4GAAQJMmTQAATzzxhIKtshwDIZH8tmzZgq1btxpt/+677xRoDRG5CgZCIrKbCRMmcB1CmY0ePVrvckBAAIDadU1diTCpDLuMEsnn+eefR0xMDMLDw/W2T5gwQaEWEZErYCAkIpsZjmsDag/4z549q0Br3IuPjw+A2q6kroQVQiL5vfnmmya3JyQkOLglRORKGAiJyGaG49oEgwYNUqhF7kOotJWWlircEsswEBIRETkHj7vvQkTUMGFcm6F58+Yp0Br34qqBioGQiIjIObBCSEQ2MxzXVlFRgYqKCvTt21ehFrkPIVAJlUJXwWUniIiInAMrhEQku8GDB4uTnZB9uWqwEgIsK4RE8klNTUWPHj3Qq1cvbNu2Tdw+bNgwBVtFRM6OgZCIZPf9998r3QS34arBil1GieT3xhtv4Ntvv8Xu3buRkZGBqVOnoqamBiUlJUo3jYicGAMhEZELc9Vg5aqVTSJnplarERQUBD8/Pyxbtgxdu3bFqFGjcPv2baWbRkROjIGQiMiFuXogdLV2Ezmzzp074+LFi+LliRMnYvr06S63LA0RORYnlSEi2Xl7e6O8vBzl5eXw9vZWujmNmqsGK1dtN5EzW7VqldG2/v374/Tp0wq0hohcBSuERCQ7f39/AEBRUZHCLWn8XHUMoau2m4iIqLFhICQi2QmBkN2U7M9Vx+K5aruJiIgaGwZCIpIdK4SO46pdL1213USuiCfniKghDIREJDsvLy8AQHl5ucItafxcNVixyyiR/D7++GN06tQJDz/8MBYvXoyPP/4YRUVFGDVqlNJNIyInxkBIRLJTqVQA2B3QEVw9EPI9QiSfNWvWICsrC1lZWVCpVHj22WcxadIk8fNGRGQKAyER2Y2rhRRX5KqVNldtN5Ez8/DwgEajAQC89NJLAICUlBTcvHlTyWYRkZNjICQiu2H1x/5ctULoqu0mcmbDhg0T1yEUPltNmjRB8+bNFWwVETk7rkNIRLITuozyYN/+XHW2TlYIieT32muvif8XPltFRUVISUlRqklE5ALcrkK4b98+jBgxAlFRUVCpVPjiiy/E6yorKzFnzhx06tQJ/v7+iIqKwoQJE3D16lW9+ygvL8fUqVMRFhYGf39/jBw5EleuXNHbJz8/H/Hx8dBqtdBqtYiPj0dBQYHePpcuXcKIESPg7++PsLAwJCQkoKKiwl5PncjhXC2kuCJXrbRxDCGRfQnfCSUlJQq3hIicndsFwjt37uChhx7C6tWrja4rKSlBVlYW5s+fj6ysLPznP//Bzz//jJEjR+rtN23aNGzfvh3btm3DgQMHcPv2bQwfPlzvwGbs2LE4ceIEUlJSkJKSghMnTiA+Pl68vrq6GsOGDcOdO3dw4MABbNu2DZ9//jlmzJhhvydP5GA82Lc/V620uWq7iVwFP1tEZC636zI6dOhQDB061OR1Wq0WqampettWrVqF7t2749KlS2jRogUKCwuxfv16JCcnY+DAgQCAzZs3Izo6Grt378bgwYNx6tQppKSk4PDhw+jRowcAYN26dYiNjcWZM2fQrl077Nq1Cz/99BMuX76MqKgoAMC7776LiRMn4q233kJgYKAdXwUix+ABif25eoXQ1dpN5Co4sygRmcvtKoSWKiwshEqlQlBQEADg2LFjqKysRFxcnLhPVFQUOnbsiPT0dADAoUOHoNVqxTAIAD179oRWq9Xbp2PHjmIYBIDBgwejvLwcx44dq7c95eXlKCoq0vshcjZcdsJxXDUQuurYRyJX4WrfCUSkHAbCBpSVleFvf/sbxo4dK1bscnJy4OXlheDgYL19IyIikJOTI+4THh5udH/h4eF6+0REROhdHxwcDC8vL3EfUxYtWiSOS9RqtYiOjrbpORLZEw9I7M9VAyErhET2xc8WEZmLgbAelZWVeOaZZ1BTU4P333//rvvrdDqxKgJA7/+27GNo7ty5KCwsFH8uX75817YRKYXVH/tz1clZGAiJ7IufLSIyFwOhCZWVlRgzZgwuXLiA1NRUvfF8kZGRqKioQH5+vt5tcnNzxYpfZGQkrl+/bnS/N27c0NvHsBKYn5+PyspKo8qhlLe3NwIDA/V+iJwNl51wHFYIicgUfraIyFwMhAaEMHj27Fns3r0boaGhetd37doVGo1Gb/KZa9eu4eTJk+jVqxcAIDY2FoWFhcjIyBD3OXLkCAoLC/X2OXnyJK5duybus2vXLnh7e6Nr1672fIpEDuNqVStX5KqBkGMIiezL1b4TiEg5bjfL6O3bt3Hu3Dnx8oULF3DixAmEhIQgKioKTz31FLKysvD111+jurparOKFhITAy8sLWq0WkyZNwowZMxAaGoqQkBDMnDkTnTp1EmcdjYmJwZAhQzB58mSsXbsWAPDCCy9g+PDhaNeuHQAgLi4ODzzwAOLj47F06VLk5eVh5syZmDx5Mqt+5PJYIXQcVw2ErBAS2Rc/W0RkLrcLhEePHkX//v3Fy9OnTwcAPPvss0hMTMRXX30FAOjcubPe7b777jv069cPALB8+XJ4enpizJgxKC0txYABA7Bx40ao1Wpx/y1btiAhIUGcjXTkyJF6ax+q1Wrs3LkTU6ZMQe/eveHr64uxY8finXfescfTJlIEqz/2x0BIRKbws0VE5nK7QNivX78G1+YxZ90eHx8frFq1CqtWrap3n5CQEGzevLnB+2nRogW+/vrruz4ekatiILQ/Vw1WrtpuIlfBzxYRmYtjCIlIduwy6jiuOhbPVdtN5Cq4MD0RmYuBkIjshgf79scuo0RkCj9bRGQuBkIikh0P9h2HgZCITOFni4jMxUBIRLJjd0DHcdVgJbSb7xEi+3C17wQiUg4DIRHJzlWrVq7IVV9rV203kavgZ4uIzMVASESyY4XQcVw1WLlqZZPIVfCzRUTmYiAkItkJQZCB0P5cNXwzEBLZFz9bRGQuBkIikp2rVq1ckau+1jqdDp6eni4XZIlchat9JxCRchgIiUh2rlq1ckWuWmmrqamBp6eny7WbyFXws0VE5mIgJCLZuWrVyhW56mut0+mgVqtdrt1EroIL0xORuRgIiUh2HEPoOK4cCIUKIQ9cieQn/U4YN26cgi0hImfnqXQDiKjxcdWQ4opc9bUWAqHwf5VKpXCLiFzf7Nmzxf9fvnxZ/H96eroSzSEiF8EKIRHJjmMIHUeOBd6VqB7U1NRArVaL/yci223ZsgXDhg3DsGHD0KNHD3F7aGiogq0iImfHCiERyY6B0HEsqRBKqwcCnU6nSPVAGEMIMBASyeX5559HTEwMwsPD9b5/J0yYoGCriMjZMRASkexctRujK7Lktd6yZQu2bt1qtP27776TvV13I+0yyhMHRPJ48803xf9LvxMSEhKUaA4RuQgGQiKSHSeVcRxLAqG0eiClRPVAGgh54oBIftLPFcfpElFDGAiJSHasEDqOJesQSqsHUkpUD2pqauDl5SX+n4jkxUBIRObipDJEJDuOIXQcVw3f7DJKZF/S5Vz4GSOihjAQEpHsXDWkuCJXDd+cVIZIfp988gm6dOmC8ePHIzU1Vdz+5ZdfKtgqInJ27DJKRLLjGELHcdXwzTGERPJ79913cfDgQRQXFyMmJkbcvnz5cjz11FMKtoyInBkrhEQkO1cNKa7Iktc6NTUVPXr0QK9evbBt2zZx+7Bhw+zWvvpwHUIi+fn6+sLPzw8RERF48MEHxe3CZ42IyBQGQiKSnat2Y3RFlkwq88Ybb+Dbb7/F7t27kZGRgalTp+LcuXMoKSmxdzONcAwhkfw6d+4sfp5effVVcXtwcLBSTSIiF8BASESyYyB0HEsqhGq1GkFBQfDz88OyZctQU1ODtm3bIjc3197NNMIxhETyW7FihcnP1YYNG5RqEhG5AAZCIpKdEAR5oG9/lgTCzp074+LFi+Ll5s2bAwAKCwvt0raGMBAS2Zf0c8WTc0TUELcLhPv27cOIESMQFRUFlUqFL774Qu96nU6HxMREREVFwdfXF/369cOPP/6ot095eTmmTp2KsLAw+Pv7Y+TIkbhy5YrePvn5+YiPj4dWq4VWq0V8fDwKCgr09rl06RJGjBgBf39/hIWFISEhARUVFfZ42kQOxQqh41jyWq9atQqtWrUSL3t7ewOonXDC0dhllMi+GAiJyFxuFwjv3LmDhx56CKtXrzZ5/dtvv41ly5Zh9erVyMzMRGRkJAYNGoTi4mJxn2nTpmH79u3Ytm0bDhw4gNu3b2P48OF6X7hjx47FiRMnkJKSgpSUFJw4cQLx8fHi9dXV1Rg2bBju3LmDAwcOYNu2bfj8888xY8YM+z15IgfhpDKOY8kYQkNCICwvL5e1TeaoqanhLKNEdiT9XOXk5CjYEiJydm637MTQoUMxdOhQk9fpdDqsWLECr7/+Op588kkAwKZNmxAREYGtW7fixRdfRGFhIdavX4/k5GQMHDgQALB582ZER0dj9+7dGDx4ME6dOoWUlBQcPnwYPXr0AACsW7cOsbGxOHPmDNq1a4ddu3bhp59+wuXLlxEVFQWgdrroiRMn4q233kJgYKADXg0i+XExZMeyJXwrGQjZZZTIvqTfxQkJCdi3b5+CrSEiZ+Z2FcKGXLhwATk5OYiLixO3eXt7o2/fvkhPTwcAHDt2DJWVlXr7REVFoWPHjuI+hw4dglarFcMgAPTs2RNarVZvn44dO4phEAAGDx6M8vJyHDt2zK7Pk8iepAf3PNC3P0sDYXl5ObKysrB7925cvXpV3OZoDIRE8uvevbv4M3/+fHH7iRMnlGsUETk9BkIJoUtFRESE3vaIiAjxupycHHh5eRlN4Wy4T3h4uNH9h4eH6+1j+DjBwcHw8vJqsGtHeXk5ioqK9H6InIm0KsgKof1ZEgiTk5PRv39/bNq0CWlpaeIJKuFfR+IYQiL5FRcXIz09HRkZGXjjjTfE7dI1CYmIDLldl1FzqFQqvcs6nc5omyHDfUztb80+hhYtWoSFCxc22BYiJXEiA8eyJBCuXbsWBw4cgIdH7bnA//znP9i1axcOHDhg1zaawjGERPJLSkpCcXExgoOD9T5XL7/8soKtIiJnxwqhRGRkJADjwde5ubliNS8yMhIVFRXIz89vcJ/r168b3f+NGzf09jF8nPz8fFRWVhpVDqXmzp2LwsJC8efy5csWPksi+2KXUccSxgmZE759fX2RlpZmdFuh66YjscsokfxGjx4t9mCSfq66du2qVJOIyAUwEEq0bt0akZGRSE1NFbdVVFQgLS0NvXr1AlD7parRaPT2uXbtGk6ePCnuExsbi8LCQmRkZIj7HDlyBIWFhXr7nDx5EteuXRP32bVrF7y9vRv84vb29kZgYKDeD5EzYYXQsSztMvrll1+id+/e6NmzJ+bNmwcAGDFihF3baAq7jBLZF0/OEZG53K7L6O3bt3Hu3Dnx8oULF3DixAmEhISgRYsWmDZtGpKSktC2bVu0bdsWSUlJ8PPzw9ixYwEAWq0WkyZNwowZMxAaGoqQkBDMnDkTnTp1EmcdjYmJwZAhQzB58mSsXbsWAPDCCy9g+PDhaNeuHQAgLi4ODzzwAOLj47F06VLk5eVh5syZmDx5MkMeuTTpwT0PQuzPkkAYGRmJFStWiJc/+eQTPP3009BoNPZqXr2kgZDvEyL58eQcEZnL7QLh0aNH0b9/f/Hy9OnTAQDPPvssNm7ciNmzZ6O0tBRTpkxBfn4+evTogV27diEgIEC8zfLly+Hp6YkxY8agtLQUAwYMwMaNG/W6XW3ZsgUJCQnibKQjR47UW/tQrVZj586dmDJlCnr37g1fX1+MHTsW77zzjr1fAiK74kGIY9my7IRwG6XWIWSXUSL7YYWQiMzldoGwX79+emvzGFKpVEhMTERiYmK9+/j4+GDVqlVYtWpVvfuEhIRg8+bNDbalRYsW+Prrr+/aZiJXIhx4qFQqHoQ4gC0L0wuBvaHvRHvhGEIi++KasERkLo4hJCJZCQf3np6ePAhxADkqhEoFQo4hJLIf9tYgInMxEBKRrIQDD41Gw4MQBxCWb7DmtXaWQMgKIZH82GWUiMzFQEhEshIOPDQaDQ9CHEAYi+dqFUKOISSyL1YIichcDIREJCtpIORBiP0JlTadTmdxsFO6QigEQr5PiOTHQEhE5mIgJCJZsULoWEKXUcDyYGfL+ENbscsokX2xyygRmYuBkIhk5SqTyowbN07pJsiipqZGXEfQ0oM+YX8lfk8MhET2xQohEZnL7ZadICL7kk4q4wwH+rNnzzbaptPpkJ6erkBr5CetEFr6egu/K6UCIccQEtkPAyERmYuBkIhk5WxjCLds2YKtW7cabf/uu+8UaI38pJOzWPp6K1UhFLq2ctkJIvthl1EiMhcDIRHJytnGED7//POIiYlBeHi43vYJEyYo1CJ52dL1UulAyAohkf1wYXoiMhcDIRHJytnGEL755psmtyckJDi4JfZhS5dRpQMhxxAS2Q+7jBKRuTipDBHJSjjw8PLy4kGIA7hiIBQel8tOENkP1/okInMxEBKRrJyty2hjJ0cgdPTviRVCIvuTzkDMky5E1BAGQiKSlbN1GW3sbBlDqNQsoxxDSGR/DIREZC4GQiKSlatUCOPi4pRugiykFUJXnWXUmd8nRK7Klt4DROReOKkMEclKug6hM5yVHjNmjNE2nU6H7OxsBVojP1ceQ8hlJ4jshxVCIjIXAyERycrZKoSZmZnYu3cvPDx+7xCh0+kQHx+vYKvkY8vEEUpXCNlllMh+bOk9QETuhYGQiGTlbGMIZ82ahYCAAISFheltf+WVVxRqkby4DiERmWLLdwMAXL16FVFRUXI3i4icEAMhEclKWiF0hkA4ZcoUk9uffvppB7fEPqTdwlwtEHJ8E5H9WNJl9JtvvtG7rNPpkJiYiIULF+Lxxx+3WxuJyDkwEBKRrKRjCHmgb38cQ0hEpljy3TBx4kQ88sgj6Nmzp3jCpqCgAEePHmUgJHIDnGWUiGTlbBXCxs6WcUJcdoKo8RLGF6tUqrt+xi9cuIDHHnsMp0+fRlxcHN544w20bdsWCxYscFBriUhJDIREJCtnm1SmPjk5OUo3QRauPKmMSqWCSqVy6vcJkauqqamBh4cH1Gr1XT/j/v7+mDt3LtauXYs9e/ZgzJgxKCgocExDiUhx7DJKRLJytkll6jNhwgTs2rVL6WbYzJUnlVGpVPDw8HDq9wmRq5IGQnO/GwICAjBv3jwUFRXh9OnTdm4hETkLBkIikpWzVQi7d+9utE2n0+Hs2bMKtEZ+rjyG0NKDVSIynxAIrTnpEhgYaPK7k4gaJwZCIpKVsy1MX1xcjOzsbDE0CQYNGqRQi+TlyrOMChVCBkIi+VnSZZSI3BvHEBKRrJxtUpmkpCQUFxcbbZ83b54CrZGfq48hbEyBsKqqSukmEIlqamqgUqlYhSeiu2IgNFBVVYV58+ahdevW8PX1xb333ou///3vel+mwvo8UVFR8PX1Rb9+/fDjjz/q3U95eTmmTp2KsLAw+Pv7Y+TIkbhy5YrePvn5+YiPj4dWq4VWq0V8fDwHcZPLk44hdIaDkNGjRyM4OFi8/M033+DKlSvo27evgq2Sj3QMoaXBzlkCoTOcOLBWdnY2Hn/8cfTq1Qt/+MMfEBsbixEjRiA7O1vpppGb0+l0VncZFcTFxcncKiJyRuwyamDJkiX44IMPsGnTJnTo0AFHjx7Fc889B61Wi1dffRUA8Pbbb2PZsmXYuHEj7r//fvzjH//AoEGDcObMGQQEBAAApk2bhh07dmDbtm0IDQ3FjBkzMHz4cBw7dkw8mz927FhcuXIFKSkpAIAXXngB8fHx2LFjhzJPnkgGQsjw8vJyyorJsGHDAPweSlydLWMIlV52ojFUL6ZMmYKtW7ciOjpa3Hbp0iWMGzcO+/fvV7Bl5O7M6TKalpaGN998E5cuXUJkZCSys7Oh0WjQqVMnhISE8MQGkZtghdDAoUOHMGrUKAwbNgytWrXCU089hbi4OBw9ehRA7YHMihUr8Prrr+PJJ59Ex44dsWnTJpSUlGDr1q0AgMLCQqxfvx7vvvsuBg4ciC5dumDz5s3Izs7G7t27AQCnTp1CSkoKPvroI8TGxiI2Nhbr1q3D119/jTNnzij2/IlsJRx4eHl5QafTufTBvitw5Ull1Gq1y3cZra6uhlar1dsWGBjo0lVPahykk8rU9xmbM2cONmzYgDt37uDUqVP473//i9TUVNy5cwdLly5FmzZtHNxqIlICA6GBRx99FHv27MHPP/8MAPjhhx9w4MABPP744wBqF2/NycnR60bh7e2Nvn37Ij09HQBw7NgxVFZW6u0TFRWFjh07ivscOnQIWq0WPXr0EPfp2bMntFqtuI8p5eXlKCoq0vshcibCgYe3tzcAx4cNd6LT6Vxy2QnpLKOu3mV08eLFGD58OAYOHIgnn3wSAwYMwKhRo7BkyRKlm0ZuzpwKoY+PD6Kjo/H666+jXbt26NmzJx566CH4+/ujVatWeOWVVxzcaiJSAruMGpgzZw4KCwvRvn178Uv0rbfewv/7f/8PwO+LWUdEROjdLiIiAr/++qu4j5eXl964JWEf4fY5OTkIDw83evzw8PAGF8xetGgRFi5caP0TJLIzaZdRoHZcrjALJslL6HrpqoGwMXQZ7dOnD/bt24fS0lIUFBQgODgYPj4+SjeLSAyEPj4+KCsrM7lPZGQkqqurMWXKFEyZMgVA7Xe28Jl8+umnHdZeIlIOK4QG/u///g+bN2/G1q1bkZWVhU2bNuGdd97Bpk2b9PZTqVR6l3U6ndE2Q4b7mNr/bvczd+5cFBYWij+XL18252kROYypQEj24aqBUGj33bqzuRJfX180a9aMYZCchhAIQ0JCcOvWLZP7bNu2TZzXQODp6YnU1FRHNJGInAQrhAZmzZqFv/3tb3jmmWcAAJ06dcKvv/6KRYsW4dlnn0VkZCSA2gpfs2bNxNvl5uaKVcPIyEhUVFQgPz9fr0qYm5uLXr16iftcv37d6PFv3LhhVH2U8vb2FrviETkj6RhCgIHQnqQzugKuM8uoYZfRxhAIBTdv3kRRURHuvfdepZtCbk4IhKGhofUGwvoYrttKRI0bK4QGSkpK4OGh/7JIuzS1bt0akZGRemfPKioqkJaWJoa9rl27QqPR6O1z7do1nDx5UtwnNjYWhYWFyMjIEPc5cuQICgsLxX2IXBErhI5jGAhdZZbRxjSGUJCXl4dz586hffv2uO+++5RuDpG4DmFYWJhZgbC8vBxZWVnYvXs3srKyUFFR4YBWEpEz4CkgAyNGjMBbb72FFi1aoEOHDjh+/DiWLVuG559/HkBtN89p06YhKSkJbdu2Rdu2bZGUlAQ/Pz+MHTsWAKDVajFp0iTMmDEDoaGhCAkJwcyZM9GpUycMHDgQABATE4MhQ4Zg8uTJWLt2LYDaZSeGDx+Odu3aKfPkiWRgGAid6WC/MVWiAP3ZOqWXLb29koHQ1ccQ7tmzBwsWLEBYWBgCAwPFA+89e/ZgwIABCreO3Jm0QvjDDz80uG9ycjLWrFmDbt26ITAwEHv27MHNmzexYMECjB8/3kEtJiKlMBAaWLVqFebPn48pU6YgNzcXUVFRePHFF7FgwQJxn9mzZ6O0tBRTpkxBfn4+evTogV27dolrEALA8uXL4enpiTFjxqC0tBQDBgzAxo0b9frqb9myBQkJCeJspCNHjsTq1asd92SJ7MCZK4TOFE7l4KpjCBtTl9EFCxYgJSVF/P7fvHmzuJ2BkJQkLEzfUJfR1NRUzJs3D6dOncIHH3yAsWPHoqamBv/4xz8AAB988AEDIZEbYCA0EBAQgBUrVmDFihX17qNSqZCYmIjExMR69/Hx8cGqVauwatWqevcJCQkRDx6IGgsGQsextcuoswRCV/69eHh44MaNG3onBIXtREoSKoRCl1FTk9a98cYb+Pbbb/Hkk09i+/btOHToEP76178CqD2O4SRJRO6Bf7GISFbCwb2w1IQzBUJpW4TqmisTgpXwWrtiIHT1LqMffvghZsyYgdjYWPTs2VNvO5GSpF1GKysrUVxcbLSPWq1GUFAQtm7diubNmyMlJQVdunQBUPsdyZPWRO6BgZCIZFVTUwO1Wi1WrZwpEEqDjytXpQSGYwhdbZZRlUrl8l1GY2JixMrK4cOH9bYTKUkaCAGY7DbauXNnXLx4EZGRkVixYgXOnj2L9957DwDg7+8vzqxORI0bAyERyUo4CHH2QOhM7bKWq44hbIzrEBI5G3MC4apVq9CqVSu9bY888ogjmkdEToSBkIhk5cyBUNoWZ2qXteRadkKn0zm0C21jGkNYn8bQJZlcm3RheqB2aRRzNMbPIxE1jIGQiGRVXV3ttIGwsXYZtbVCCDj29WhMYwjrY+7BN5G9CIFQmOCrsrLSrNs1hu9GIrIMAyERycpVxhA6U7us1RgCoat3Gf3444/RqVMnPPzww1i8eLG4/cknn1SwVUS/L0wvfD+Y+xlnICRyPwyERCQrdhl1nMYSCF35AHTNmjXIyspCVlYW/Pz8xO2u/JyocRDWIbT0u5jvXSL3w3UIiUhWzhwIG1uXUWGcmq2zjFpzW1s0pi6jHh4e4rIfCQkJePXVVwGYnsCDyJHM+S7u3r270TZTy1MQUePGQEhEsnLmMYSNrUJouOajNRVClUoFnU7HCqGVhg0bhosXLxrN1BgeHq5Mg4jqCIFQOGFk6juvuLgY2dnZ4vc1AOzfvx99+vRxWDuJSHnsMkpEsjl+/Dg2btyI27dv48SJEwBqD0ImTZqkbMPqNNYxhNYGwurqanHCCSUCobAOoSvPyPnaa68ZhUEAWLt2reMbQyRhToUwKSnJqCLoyidoiMg6DIREJJuEhAQMHToUgYGBWL9+PYDag5Dz588r3LJaja3LqBxjCIUw6cjXwx3WISwvL1e6CeTmDAOhqc/46NGjERwcrLetMXw3EpFlGAiJSDYqlQrBwcHQaDTYsGEDAGDlypVOU41rbF1GXTUQNqZZRutTUVGhdBPIzQmB0MOj9lDP0kllXLlyT0SWYSAkItmEh4fj1q1bemelY2JikJmZqXDLarHLqPHtlQ6EKpWqUQZCc9d8I7IXIRAKS09wllEiqg8DIRHJ5rPPPkNgYKDeRAa9evVCWVmZwi2r1Vi7jNoyy6jSgdDVxxDWhxVCUpowaRRQ+x3BQEhE9WEgJCJZOfPC9I21y6harbaq0uYsgbAxVggZCElpQoUQACuERNQgBkIikpVwECIEDWfqOtfYKoTCc7A2WDEQ2o8zve/JPQkL0wO1gdDcz3hj+G4kIsswEBKRrGpqaqDT6XDhwgUAznVg3FjHEKrVaquCldLLTjTmQMgKISmNFUIiMhcDIRHJZs+ePdi8eTNyc3Px97//HR4eHliyZAn27NmjdNMANN4uo65aIRTWIWQgJJIfAyERmYuBkIhks2DBAowePRotWrRAcnIy/Pz8MGnSJCxYsEDppgFofF1GpYFQrVa7TCCUrkPYWGcZZSAkpTEQEpG5GAiJSDYeHh64c+eOeBDi5eWF/Px88bLSGnuFkLOMOg9n6ipN7omzjBKRuTyVbgARNR4ffvghhg8fjmvXrqFnz54oLi7Gzp078fnnnyvdNACNdwyhq3YZbWxjCKXBlhVCUpow4zPACiERNcw5TtsTUaMQExODIUOG4P7778fhw4fRrFkz/PGPf0RMTIzSTQPQuLuMMhAqT/oaMhCS0gy7jFo6y2hjrNwTkWkMhEQkK+lZaS8vL6c6MG5sXUZtXXaiurqagVBGDITkTKqrq20aQ9hYPpdEdHcMhEQkK+lZaWcLhI21y6i1y07U1NRw2QkZSV9DjiEkpdnaZbQx9KIgIvMwEBKRrCorK1FaWordu3ejqqoKpaWlSjdJ1Ji7jLrSLKPSdjemWUZZISRnIj05Z82kMo3hO5KIzMNAaMJvv/2G8ePHIzQ0FH5+fujcuTOOHTsmXq/T6ZCYmIioqCj4+vqiX79++PHHH/Xuo7y8HFOnTkVYWBj8/f0xcuRIXLlyRW+f/Px8xMfHQ6vVQqvVIj4+HgUFBY54ikR2kZycjK+//hq3bt1CWloaCgoKsH37dmzevFnppgFofF1GXX2WUWEdwsYyVomBkJyJrctOMBASuQ8GQgP5+fno3bs3NBoN/vvf/+Knn37Cu+++i6CgIHGft99+G8uWLcPq1auRmZmJyMhIDBo0CMXFxeI+06ZNw/bt27Ft2zYcOHAAt2/fxvDhw/W+YMeOHYsTJ04gJSUFKSkpOHHiBOLj4x35dIlktXbtWgwdOhT33Xcf3nzzTdx///2Ii4vDBx98oHTTADTeLqO2TCrj6Vk72bRS6xCyyyiRfdg6qQwDIZH74LITBpYsWYLo6Ghs2LBB3NaqVSvx/zqdDitWrMDrr7+OJ598EgCwadMmREREYOvWrXjxxRdRWFiI9evXIzk5GQMHDgQAbN68GdHR0di9ezcGDx6MU6dOISUlBYcPH0aPHj0AAOvWrUNsbCzOnDmDdu3aOe5JE8nE19cX165d0zsI+e233+Dj46Nwy2pJQ2BjONjhLKPOhRVCcibV1dU2jSGsqamBTqcT1zIkosaLFUIDX331FR555BH86U9/Qnh4OLp06YJ169aJ11+4cAE5OTmIi4sTt3l7e6Nv375IT08HABw7dgyVlZV6+0RFRaFjx47iPocOHYJWqxXDIAD07NkTWq1W3MeU8vJyFBUV6f0QOYvk5GRcunQJP/zwA3r27IkTJ07g8uXLTtNltLq6Gp6envDw8GgUFUJbZxllIDTPuHHjzNqPgZCcia1dRoX7IKLGjxVCA+fPn8eaNWswffp0vPbaa8jIyEBCQgK8vb0xYcIE5OTkAAAiIiL0bhcREYFff/0VAJCTkwMvLy8EBwcb7SPcPicnB+Hh4UaPHx4eLu5jyqJFi7Bw4UKbniORvURGRuLhhx9GTk4O9u7di5EjR4rbnYEQCKurqxtFILQ1WFVXV4uzjDrywM9ZA+Hs2bONtul0ugZP0kkxEJIzsXVSGeH/QpWRiBovBkIDNTU1eOSRR5CUlAQA6NKlC3788UesWbMGEyZMEPcz7EJhTrcKw31M7X+3+5k7dy6mT58uXi4qKkJ0dHTDT4rIgaRrX3l5eeH27dsKt+h3VVVVUKvVUKlUincZraqqEsfvWUuOZSdYIfzdli1bsHXrVqPt3333nVm35xhCciaGgdDSMYSG/yeixouB0ECzZs3wwAMP6G2LiYnB559/DuD3SkdOTg6aNWsm7pObmytWDSMjI1FRUYH8/Hy9KmFubi569eol7nP9+nWjx79x44ZR9VHK29sb3t7eVj47Ivtz5oXphbPdSnUZzc7Oxpw5c1BQUABPT09UVlYiLCwMSUlJ6NSpk8X3Z7jshCvOMupMy048//zziImJMeq9IT0Z2BBWCMmZMBASkbk4htBA7969cebMGb1tP//8M1q2bAkAaN26NSIjI5GamipeX1FRgbS0NDHsde3aFRqNRm+fa9eu4eTJk+I+sbGxKCwsREZGhrjPkSNHUFhYKO5D5IqcfWF6T09Pq8KTHKZMmYK1a9ciPT0d+/btw6FDh/DPf/4TU6ZMser+XHlSGeE94kzLTrz55psmu/InJCSYdXvhNfT29naq9z25J2l3T0u+8xrb8jxEdHesEBr461//il69eiEpKQljxoxBRkYGPvzwQ3z44YcAas9oT5s2DUlJSWjbti3atm2LpKQk+Pn5YezYsQAArVaLSZMmYcaMGQgNDUVISAhmzpyJTp06ibOOxsTEYMiQIZg8eTLWrl0LAHjhhRcwfPhwzjBKLs2ZA6HQZVSpCmF1dTW0Wq3etsDAQKvDmCsHQqFrvDN1GbWV8Dx8fHzYZZQUZ1ghLC8vN+t20m7+rBASuQcGQgPdunXD9u3bMXfuXPz9739H69atsWLFCr1Z5mbPno3S0lJMmTIF+fn56NGjB3bt2oWAgABxn+XLl8PT0xNjxoxBaWkpBgwYgI0bN+oNzt6yZQsSEhLE2UhHjhyJ1atXO+7JEtmB4RhCZzowFs6Y63Q6RQLh4sWLMXz4cHh5eSEwMBCFhYWoqqrCkiVLrLo/Vw2EOp1Or0LYWAKh8Br6+vo61YkQck/WdBndunUrVq1aJV5mICRyDwyEJgwfPhzDhw+v93qVSoXExEQkJibWu4+Pjw9WrVql98VqKCQkxGmm4yeSi3Sxc2esEHp6ekKn0ylyoNOnTx/s27cPpaWlKCgoQHBwsE1rNLryshMMhET2ZU0gnDlzpt5lBkIi98AxhEQkK+lBiEajcaoDY6FCaMmaXPbg6+uLZs2a2RQGAXmXnWAgBFJTU9GjRw/06tUL27ZtAwB88803GDRokFm3F15DHx8fp3rfk3uSTvBl7ufM399f7zIDIZF7YIWQiGTlzGMIhUlllOoyKjfpshPWzjIqVHOVCoTONMvoG2+8gW+//RZeXl6YN28eDhw4gH/+859Ga8rWR1ohdKau0uSepN33zf1+CAwMNLoPImr8WCEkIlkZjiF0pkAoTCojLE7v6uQYQ2jtkhW2cNZZRtVqNYKCguDn54dly5aJE3yZOxkHu4ySM7lbl9Hjx49j+PDhGD16NNLT0wFAby4EgIGQyF0wEBKRrIQqHOB8gVDpLqOmuiQCwLBhw6y6v8YSCJ2lQti5c2dcvHhRvNyvXz+Lbs9ASM7kboEwISEBK1aswPLly7F8+XIsW7ZMb+I7gIGQyF0wEBKRrISJWwDnDITCOoRKBEKhS+Lu3buRkZGBqVOnoqamBiUlJVbdny2BUKfTibN9MhDWWrVqFVq1aiVevnbtGgBgxIgRZt2eYwjJWQhV94YCoUqlQps2bdCqVSt8+umnKCoqwk8//QQAeP755wEwEBK5CwZCIpKVYSB0prFUSncZNeyS2LVrV4waNUpv3S9LCEFKpVJZFQgBKBYIXWEdwry8PABAkyZNzNqfYwjJWUjHFwv/Gn7Gw8PD9SriiYmJCAgIgFqtxqRJkwAwEBK5CwZCIpKVqQqhs4wRU7rLqGGXxIkTJ2L69OkoLi626v6qq6uhUqmsCoTSJSscHQhdZR1CIdSZ2z52GSVnIf18A6YD4WeffaZXEQeA4OBgPP/882KQZCAkcg+cZZSIZGUYCIU1/4RtShLaplKpFAmEptYl7d+/P06fPm3V/Umnlbc01Em7mzo6EEonHnKmWUYNCe8Rcyu47DJKzkL6+QbM/34QviMZCIncCyuERCQrw0AIwGkOjqUVwsZwoGPLWDzh+Vu7ZIUthN8D4FyzjBoSXpP9+/dbtD+7jJLSGAiJyBLKn7InokZFGgg1Gg2A2kDo5+enZLMA/D6pjFIVQrk1lkDoLBXC7t27613Ozc0FANy6dcus20sDoblLVRDZgzljCE1hICRyT6wQEpGsnLlCqPSkMkDtmnZZWVnYvXs3srKybHptbAmEti5qbwtnDYTFxcVIT09HRkYGMjIyMHPmTACAVqs16/bCa+jn5+dUY2fJ/RhWCE19zj755BN06dIF48ePx6ZNm9CuXTv88ssvuHjxIgMhkZthhZCIZCWELsD5AqEQRDw8PBSpECYnJ2PNmjXo1q0bAgMDUVBQgKysLLz88ssYP368xfcnR4VQqTGEzhgIk5KSUFxcjODgYAC/jyFs2bKlWbeXVgh1Oh2qqqrEKjmRI5kzqcy7776LgwcPori4GJ07d8bp06fRpUsXZGZmMhASuRkGQiKSlTNXCIUuox4eHooc6KxduxYHDhwQD9KA2terX79+igVCpSqEwnvEmQLh6NGj9S4LgdDf39+s2wvPw9fXF0BtNZiBkJRgzhhCX19f+Pn5wc/PDwMGDIBWqxUnqmIgJHIv7DJKRLKSHuwLB8POMl5PqF4qtTC9r68v0tLSxMs6nQ5paWnw8fGx6v6ks3VaGuqUDITSKrIzBUJDwnvE3PGA0i6jgPOcCCHHOX78OIYPH47Ro0cjPT1d3C6s6+co5owh7Ny5s7ht8+bNAGqXWvHz82MgJHIzrBASkaykFULhX2cJhNIuo0pM+pGcnIzFixdj3rx5qK6uhkajwSOPPCIejFlKuuyEpd1gnWUMoSssO2FtIOTEMu4nISEBGzZsgKenJ2bNmoXDhw9j+vTpOH/+vEPbYU6FcMWKFUa3q66uxrhx4xgIidwMAyERycrZA6G3tzc8PDxQUlLi8MePjIw0eRBmLVfuMuoKy04wEN7d8ePHMX/+fGg0GsyaNQu9evUCUFsRW79+vcKtczyVSoU2bdoAAD799FMkJiZi8uTJDv8O5LITRGQJdhklIlk5cyBUusuoodTUVLPXuDOFk8rYFwPh3SUkJGDFihVYvnw5li9fjmXLlgGAwytiziI8PBwXL14ULycmJqJv377IzMx0aDvMmVTGFMNA6Azfk0Rkf6wQEpGsnDkQCkHE0QGoPnFxcQBgdYVMOobQ1SqEzjipjCFrA6F0UpnGzlkqYs7is88+M9o2fvx4qyaNsoW5FcLy8nL8+OOPyMvLQ0hICCorK+Hp6Sl+Pp3he5KI7I8VQiKSlTMHQunZb2dpky1sCVZKjiFs7JPKCIHQHSaVcZaKGOkzZ1KZ5ORk9O/fH5s2bUJaWho2bNiA0tJSZGVlscsokZthhZCIZOXMgVA6qUxjONCRBitXmmXU1bqMlpWVmbW/ULH19vYG4B4VQmepiJE+cyqEppbBef/993Hw4EEGQjJLWloa3nzzTTz44IMYMmQI5syZA61Wi0WLFiE2Nlbp5pEFGAiJSDY1NTWoqalx6kAorEPoLG2yhS0VQmcZQ9jYZhlVq9VuFQjJORkGQlPfD8IyOP379xdvU1NTAy8vLwZCMsucOXPw6aefoqCgAHFxccjMzISfnx+efPJJfP/990o3jyzALqNEJBvh4MFZA6F0UpnGcKAjrca62hhCV5pltLKy0qzXloGQ6iOMF3YUcyaVSU5OxpdffonevXujZ8+e6NOnDwDgxRdfZCAks/j4+CA6OhqdOnWCTqfDPffcg5CQEPH9Q66DFUIiko1wAC38MXC2QGjrpDLONsW+LWPxnGUdQlfoMgrUjgf08fFpcH/heXl5eYm3IfcyZswYo206nQ7Z2dkObYc5YwgNl8EpKyuDr68vwsLCGAipXrNnzxb/f/36dcycORMqlUocO11VVeW03+lUPwZCIpKNcADtrBVCW7uMOsui0wI5uowqNamMK80yCtRW+8wNhO5UIUxNTcW8efOgVquRkJCAZ555BgAwbNgw7Ny5U+HWOV5mZib27t2rNy5Pp9MhPj7eoe0wNYZQp9NBp9NBpVKZvI30+5uBkOqzZcsWbN26FUDt51zw3XffAah9/6SmpirSNrIeu4zexaJFi6BSqTBt2jRxm06nQ2JiIqKiouDr64t+/frhxx9/1LtdeXk5pk6dirCwMPj7+2PkyJG4cuWK3j75+fmIj4+HVquFVqtFfHw8CgoKHPCsiOyjsXcZFabYb9WqFT799FMUFRVZPcW+NARZ22XSlgqhM3UZdZVAeDeGFUJ3CIRvvPEGvv32W+zevRsZGRmYOnUqampqUFJSonTTFDFr1iwEBASgZcuW4k+rVq3wyiuvOLQdpgIh0HDAkwZC4XYMhGTo+eefR0xMDPr27av3M2HCBHEf4W8/uQ4GwgZkZmbiww8/xIMPPqi3/e2338ayZcuwevVqZGZmIjIyEoMGDUJxcbG4z7Rp07B9+3Zs27YNBw4cwO3btzF8+HC9L9exY8fixIkTSElJQUpKCk6cOOHws4hEcnKFCqFarYanp6dVbZJzin3pzJWlpaUW3x4wrhBaM8uo0pPKNMZAqNFojG7fWKnVagQFBcHPzw/Lli1D165dMWrUKNy+fVvppiliypQpCAsLEy+XlZVh//79ePrppx3aDlsCoVqthkqlajSzMZO83nzzTYSHhxttT0hIUKA1JBcGwnrcvn0b48aNw7p16xAcHCxu1+l0WLFiBV5//XU8+eST6NixIzZt2oSSkhKxhF5YWIj169fj3XffxcCBA9GlSxds3rwZ2dnZ2L17NwDg1KlTSElJwUcffYTY2FjExsZi3bp1+Prrr3HmzBlFnjORrZw9EErXIbTmQOezzz5Dq1at9LaNHz/e7GUJpKQh0NpKkrTrpVqtdtkxhNL2OJOqqiqx2mfO71g6RlW4fWPXuXNnvZMkEydOxPTp0/VOkLqz6dOno0+fPg6vmJqaVEa6vaHbSL9TGAiJ3AMDYT3+8pe/YNiwYRg4cKDe9gsXLiAnJ0dvxjBvb2/07dsX6enpAIBjx46hsrJSb5+oqCh07NhR3OfQoUPQarXo0aOHuE/Pnj2h1WrFfYhcjXAA/MDHHwOdOztdIJRWCJU+0JEGQmsnH2ksXUYB5w2E/v7+AMwL7TU1NfDw8IBKpbK6Cu1qVq1aZXSSpH///jh9+rQyDXIywutw584dhz6urV1GgdoZJN2h2zNZLzU1FT169ECvXr2wbds2cbt0bCG5BgZCE7Zt24asrCwsWrTI6LqcnBwAQEREhN72iIgI8bqcnBx4eXnpVRZN7WOq5B4eHi7uY0p5eTmKior0foichXBAce+nnwI//OB0lRKhi6VarVa8TdIQaO1Bl6tOKiNtt/AecdZA2KRJEwCWdRkFag+qKysr7do+cn7C+/r69esOfVxT1T7pdlMMA6Gfn5/bjgV1tLS0NAwcOBDTp0/Hrl270KVLF/Tr1w+HDh1SumkN4hjixoOjPg1cvnwZr776Knbt2tXgjHKGs3Q1NHNXffuY2v9u97No0SIsXLiwwcchUophyPLw8HCqReCdaR1CaVhwtwqhYbul7XEmVVVVCAwMBACzDnCkgVCj0TjN+54c5+OPP8bSpUuh0WgwZswY8X09adIkHDlyxGHtMAx3DITOzVUXeBfGEAPAyZMnMXbsWLceQ+zKWCE0cOzYMeTm5qJr167w9PSEp6cn0tLS8N5778HT01OsDBpW8XJzc8XrIiMjUVFRgfz8/Ab3MXXG8MaNG0bVR6m5c+eisLBQ/Ll8+bJNz5dITqYOgJ2p65x0jJecbbJm0Wk5AqEtFUJplzIlu4w68/T2VVVVCAkJAQCzemOwQvi7hnq6NGZr1qxBVlYWsrKy4Ofnh59++gmA43tJ1BcIG/qOMBUIHd3V1V1JF3iPiYlx6gXex4wZI/7k5ORg2LBh+NOf/oTs7GyOIXZhrBAaGDBggNECss899xzat2+POXPm4N5770VkZCRSU1PRpUsXALUHc2lpaViyZAkAoGvXrtBoNEhNTRUXqb127RpOnjyJt99+GwAQGxuLwsJCZGRkoHv37gCAI0eOoLCwUFzs2hRvb29xjSsiZ2N00FMXWJwpEApTqlsTQORcdFquCqGts4wqPYawsQZCd68QTpgwAbt27VK6GQ7n4eEhzjKbkJCANWvWIC8vz+gEsb1JZwwV2gWwQuisIiMjxe+PvXv3AnDeBd7vttYmxxC7JgZCAwEBAejYsaPeNn9/f4SGhorbp02bhqSkJLRt2xZt27ZFUlIS/Pz8MHbsWACAVqvFpEmTMGPGDISGhiIkJAQzZ85Ep06dxElqYmJiMGTIEEyePBlr164FALzwwgsYPnw42rVr58BnTCQfowPg27edKhDa2mVUzkWn5Q6Els4y6myB0BkPfKqqqqDVaqFSqVghrIdwQlNKp9Ph7NmzCrRGecOGDcPFixfFiXaEMahCtzpHcacxhMePH8f8+fOh0Wgwa9Ys8aT6pEmTsH79eoVbZx7phCwCZ13gXVhrU7q8CgCHr7VJ8mIgtMLs2bNRWlqKKVOmID8/Hz169MCuXbsQEBAg7rN8+XJ4enpizJgxKC0txYABA7Bx40a98v+WLVuQkJAgdjcbOXIkVq9e7fDnQyQXo+BXXOxUgdDWLqNy/iGUPr4tXUaFsc6uNIbQsKurtD3OpKqqChqNBgEBAWZ1gTIMhM7yvren4uJiZGdnGy1EPWjQIIVapKzXXntN77JOpwNQ+93REOnJHTm40xjChIQEbNiwAZ6enpg1axYOHz6M6dOn4/z580o3zWb2XODd2vfclClTTG539FqbJC8GQjMYDuhVqVRITExEYmJivbfx8fHBqlWrsGrVqnr3CQkJwebNm2VqJZHyXKFCaMs6hHL+IXSWSWWUGEMobbezdxn19PREYGAgu4zWIykpCcXFxUazas+bN8/hbXHGSpHQfdTUWLzs7GzMmTMHBQUFYkU5LCwMSUlJ6NSpk02PK1cglHMs2NWrVxEVFSXb/QlUKhXatGkDAPj000+RmJiIyZMnu8Xnz1L2fM9JFRcX6xVJyPkxEBKRbIwONhpZhVBOzjKpjLN0GW1sgdBduoyOHj3a5Pa+ffs6uCXOWSkSvmek644KpkyZgq1btyI6OlrcdunSJYwbNw779++X5XFtCYT+/v5WL5fxzTff6F3W6XRITEzEwoUL8fjjj1t1n/UJDw/X66abmJiIzZs3Izk5WdbHaQzkfs8Zzqr7t7/9DQAwatQocSwkuQbOMkpEsjEKWaWlThcIhQqhTqcTu3MpwR6TyrhSl1FXGUPo6ekJf39/s2ZbdMcKoTMRKkWtWrXCp59+iqKiIsUrRcLn3NQ6ltXV1dBqtXrbAgMDZfksGk4qY20gtHat44kTJ2L16tU4evQoMjMzcfToURQUFODo0aNW3V9DPvvsMzEMCsaPH4+ysjKjfZ11vb9PPvkEXbp0wfjx47Fp0ya0a9cO3bp1w1dffSXr48j1nhP+dq5ZswbffPMNvvvuO/j5+eGpp55CSUmJon9byTqsEBKRbIwOvMrKnCYQ1tTUQKfTiQEI0K+wmau8vBw//vgj8vLyEBISgo4dO8LLy8vi9tijy6grzjLq7GMIPT094e3tbdbvyB0rhM7EGStFwnefqUC4ePFiDB8+HF5eXggMDERhYSGqqqrEGcvleFxbKoTt27fHv/71L1RWVopdX8114cIFvPfee8jOzsbUqVMRGxuLI0eOYMGCBRY/Fzk563p/7777Lg4ePIji4mJ07twZp0+fho+PDwYOHIiRI0fK9jhyvOdWrlyJdevW4b777sPVq1fx5JNPwt/fH+PGjcNLL72EoUOHIi8vT7Y2k2MwEBKRbKqqqqCSbnCiCqFhAAIsH1SfnJyMNWvWoFu3bggMDERBQQGysrLw8ssvY/z48Ra1R+4uo64+y6gzB0IvLy+TB/SGWCFU1meffWa0bfz48RZ/NuXUUIWwT58+2LdvH0pLS1FQUIDg4GBxkihb2TLLqLBv586dUV5ejp9//hkdOnSw6PH9/f0xd+5cFBcXY+XKlVi+fDkKCgosfRqyE9b7i46OFtf7A35/zkrx9fWFn58f/Pz8MGDAALGKJ/ekMnK857Zu3Yrs7GyUlJQgKioKqampaNu2Lfr06YP9+/ejWbNmmDFjhqztJvtjICQi2VRVVUHvPLITVQilB0jWhpC1a9fiwIEDestOVFVVoV+/fooEQlsmlVFyYXppxcFVAiErhGSNhgKhwNfXF76+vrI+rhwVQmE25cLCQqvbERAQgHnz5qGoqMgp1qZz1vX+OnfuLLZLmGywoqICoaGhdnk8W95zvr6+UKlU8Pf3x+TJk3H//fcD+P1906FDB6SkpMjWVnIMjiEkItlUVVXBW7rBiQKh9Oy3tEJoCV9fX6SlpYmXdTod0tLSrDqrr/SkMkpWCKWBUAjXSh+QmWJrl1FneN+TsswJhPZQVVUFlUolfr7MGatrWFUUAoMcS08EBgaaXLNSDpaMv9u2bZtRNdAZ1vtbsWKFUbu8vLxMVr2VNnToUPG98s477wCo/RtmaRWZnAsrhEQkm6qqKuiNpnPyLqOWhqDk5GQsXrwY8+bNQ3V1NTQaDR555BGrlo8RDhTNrT6Z4qrLTrhihZCTyriOvLw8cYxvSEiIom1RMhBKuxuaM1bX1LITgOkZUp2JHOPv7Lnen7M7fvw4unTpYvb+c+bMMdrm5eXFdbRdnPt+AohIdkaB0AkrhNIuo5a2KzIyEitWrBAvf/755zhw4AAiIyMtbk9lZSU8PDzg4+Nj9cGirbOMSsfxMRAa46QyrmXPnj1YsGABwsLCxDG++fn5WLhwIQYMGKBIm4T3gKn3zyeffIJFixahQ4cOGDRoEJKSkhAYGIj58+fbPJGI9GQRYF2XUTkqhEI4/9///odBgwbZZW06R42/awzef/99vcs6nQ5r1qzBlClT6l1n15C91pMkZfHTQkSyceYKoXBA5u3tLU6JbWsISUhIwNWrV/Hqq68aTXt+N0IosqVCaNhl1JLnIw2TzhAInbnLqLmTytTU1IiVGFYIHW/BggVISUnRCx1FRUUYOnSo4oHQ1PvHnjNLGs6gbEsgtKZCKA3n/v7++Pe//w1fX1/s2LFD9t+Fo8ff2YtcM1g35J///CdatmyJMWPGQKWqnQLOw8MDTZo0Mbm/I9eTJGVxDCERycaZK4TCAZmXl5d4wGNrCGrRogUA4PLlyxbfVo5AKK0CWDrLqGEoc3Qg9AGAHTtcYtkJTirjGjw8PHDjxg29bTdu3NCbBMrRGgqEQmUrIiJCrGx5e3vLUtky7DJqTSDUaDTw9PS0qkIohPMvv/wSH3zwAYDaYGmPZSfkGH8XFxcnd7MskpycjP79+2PTpk1IS0vDhg0b0L9/f6uGIzTk5MmTGD9+PL788kt4eXkhPj4e99xzDyZMmGByf0euJ0nKYoWQiGRTXV3tEhVC4eDM1nYJZ29v375t8W3lCISGk7NYGgiF9ltaXbSFTqdDdXU17j19Gnj1VXh99x0A5w2EarXaqi6jGo3G6cdeNTYffvghZsyYgZycHOh0OqhUKjRr1gwffvihYm1qKBDas7JlSyCUhitfX1+r3sdCOA8ICND77CgZzgFgzJgxRtt0Oh2ys7MVaM3v5JzBuiEqlQpjx47FM888gy1btmDkyJG4efNmvftbs57kuHHjsGXLFtnaTI7BQEhEsnHmWUalFULhoMjWECKEseLiYotvK1cglIY6SwJhRUWFIhVC4QDZu+49oak72HTWQGjpOoTC74MVQseLiYnB9u3bxcu//PIL/P39rRrjKwfh5AdgOhBKxyML5JpZ0tpA6OHhoRdK/Pz8rKoQSsO59LkrGc4BIDMzE3v37tV7jjqdDvHx8Qq26vcZrPv37y+2ydoZrM3h4eGB+Ph4jBs3Djk5OfXu19B6krNnzzbaX6fTIT093S5tJvtiICQi2VRVVcFPrQaqqwFfX6etEAr/t7VdQqCytkJoyYQlplRUVFgdCJXqMioGwrrH09QdbDrbGELhYN7c39Hx48dx9OhReHl5IT09XXzfT5o0CevXr3dQq0mg0+nQpk0btG7dGufPn1ekDdLvFyVmGbVmUhnD7qrWVgil4fzChQu49957xe2OkpOTY3QyYNasWQgICBDXWBS88sorDmuXKXLOYG0JDw8PsyaIMbWe5JYtW7B161ajfb+r6/VBroWBkIhkU1VVBV8hEAYGOlWFUDig9/Lykm1mSyHcKFUhlFb5bOkyaun4Q1sIr5mm7vE86wKhs1UIpWuymfM7SkhIQJs2bRAWFobly5fj119/haenp2JhxN0Jv68LFy4o1gbhvW7LTMLWsrZCKFcglLL2+81WEyZMwK5du/S21TeT5tNPP+2IJtXLcAZrZyVdT/L5559HTEwMwsPD9fapbzwiOTcGQiKZuXP/eTEQAoBWK1YInWEslT0mlRHu05oKYVVVlaxdRoVQJ53psiFKdxn1cvIuo9IJNszpMqpSqeDl5QWtVovNmzeja9euuHDhAtq3b++I5pKBsrIy8f/FxcV2We7gboT3emBgoEXdLk1Vtixl7SyjhpOzuEIgNLXgvU6nw9mzZ+36uK5KrtlM33zzTZPbExISbG0iKYCBkMhK7D9vrKqqCj7SQFhWBk9/f6eqEHp7e1u9DqEhISQoUSHU6XR63T6Ff6urq80KhEp3GdXUPZ7aSSuE0kBoTpfR8PBwnD9/Xjyw6tmzJ27evInMzEy7t5Vqffzxx1i6dCk0Go3elPijRo3C3r17Hd4e4b0eHR1t0UzEpipblrKmQig9wSSw5YSVQHoyRY6wa6i4uBjZ2dlG1c1BgwbJ+jiNQXJyMtasWYNu3bqJa3VmZWXh5ZdflnXyGnI9DIREVmL/eWNVVVXwFcKIUCHUap0iENqjQihUIZSYZVSstEkmMQF+rzyac3tpddHhgVAIXE46htDSCuFnn32GRx55RHztPT09ERAQgF9//dXubaVaa9asQVZWFjQaDRYuXChuF9YddTThvd6yZUscO3ZM7yQMYN/KlmEgFE4SNfQ5k/YaEMgRCKW3lyPsGkpKSkJxcTGCg4P1ts+bN8/s+1Cqilyf3377DUFBQfD395f1fi2dzTQ1NRXz5s2DWq1GQkICnnnmGQDAsGHDsHPnTlnbRsriOoREVhL6z/ft21fvx537z1dVVcFH+EPjpGMI7VEhlHZPM5e9AqG5M1sq3WVUCITqO3cAOH+FsKqq6q6hVRqy3XVh+uLiYsUqMx4eHuJ7ety4ceL2hqbVtydpIARgNJtjcXEx0tPTkZGRIf5kZmaiW7duNj+2NRVC6SRVAmsnverevbv4M2nSJHF7RkaGxfd1N6NHjzYKgwDQt29fo20ff/wxOnXqhIcffhiLFy8Wt48aNUr2dtninnvuEWcclZMwm6ngbrOZvvHGG/j222+xe/duZGRkYOrUqaipqRG7QKelpWHgwIGYPn06du3ahfbt26Nfv344dOiQ7G0n+2KFkMhK7D9vrKKiQr/L6MWLThcI5ZxURq5AaM2EE8LzMewyau5rbdhlVKfTiWu32ZNwkOxZ96+zBkLDSWWA2rZ7e3vXextpyHaHZSdMdZvfsWMHTp8+bVQNc4Rhw4bh4sWLaNWqld5nKiIiwqHtEAi//06dOkGlUiElJQWTJ08Wr5ejslUfa2YZra/LqDXfT9JunLt27cLgwYMB1K69qCRpFfm9997DU089hY8//lixKnJD7NHd3NLZTNVqNYKCggAAy5Ytw8aNGzFq1Cjcvn0b77//PpYuXYo///nPKCkpwZ/+9CdERkZi2LBhmDt3Lr7//nvZ20/2w0BIRLIpLS1FE+GsdGCgUy07Yc9JZWwNhNaOQQRMdxk19/bSLqOA8UQU9iAGwrp2erjAGELhdSovL28wEEpfU2d539uTqW7zKSkpAIAbN26YNZ29nF577TXx/9IQk5yc7NB2CISTNvfffz+6dOmCzMxMvUA4evRok7czVdmy5rGl4c7cCqGpLqPWTCojDbvS34U9TpgeP34c8+fPh0ajwaxZs9CrVy8AMLnki7SKnJCQgAceeABDhw5FXl6e7O1yRpbOZtq5c2fxJAsATJw4ES1btsTLL7+Mf/7znygqKkLz5s2hUqnQvHlzeHp6IiIiwmhyInJ+7DJKRLIpLS2Fn0YDeHoCfn5O12VUpVLB09OzUXQZNawQ2tplFHBMKBPap65rv7pu/KWzjSGUvr5CCGzo95SamorLly9jy5Yt2LZtm9hldNiwYQ5prxJMdZu/5557ABh3j3Q0aQi5U1eFdjRpN3WtVmvViR9rGZ68sLZCaG2XUWk3Tuntu3TpYvF93U1CQgJWrFiB5cuXY/ny5Vi2bBkAmFzyRagiCwYOHIj3338fzZs3l71djcGqVavEMCjo378/Tp8+jZMnT+L+++/HF198AS8vL5w8eRL33HMPxo4d63Tf53R3DIREJJvS0lL4eXoCXl6Aj4/TVQi9vLzEUAg4T4XQli6j0jFrgPVdRgEHB8K6fz3qAqGzVQilB/PSCmF93njjDQQFBeHZZ59FRkYGUlJSUFFRYdFyA67mzTffNFqDrEmTJgCcKxBaM+mTnG3w8vJCQECAQ9thTSCsr0Jo6xqK0kBojyWIVCoV2rRpg1atWuHTTz9FUVERJk+ebPK78LXXXjMKOB06dBAr22Q+lUqFQ4cO4T//+Q+qqqowcuRI3Lx5E56enkhNTVW6eWQhBkIimcXFxSndBMWUlpbCT60GvL0BX1+nqxAKB0iNoUJory6j9mZYIVQ5aSCUHsybUyFUq9WoqqpCkyZNsGzZMkRHR6OwsPCuIcBwUoYuXbq49KQMfn5+AIDr168r2g5nqxAGBAQ4tEJobZdReyw7Ib29Nd+VdxMeHq5X9UtMTETfvn1ddskXV6uueXh4ID4+Hl999RW++OILALD70AOSH39jRFYaM2aM0TadTofs7GwFWuMcSkpK4OukFULpwY4cAaiqqgrV1dVWn0GvrKyEj4+Pol1GAwMDASgTCD3q2u8KFULh/w39njp37ozjx4+Lv4+ePXtix44ddw0Bc+bMwaeffoqCggLExcUhMzMTfn5+ePLJJ11yUgbhgN+R4ccUZ6wQ1veaGM4IKtdjC9VaoLaao1KpHNZlVMregfCzzz4z2jZ+/HiXXVdP+nrZa6IvW99zptaT9PDwcPi4YZIPAyGRlTIzM7F371699Xx0Oh3i4+MVbJWySktLa9ch9PKqrRCWl8OzrnKiNGkXKkurafXdHwAEBQVZXSEMCAiQrUJoS5dROV4PcwnP1bBC6GxnxaUH8+Z0GV21ahXWrVtn9Ps4ffp0g4/j4+OD6OhoREdHIyYmRhyD56qTMgjhq6ioSNF2SD+TSgVC6UmFJk2a6AXC7OxszJkzBwUFBeKMtGFhYUhKSkKnTp1sfuzy8nKEhobqbbvb8jL26jIqvb09uow2NtLXq7y8vN4lISwl53vOHutJkrLYZdTAokWL0K1bNwQEBCA8PBxPPPEEzpw5o7ePTqdDYmIioqKi4Ovri379+uHHH3/U26e8vBxTp05FWFgY/P39MXLkSFy5ckVvn/z8fMTHx0Or1UKr1SI+Ph4FBQX2fookk1mzZiEgIAAtW7YUf1q1aoVXXnlF6aYpprS0tHYdQqFCCMAHjgkadyN3hVD4o63Vam3qMmrtGfj6KoTWdBm1tLpoC+G1EiqEqrrg4GwVQuH36+3tbVaXUcA4ZJvzekZGRorPfe/evQBg1pqHzkoIX85UIVSqy2hDFcIpU6Zg7dq1SE9Px759+3Do0CH885//xJQpU2R7bMMZce8WCOtbdsLZK4SNjb0CtDXvOel6ksJPt27dxPUkt2zZgvbt22PgwIFYuHAh7r//fnTr1g1fffWVbO0mx2CF0EBaWhr+8pe/oFu3bqiqqsLrr7+OuLg4/PTTT/D39wcAvP322+J6LPfffz/+8Y9/YNCgQThz5gwCAgIAANOmTcOOHTuwbds2hIaGYsaMGRg+fDiOHTsmHoyOHTsWV65cEQczv/DCC4iPj8eOHTuUefJkkfq+RJ9++mkHt8R5GFUI4ZyBUI5JZYQ/2oGBgVaNl5JrllE5FqYX/nVEIBReN4/y8tqxpnUHyc4WCKWvr/AaN/R7qq6uRk1Njd7vo7q6+q5dvrZt22a0zVUmZTDVbf5///sfAOcJhGq12ikqhIaBsLq6GlqtVm//wMBA2T4HpsYDmlMhNAyRcnUZFYYOMBDenTQQyvl6WfOek64nKTVo0CAkJydjypQpiI+Ph7e3N95++2107NgRL730EpYuXYqRI0fK1nayPwZCA4YzTW3YsAHh4eE4duwY+vTpA51OhxUrVuD111/Hk08+CQDYtGkTIiIisHXrVrz44osoLCzE+vXrkZycjIEDBwIANm/ejOjoaOzevRuDBw/GqVOnkJKSgsOHD6NHjx4AgHXr1iE2NhZnzpxBu3btHPvEiWRQWloKb41Gv0Ko0znFAt3SM+ZyTCojrRD++uuvFt9e7mUnLO0yKu2KJF143d6EAxxVWRkQHg7U9ZxwtkAorRAKr3VDXeeE1+63337D7t278dtvvwGwfm1HV5iUwVS3+bi4OOTn5ztFINRoNNDpdNi/f78slbe0tDS8+eabePDBBzFkyBDMmTMHWq0WixYtQmxsrMk2ALWfL19fX72D+8WLF2P48OHw8vJCYGAgCgsLUVVVhSVLltjcTuGxLQ13FRUVeuMOhbbLMctoYGAg8vLy8M0332DUqFGyvr9TU1Mxb948qNVqJCQk4JlnngFQu8TEzp07ZXscR7FXhdCa95x0PUmpefPm4fXXX0fXrl3x/vvvA6hde3Tjxo3o16+fUddjcn7O/xdHYYWFhQCAkJAQAMCFCxeQk5OjN5Okt7c3+vbti/T0dLz44os4duwYKisr9faJiopCx44dkZ6ejsGDB+PQoUPQarViGARqJyHQarVIT0+vNxCWl5frfVkoPU6DSKq0tLT2IESjESuEviqVUwRCe3YZtXZSGVsCofCYvnWvs6VdRsvKysQDRiUqhCgrA1q0gOryZWjVapurEHKztEL48ccfAwDS09NRUVGBI0eOiNuff/55O7dWGUK3+bCwMHGb0NXVGQKht7c3bt++jW3btuHf//63zfdp6QRA0veQt7c3qqurUV1dDbVajT59+mDfvn0oLS1FQUEBgoODZRsrBpgOhD4+Pg1WnOzVZbS8vBwBAQHIy8vDv/71L7Rr1w6zZ8+26T6l3njjDXz77bfw8vLCvHnzcPDgQaxcuVJc8uXq1asuNdmJvQKhNe+50aNHm9zet29f+Pr6ihVGtVqNFStWYNSoUfDw8DAav0rOj2MIG6DT6TB9+nQ8+uij6NixI4Df11aKiIjQ2zciIkK8LicnB15eXkZnVAz3MVy/CaidPrmh9ZsWLVokjjnUarWIjo62/gmSzcrLy5GVlYXdu3cjKyvL6Q5qHa2kpATeQG1XwLo/NL64+9grR7DXpDK2jCH09PS0+oBLeEzhD7qlXUalFUJHB0Jvb2+oSktrK4QAwmSoQshNWiE0Z1KZf/3rXwCAyZMn480338SkSZMA1Pb8aKymTJmiFwaB318jpU9WGgYiOd5fwgRAnTp1EicACgkJqXcCIKFKqVKpxLYYtsPX1xfNmjWTNQwKj2MqEDYUMExNKiNXl1FpW+Reo1KtViMoKAh+fn4YOHAgPD090bNnT1y5cgU7d+7EqFGj8M0338j6mPZkry6jArnec8nJyYiOjkafPn3QrVs3tG/fHt988w06duxocuZXcm4MhA145ZVX8L///c/kmUXDMSHmTA1suI+p/e92P3PnzkVhYaH4c/ny5bs9DbKT5ORk9O/fH5s2bUJaWho2bNiA/v37Y/PmzUo3TTGlpaXwAozGEDpDIJS7Qij8odZqtaisrLT4vgwrhDqdzqrHNwyEzl4hLCsrg5+3N1BZCdSdWAvz9na6sUWG1R3pNlOE95bhe8yw4mIuV13PVPg9OsM6hN7e3li/fj0A4NatWzbfp6UTAEmDkPCvo97n5eXlRu+9u1UI61uHUI4uo9JAKKxVKZfOnTuL6xBOnDgRZ86cQYcOHZCfn4+jR4+ioKAAR48elfUx7clVZmWNjIzEihUrcPDgQTz33HPiZ8zZvsvJPOwyWo+pU6fiq6++wr59+8RpwAGI667k5OSgWbNm4vbc3FyxahgZGYmKigrk5+frVQlzc3PRq1cvcR9TfzBv3LhhVH2Uks54R8pau3YtDhw4oDd+pqqqCv369XPZ9Y9sVVpaCg1gNIZQ2lVKKdKDEpVKBQ8PD9m6jAqXLTnQqaqqEgOhru41smRcjfBH19plJ8rKyhSrEGqF77C6CmGop6dTVgjVajXUarVZXUaXLVuGbt26Yc6cOfjHP/4hVsj++c9/Nvg4jW090/LyckRGRhrNqq1EO7y9vfHAAw8AAG7evGlzt0FLJwCShjLhs+ao97mpCWKs7TJaU1Nj0/e3YdCU/s2Uw6pVq8T/X7hwAe+99x6ys7OxY8cOxMbG4siRI1iwYIGsj2lPrhIIpXJzc8X/y10BJsdghdCATqfDK6+8gv/85z/Yu3cvWrdurXd969atERkZqfcHoKKiAmlpaWLY69q1KzQajd4+165dw8mTJ8V9YmNjUVhYKE7dCwBHjhxBYWGhuA85N19fX6SlpYmXdTod0tLSZO/64yqqqqpqQ45OZ1QhBBwTNhpieMbc3GUBGro/4PdAaOlZUWmFELC8ilpWVgYvLy/x4MqaLqNKjSEMFLql1XU31DphIJQexNbX3U9KeB+sXr0ahw8fxjvvvAMARkMHDGVmZmLJkiVYunSp3k+bNm3keBoOV1ZWhpYtW6KoqEjRbqPC+1sYy2RuhXDcuHEWP1Z9J3JMVQiF91Bqaip69OiBXr166QXNYcOGWfz4plgzhtBUVdHcJVcaInyWhNdJmJvBHvz9/TF37lysXbsWe/bswZgxY1xuOS9HB0I5eiPcvHlT/P+1a9cYCl0QK4QG/vKXv2Dr1q348ssvERAQIL6ptVotfH19oVKpMG3aNCQlJaFt27Zo27YtkpKS4Ofnh7Fjx4r7Tpo0CTNmzEBoaChCQkIwc+ZMdOrUSZx1NCYmBkOGDMHkyZOxdu1aALXLTgwfPpwzjLqI5ORkLF68GPPmzUN1dTU0Gg0eeeQRt+0yKvzh8qqp0asQetd1hayoqFA0LAsz3QlsHRtjayAsLS2Fr6+vXiC0pMIorfABlnUZramp0ft9OLrLqFY46Kw7WA90wkBoOCuth4dHg+8X4fdvOMnP3V5TUxOzAHCJ9Uw//vhjLF26FBqNBmPGjMHs2bNRUVGBS5cuAQDOnj2Lrl27KtI2oUu0EAjz8vL0rjc1qYlOp0N6erpsbZAGLMNAeLeJUGyh0+n0uoQLDGc6NVRaWmr0HSQdPyu8ty0lvA6//PILRo8ejfz8fKvuxxIBAQGYN28eioqKcPr0abs/npzsNYbQnr0Rbt26hT/84Q/o06cPPvjgAy5c74IYCA2sWbMGANCvXz+97Rs2bMDEiRMB1P4hKS0txZQpU5Cfn48ePXpg165d4hqEALB8+XJ4enpizJgxKC0txYABA7Bx40a9LhdbtmxBQkKCeHZm5MiRWL16tX2fIMlG6D8vKi2tnV3TBaaLtwchEGqqq2vDYN3Bg3fd+BqlxxEanjG/29lyc+4P0O8yagnDQGjp7Q0DoSVdRoXfhVJdRgOECmHd7M0Bnp6442TjTgy7ud1t8h/h/S8cNAuv7d3e9668numaNWuQlZUFjUaD9957D3/84x8B1K5tlp+fj3379ikWCIXPu3ASyLBauWXLFmzdutXodt99951sbZB+Rg0DoTARCgBxXeNRo0bprZlo7eyY5eXlqKmpMVpC4m7feSUlJUahz9oeDFLCZ6lFixZo1qyZXSuEUsXFxQgMDET37t0d8nhysVeF0NQyMTqdDvHx8Vbfp/DanjlzBmq1GufPn0dOTo7LdHWl37HLqAGdTmfyRwiDQO34o8TERFy7dg1lZWVIS0sTZyEV+Pj4YNWqVbh16xZKSkqwY8cOoxlBQ0JCsHnzZrFrzebNm8U/EOSC/PyAUaOUboVihD8AnlVVtWFQCIR14/SUDoSGB/jeNk5kYkuFUKfTiQdf1h5wSWcJBSzrMiq0VakuowHCSZO66k2Ah4fTVQgNKyze3t4NttEwEAr/ylHxcVYeHh7ieychIQHPPvssgNrnfN999+HChQuKtU0IhJ6envD19TVaBuP5559HTEwM+vbtq/czYcKEeu/T0m6ewkkf4PcTBMJnTzoRClA7w3ivXr1w7do1fPPNNzbNjnnnzh0Atd0npcwJhIYVQrm6jAr34+fnJ3tY+Pjjj9GpUyc8/PDDWLx4MXD+PHDoEEa56N9jewVCoTdCy5YtxZ9WrVrZ1BuhuLgY6enpuO+++/DMM8/gvffeAwA8+OCDcjWbHISBkEhOLjS1tdyEA1/PqqraCqGXF+DvD5+67c4QCOWsEArPVziJY8l9CbOK+vn52TSG0NZAqFSXUXEMYWAgoNE4ZSAsKSnRO6C2tEIoHFg35kA4bNgwvVAjLM7etGlTBAcHKzp2S3rCJCAgwKhC+Oabb5pc+ikhIaHe+xS6ee7evRsZGRmYOnUqampq6v0dl5aW1lshXLVqFVq1aiXuO3HiROzfvx8vvPACMjMzbZodU6gyWhIIhZNUDXUZtZb0ZJyvr6/sgVCoVGdlZcHPzw9P3XcfSnr1snjmZmchXWP2zJkzOHfunCz3a2qZGMC23gjCwvU3b95EaGioOPFiQydWyDkxEBLJwUX/8MhJ+COvrqgQq4MIC4NP3dlqpQOh4YQJPj4+Nh3klJSUwMfHRzyAsiQQSsODnIFQpVKZdT/SNfYAxwbC0tJSNBEqhD4+gJ8fmrhAILS0Qii8L8w5+JWuZ5qcnIxhw4bZNAOuo7z22mt6oUb4DCxevBjBwcH1jhVLS0vDwIEDMX36dOzatQtdunRBv379cOjQIdnaJu0iHhAQYFQhtIZ0vbtly5aha9euRt08pcrKysT3w90mJrpw4QIee+wxnD59GnFxcXjjjTfQtm1bq2bHFCqEprqM1vd+FNpVXyC0dby1PQOhYaX6JQBDoT/RiSst4yKsX+nn54cVK1Y4dZfX0aNHIzg4GDdv3kRYWJg4+76tM/qS47nnYCciudVzQOBO9AKhEFTCwuBddyCmdCCUdt8CbO8yKkzAYNgVzNzbArUHR9Z2yTLs0qhSqcw+2FKyQnjnzp3fJ5Xx9QX8/OCnUjllIJQeHFtaITS3y2hycjLWrFmDbt26ITAwECtXrkRxcTE++OAD/OUvf7H1aTiU8Dv08fFBcHAwfvnlF5P7zZkzB59++ikKCgoQFxeHzMxM+Pn54cknn8T3338vW1uEcf2BgYGyzHgqdPMUQvDEiRPRsmVLvPzyyyb3l37n3C0QCrNjFhcXY+XKlVi+fLnVFdaGKoT1fT8I71PDMYRyzjIq3L/cVXOhUt2qVStx4hRf1C7jNWbMGKddxqW+MaLCyQzhe9kRk/DYoqSkBKWlpQgNDRWXTeMso66HgZBIDtIZ7MrKfg9EbkQ40PAwqBB61x2IKR0Ii4uL9SZ+kqPLqByBUK5JZYT7syQQKlEhvH37tlEg9Ie8s+nJwdJAaBiyza0QGq5n+tZbbwEA/vWvf7lcIJS+r4KCguoNND4+PoiOjkZ0dDRiYmLEtX7lXKe0vLxc7B4nV4VQut6doH///vXOYllaWipW6Sz5nrB1dsz6xhA2adJEvM6QENLs1WVU+K6xR4XwtddeE/+fmZmJvajr/rZjB/Df/0I3fjzi68a3KsVwLKhOp0NiYiIWLlyIxx9/XO86IRDaY2IWnU4HlUoFoDa0+fr6iuPg72bcuHHYsmWL0XZhSZewsDBoNBqEhYXh2rVrsrRXrvuhu2MgJJKDNBAWFrplIBRmjvMoL9cLhJozZwA4ZyC0tcuoNBBacl/Ss/HmrHFnyp07d4wO3sw92BKqJcIMjI6uEDYRDkB8fAB/f/iVlztdhdDw9TWny6hGoxFDjbkVQmE90/79+wOo7f5WXV0t++LdjiANIg11GY2MjBQXOt+7dy+A2tlxa+pmJJaDdPxeYGCgUSD85JNPsGjRInTo0AGDBg1CUlISAgMDMX/+fIwcOVK2NjRt2hSAcSA0XLLjb3/7GwBg1KhR2Lt3r02zY9bXZbShSundAqEt39/S3gz2CIRSs6ZORcCMGQgDgKlTgSNHgCefVHwZl4kTJ+KRRx5Bz549xbGNwhhRw0AovF7S2VilQc5aK1euxLp163Dfffehe/fu+OKLL+Dv749x48Zh8uTJ4n6WLskiBEJhiZdmzZpZFeRMheb58+dbfD9kHQZCIjlIA2FBAVDXbcKdiNUAaYW0aVN4HjkCQNlAWFVVhdLSUr1AaGuXUcNAaMlBjrCvtRVGoDbgGs5KbO7BlnCgIdxepVJBrVY7LhDWLTchjCH0Ly+vdxyWUkpKSvQmYDCny6i0u51Go4Gnp+ddfx+G65kKoWjatGm2PQEFCEHEz88PQUFB9QZC6QydAk9PT6SmpsrWlqKiIrHyERAQYHSA+u677+LgwYMoLi5G586dcfr0afj4+GDgwIGyBkLh8y38KwQvwyU7nho5Eh8/8ogsE6HU12VUq9XWu+SDPbuMSsfj2mOWUakpzzwDzJhRe6Hubw9++03xZVwuXLiA9957D9nZ2Zg6dSpiY2Nx5MgRk2NEhQqhdAkhU2tEWmrr1q3Izs5GSUkJ2rVrh02bNgEAEhMT9QKhpUuyCGM1he/LZs2aWdVl1FRodtQSJcRASCQPwwqhGyooKEBYQABUxcV6FULPuqCoZCAUqgOGFcL6uk+ZQ64uo8IBmDWB0HApG0sDobSrkEajcViX0SZqde16nZ6egJ8fAoqKxLPMzsKwy6i3t7dFgRCffIKXPD3vWiE0XM9U6NZnazVACcJzFSqEpaWlRut/NsRTxjVcCwsLxfd3YGAgfv75Z73rfX194efnBz8/PwwYMEDc925tKC8vx48//oi8vDyEhISgY8eOepNVSUknlVGpVPDz8xNfI8OJUB7YsQND33gDuffdh3PnziEkJAQhwokTC+Xn50OtVhsFwsDAQFRUVJj8ndTXzVSOLqPSaru9K4QwVQH97Tf7PZ6ZLBkjaur3c/v2bZsDoa+vL1QqFfz9/fHMM89g0KBB0Ol0eOyxx/T2E5ZkMZyFt76ZQw0rhJGRkVbNjGoqNB88eBDnz5+3+L7Icq7XJ4XIGTEQIj8/H82EipUkEHrk50MF2w4obFVfILS1y6ivry/UajW8vLwsmihBWkmxtkJYVFSk93yA2j/45txPQUEBNBqN0cL2jgjtd+7cgZ+Hx+/vET8/+Ht46M0I6AxMjSFs6P1y584d/YPpp5/GqrIyiw9+hdlF86TfKS7CsMsoAMWWnigsLBS7RJtadqJz587ia71582YAtSethINaU5KTk9G/f39s2rQJaWlp2LBhA/r37y/e3pDhSQJpIDRcskN15QqKUHtwvXDhQjz77LN49NFHsWfPHoufe05ODiIiIoy6HQuh11S30Rs3bgCA2MVVIEeXUelnydfXF5WVlXrVL1mZGivqBIFQEBAQgHnz5uGjjz7SOxEkVV8gtNXQoUPF9/zSpUvFKpzhiUVLl2S5efMmNBqN+PfI2i6jQmheu3Yt9uzZgzFjxrBC6ECsEBLJIS+vttpRVVXbZdQNFRQUoKkQUCSzjKqqq6EFbKrG2cpUIJSryyigf6BnDmmFTvjDb02F0DAQNjSLoOHja7VavSqU3c/c1zEKhP7+8NPpcOfOHeMqm4IMxxDercvorVu3fq/oSH6XlkxmUllZKb4Prl+/bmGLlSd8xn19fcXuyPn5+eLMg45SWVmJkpISvQqh4e/B1MG4l5cXPvvss3rv13ACIKC2O3q/fv0wfvx4o/0N38/+/v7iaySdCAUAFly+jH0AAtauBepmyiwqKsLQoUMxYMCAhp+wgevXr4vrwUkJAbmwsNAo+F2/fh0eHh5GgViuLqPSQAjAqAu/bExVCPPykJOTY/I1uXHjhtFr4QgNjREVAuGhQ4dw5MgRTJs2TZZAOGfOHPH/0sD2rI0T7ty6dQuhoaHi3xOhy6i14x6F0FxUVIRjx47hD3/4g03tI/OwQkgkh7w8oGXL2v+76Rmt/Px8RAiTGAgH0nVjCsJg+qy0o5gKhLZOfy4NDNYEQg8PDzRp0gQajQYqlUqWQGhJl1HDmeVMHTTLrbKyEhUVFfCvqQEk7xWfunFzztRt1PD1vdukMsJBEQAgN1fcfruu8mLuYwquXr1qQWudg1A19/DwsKpCKNdaccLrKB1DKMd7W5gASLBw4UJMmjTJaLZfgeFJhYa+JzwA3AD0qlk3btywanIhoUJoSHg9TFVdcnNz0bRpU6PHMxz7aKnKykpUVlaKr4NQRbfbCUJTv+fCQpPdHc+cOYPw8HB89dVX9mmLlYRA2LNnTwwaNAiAPBVCqRuS76VLly7ZdF+5ubl6462bNWuG0tJSm3s5BAYGomvXrjbdB5mPFUIiOeTlAU2bAjduuG0gzM3NRZe6M9AQwkbdH4mWfn6Kdv3IrTtAl54JtjUA5eXloV27dgCsC4TSCp25lT2BTqdDUVGReMZfYEsglOuguSHCQUiT2ges3ejnB++67mM3b94UlyBQkk6nM3qN7tYt+NatW7+3XRIIPSwIdsJJE39/f5cMhNIAJARCUxPLCGvFScm5VpzhGNmAgADcuXNHnNnUWtIJgCorK5GZmQnA9NT4Op0OxcXFep/Rhr4nPtRqMePOHeQsXQrd//0fVCoVmjVrhg8//NDidubk5OCBBx4w2i5UyExN+JGbm2uym6C3tzd8fHys7vorHVcK/F6lLC4uNlmxs1X36dP1N3h7Q/fFFzhrYgZb4f22b98+2SYSksOdO3fEGWKFf+UOhNLP5Y8//mjTfV2+fBktWrQQLz/yyCMAgIMHDzrV60oNYyAkkkNeHhASUhuE3LTL6LVr1zCiLiBBOAiqC4QtfH0VDYQ5OTnw8PAwCoS2VC2lFSFLA2FBQYFe2LB0TcSSkhLU1NSYDITmnJUtLCw0mqHUEYFQ6AYZAOhVCDV1k9k4yzjCkpISVFdX6/2O7tbF+NatW3jooYdqL0jOvntLwuHdCK9/x44dkZWVZTwu0clJZ5MU3l+mgkRmZib27t2rV43S6XSIj4+XpR2GgVD4nNy+fVvvd2rJBDGA/gRAFy9eROvWrQHAZJAqLS1FdXW13mdU2mXUUExxMbYDQN++wL//bfZzNeX69eviMiZSERERUKvVuHLlisnbmHoeQG24tzUQCicKhNfDXj1GiktKkK3RwFOtru26PWQIcOcOBpnY99SpUwAcs4h6amoq5s2bB7VajYSEBDzzzDMAaseS7ty5U2/f27dvi58fewVC4e/EwIEDsWLFCsycORPNmzcHYPmSLJcuXULPnj3Fy/feey+aNm2KEydOWBUI8/LyxM+knBNNUcP4ShPJIS8PaNGiNhC6aYUwJycHzR5+uPaCcBBUN6YqystL0S6jOTk5aNq0qV51QJiC3dpxDtIxY5ZOpW4YyCwNhEKwMjyACwwMxE8//WTW4ytRIRTa7VtT83uF0N8f6rqumM4SCE3NwtrQlP2AQZdRSSD0t6DblPAZefXVVzF27Fikp6eLXcZcgbRC6O/vD09PT5MVwlmzZiEgIECvmxkA2daKM1xnU+j6K12KIjk5GWvWrEG3bt0QGBiIjIwM/Pbbb/jb3/5mcjygIel79dq1a+LBtMBUN/V6TxxVVv7e1dHGyrBOp6t3vJxarUZUVJTJQJibm2v0HAQNrSl5N44OhEkDB6L4v/9F8LFjwLffApmZwNWrmLd0qdG+v9V1z3XE4udvvPEGvv32W3h5eWHevHk4ePAgVq5cafL9cPv2bbG3gb0rhPPmzcPu3bsxdepU/Oc//wFg+ZIsly5dwp/+9Ce9bRERERZ/n+/ZswcLFixAWFgYAgMDUVBQ4DR/E9wBAyGRHPLygM6dgaAgtwyEFRUVuHXrFsKFsTRCINRogKAgNNNocFTB18XUJAuBgYGoqqrSmxreXGVlZSgpKREDgKXjEW2tEArByvA5hYeH640Naejxhe6ugsDAQLufKRe67vpUVoonC+DnB1VpKby9vc1quyOYCoQNHRTrdDrjMYQBAbhdVQWtBe97IUTExsbC09MT586dc6lAKH1fq1Sqel+zKVOmmLy9XGvFFRYWQgXgvmHDgIQEBNZ1YZOe8DCcIEY4KfTBBx+YFQil79XffvvNKEwZhlKgNhSZrBDWvUYnAXQ4cACqCxeAuuqjpYqLi1FWVlZvd8x77rkHly9fNtqem5uLLl26mLyNLYFQOqMyYP9AOFo4MduqFfDii8DPPwNFRejbt6/RvsL3kSMqhGq1WjwJuGzZMmzcuBGjRo0yGfRu374tBkEvLy9oNBq7VAi1Wq34umzfvh1lZWXw8fGxaEmWqqoq5OXlGY1ZDQsLs3hM+IIFC5CSkqJ3EuXKlStGs6CSfXBSGSI5uHmXUSGghHl51c62Kg1YTZsi0sNDsennAZg8Y27LgYnhukuWdhm9du2aXnssDYTCAYzhH+Hw8HDk5ubedXFrpSqEV65cQXBwMNQlJXpdRlV1i8A7SyAU3hPmBsLbt2+jsrJSv0IYHo5b0dFoX1Rk9mLjwuOGhISgdevWOHv2rA3PwvHy8/PFsYNAbbdRJT73hYWFCAPg+csvwKuv6lUIBdIJYqQzaJq7ZqJhhdCQ8FjSg9v6Xo/bdRW7ZQCO19Rg93PPISsry6qZPYWw16xZM5PX33PPPfVWCOvrMmrL79Fw/La9AyGKin4/IQk0+DfZkYGwc+fOesuMTJw4EdOnTzf5nSsNhEBtlVDuQHjz5k2xh8vXX38NAPj111/Ftpq7JIvQ9dSw2h8WFmZxdc/Dw8PobwArhI7DQEhkK51OPxC6YYVQOCAKVqtr/xhLu2A2a4bmHh4mD0IcRe5AKDxf4aCr3jP/9bhy5Yre5CmWTiqTk5MDtVpt9Ac6PDwclZWVdx2vaSoQarVaq6sA5hLHXRUX/95lNCAAqKjAfffc4zQLEAsHOdJuvUFBQbh9+7bJ9dMMTxDgxg2gaVPceeghdKupMft1FQ4OmzRpghYtWij6mbGGYSC0pbJki8LCQrSSVDOkE5kIkpOT8eWXX6J379560/8vNdG10JQbN26IVa9ly5YZzUArPJa0QljfSY/rP/2EZADbACxr3hxp//vfXdc4rM/JkycBAB06dDB5valAWFJSglu3btUbIm05WWP4Xent7Q0vew4hKC7G9dLS36ug4eHAzZtAXcCREmZWzcvLs/vJsFWrVqFVq1Z62/r374/Tp08b7VtcXGz3QJiTkyP+Tjp16gSgdmF4oHZJFsPJl+pbksXou6+ONYHwww8/xIwZMxAbG4uePXsiNjYW8+fPt+g+yHoMhES2un27dvB6WJjbdhkVzrBqq6trXwOp5s0RWVMjnn1UgqlAKPwBy7Vg0g+BcEAlhDqtVmv2AY5Op/s9ECYmAsuX33V8mqELFy6gZcuWRlPEC8/xtwYWYi4vL8etW7f0DtwBoEWLFrh8+bJ4ZtgeLl68WHtQVFT0eyCsO0vdq317ZGVl2e2xLfHrr79CrVbrHSA3tIyC0UFRbi7QtCk0Dz2EpgCu1h2k301RURGaNGkCDw8Pqxd3VpKtgVCuSk1RURHuk/RSCNBoAOgHQmGCmIMHD+K9994Tt1fWTXB0Nzdu3EB4eDg8PDywb98+bN++Xe96odeE9EC5adOmJoNVwfnzWAvgHn9//OG++/Bmfj5WLV6MtLQ0fPDBB2a1R/C///0PzZs3N1nNAX7vMiqtWp85cwYA0L59+wZvY41r165Bq9XqdcsPCgqyeUmC+tQUFODozz//3iU+MrI2DJrovnjjxg089thjAGqDu/A6KM0RFcJr166J32/NmzeHRqOx6oRcfYEwIiKiwb9DpsTExGD79u04dOgQDh8+jEOHDmHLli0Wt4msw0BIZCthAemICLftMnrt2jV4eHjAt7AQiIrSvzIqCsFlZbhx44Yii9PXN8nCfffdBwBWdcu7fPkyvLy8xG4ylpwNzc/PR2lpKVo2bQosXAhMn46QkBCLDpDOnTsntl9KONN77Nixem+7a9culJWVYciQIXrbW7dujYqKCrsud3Du3Dnc27p1bWASuqfVBcIH77kHZ8+eRY2J6eEd7fz582jZsqXemBmhe5WpcTHC794wEAbVVZ7yDh8263GLiorELoZRUVEuHwgt7Wpoaq04axQUFOBeSdfPgLqTLfWdtJF+dj///HOzHuPmzZto2rQpDtf9bn/++We964VgJn09mjZtiuLiYuNq4qVL8AXw0B/+gO0//AAA0P36K9LS0upd47A+//vf//Dggw/We/0DDzyAkpIS/PLLL+K2Tz75BEDtAbkp0dHRuHr1qsnq+N1Ig4cgIiJCDMxyK8vNRRFqZ3m9c+dObSAEAIOTDRUVFSgoKEC/fv3Ebd9//71d2mQJYVy7YSCUu4Ip/ZuoVqvRsmVLWQPhvffei+vXr9u01i85FgMhka0MA6EbVgizs7PRtm1beFy7Bhh2O4qKQpO6A7Hjx487vG25ubkoKSnRWycJqO3mGR0dbdVZ4V9//RX33HOPWKGzJBAK1cU2kvFB0U2aWDQA//Tp02jbtq3R9qCgIDzwwAPYv39/g7cNCAgwmlTGloBsjrKyMly8eBGdWrWqragL4x/rgtY9fn6oqqpyinGEFy5cEJcUEAiThpg6633u3DloNJraqq9OVzuRRZs2CKubzORGAwFd6uLFi+IECs2aNcPVq1fNHn/oDISp4gX1VQi7d+9u9NOtWzdkZGTI0o5Lly6hrZ8fULeEhGbiRPj4+NR7UH3z5k1xUpmlS5fi0KFDd32MGzduICwsDN26dUOvXr2MPjfZ2dniCRqBMEbPMAwVXbyIdQC04eHYU1yMngD6/OlP+HrbNou6jOp0Opw4ccLocaW6desGlUqFDRs2iLfZsGEDnnvuOaNu5ILo6GjUWNnLw9GBsObqVQjRLysr6/e/Rw89BBw5Iu4nfM+0adMGa9asgb+/v917KJSXlyMrKwu7d++ud4yo0C7pEkmhoaEWT9ByN7/99huiJCdv77333rsGQlOfn99++w2enp4mAyHwezdUcn4MhES2Ev6whYf/Hghd6CBODpmZmbXjcOoJhOqSEkT4+eHgwYMOb1tD3aG6dOkinuG3xNmzZ3H//feLl8PCwlBUVGTWJBBCIIySdAF6qKTE7ArhrVu3cOrUKb11n6SGDh2KnTt31ltp+/XXX9GyZUujpTbatGkDb29v2RYHN3Tu3DnodDo8IBw4CIGw7nKzuoqOM4ybu3DhgnhAIxC6B5tq308//YT777+/tqJ45Urtd0DHjlAFBaHcwwNFJsYJmXL27Fkx6Ddr1gylpaWKLtdiiaKiIty5c8eom62pQFhcXIz09HRkZGSIP5mZmejWrZssbfnll19qK4QPPQT06gVkZOARP796q5VCuFuyZAkAICUl5a6PIVQIAeD+++83qhBevHjRqIovfAedNOhCfPvcOfj5+uKjjz7CC1OmYB+A/T/9hOUffYRIScC+mzNnzuDKlSsmZ9QUhIaG4s9//jOSkpJw/fp1JCQk4Pr16w3O8NqrVy9oNBpx8hFLmAqEkZGRdpvIRXPjBoQ+Dj///HPtclCCbdvE/wpDBcLDw/HSSy/h8ccfx7lz5+zSJqB2zGr//v2xadMmpKWl1TtGVOgVIA1rcgfooqIi5OXl6Z30euCBB/BDXXX6448/RqdOnfDwww9j8eLF4j6jRo3C9OnT9U7s/vrrr4iOjjYacyh8fzrLuHC6OwZCIlv99hvg5YX/ZmQg5fBhoKamdlyhm6ioqMCJEyfQvWtX4MKF2um+per+sA158EFFAuHp06ehVqtNdrHs27cvDh8+bNSF624MA6FwdtScKuHly5fh4eGB4LqZKNG0Kdrl55t9Bjg9PR0AxLEvhkaMGIFr167V+1pnZ2cbTW4A1E4p3qFDB/zvf/8zqx2WEoJ5G6ErlBAIg4MBlQrhdQHVnOqMvZ0/f96oQujj44OwsDBcunTJaP8jR46gc+fOtRe++KJ2pt2ePQGVCrebNEGliduYcu7cObRp0wbA7weE9uzCKyehndLlF+rrMpqUlGSy2jBv3jyb26HT6XD27FlEqVRA8+bA3r2AWo0hTZqY/N0Btd3nwsPDMXv2bAwePFg8MG7Ib7/9Jna5a9u2LX7++WexmqvT6X4fLyvRqlUrBAUF6R1Q19TUQH31KsrqPg/dY2OhFxfNrJrW1NRg8ODBAKDXDdKUZ599FkBtMFu9ejUAmFzIXhAUFIS4uDiTk4rcjalAGBUVZfWYxAbduQPv0lJUN22KFi1a4NVXX0XKt98Cly4BXbsCdQvRA7+PVxVC/X333afXjVZuwjInK1euxJtvvolVq1aZHCMqfI6kr5ncgVCo9HY9dw74v/8Dbt5EbGwszp8/j+vXr2PNmjXIyspCVlYW/Pz88NRTT6GkpATFxcVYvnw5Hn74YVy/fh2ffPIJzp49a9T7Bqh9b/n4+FgUCOsLouQYDIREtjp3DpUtWuDx4cOxbNOm2m1uNFXysWPHUFFRgceaNQNKSwHD8StCIOzUCbt27XL45DKnT59G69atTU4n37dvX5SVlSEzM9Ps+ystLcXPP/+sN4ufcBBsTnUrIyMDDzzwADzOnQPatQO6dcO9eXkoLCw064/n9u3b0bx5c7Rs2dLk9b1790aHDh3w97//3ei67Oxs7Nu3D//v//0/k7d96KGHzDoYtsapU6cQHBwM7dWrgFoNCBU4T0/gnnsQePMmnnrqKSxfvtyuE9vczc2bN5Gfn2/yBELXrl3x3Xff6W3Ly8tDVlYWBgwYULvhq6+AQYOAugPN6vBw+JixwHJRURGuX7+uVyEEHLNothyErrTSQBgcHIzCwkKjavXo0aP1xtbV1NTgl19+abCyZUk7CgoKEPH/27vz+CiqdOHjv17S3UnIDiSEhB3CHgQUAijCMI6IvOAyKo5eGVHHBQV3nfdV0csF7vjRGZeLM66DeL1wFXcGEK8QBEEC3CgIBBBkMRtk66S39PK8f1TS0JCwDIEY83w/n/okXV3Vdbr66erzVJ06x+02rg7Z7dC5MwNOUjndvn17+P65vn37nnAF73iBQICDBw+GTxr06tWLysrK8EmdnTt3Ul1dfUIMmUwmBg0aFJEQ7tmzh3S/H2vdssOGDSOiwfdx8daYhQsXcuDAAS6++OJw76eNGTlyJHv37mXOnDnMnTuXgoICbHXNaxtz7bXXsnbt2pM2Rz/eoUOH2LdvX0SPymDc67x///4z6kjrtNQP65CZyaxZs/B6vTzyyCOQmWl8J7dvDy+6a9cu7HZ7OF67d+/OgQMHzvjk4Ok6dpgTAKmoIHfJkhPuET106BBmszliCJD6K6pN1Xx8586dRAO9nnwSbrgBsrIY0b8/YJyQM5vNRNV1xHTfffdx5513Mn78+Ijft7S0NK6//no+/PBDhgwZcsI2zGYzXbt2PaOEsLFEVJ0fmhAqdbZ276YoNhaAcGv5VtRMYuHChXTo0IEBlZVgNsPxgxtnZoLVyuQ+fUhKSmLSpEnntGnO8bZv395o73mDBg0iPj4+4of6VL799luCwWDEj+CZNI/Jzc01zsbv2gW9esGFF5J64ADRDke4c4fGlJeXs2DBAu69994TmnzWs1qt3HHHHeTm5kY0Y9uxY0e4s4lrrrmmwXUHDRrE5s2bm7xzha1btzJv3jzGjRuHaetW430fm6D36AF79vDQQw+xb9++M+5ZsSmtWLECoMHmi1dffTWrV6+OqBitWLECETESQp8P1q6FcePCz8cPGkQPk4mFCxeedLv1VyfqE8L6K4Tn5ErKOfDdd99ht9sjKv/JycmIyCl78r3//vvp0aPHP9V8+3ibNm3CCrQpLjZOuAD06kXPUIgdO3acUKkOBAJ8++234RM8Q4cO5YcffjhpmQ8dOkQwGAwnhPWfWX2nSHfeeScdOnTgiiuuOGHdwYMH8+mnn4avmOdt3EhvIKnueNKtWzfmJicz/5574Oqr4cknYc6ck75nj8fDzJkz6dOnD1988cUp9xEYnUg9/vjjPPbYYxGtHRozefJk4uPjue666077PuOnn36ahISEEzoLuqDuN6K+tUNTCW3aBEDMiBH8/ve/Z/78+Wzfvt1IKvr2hYMHjSFvOPq7UN/UsUePHuEru+fCscOcDB8+nEs6deKzG27gnTfeiFhuw4YNZGdnR3RolZWVhcvlarJeUL/55hsm1rfQGDcOysvJeO01MjIyWL9+PRMmTIjYD+PGjWP+/PmA0Xx46tSpEQnr9OnTG9xOdnb2GbX4OCERvf12rr322jN8d+qfJqpFq6qqEkCqqqqauyitUygk0ratfDJwoPTo0UNsIEGTSeRvf2vukp0XO3fuFLvdLs8884zI6NEil1zS8ILZ2SK33irLly8XQAD5+OOPz3n5tm3bJmazWV588cVGl7nyyiule/fusnHjxtN6zfvuu09iY2PF5/NFzE9OTpZhw4addN0FCxYIIB8sXiwSHS3y3HMin34qAnLXFVdIVlaWhEKhBtf1+/3Sr18/AWT//v0n3U5paalkZmYKIC+99JJkZGSE93t8fHyj6zmdTrnkkkukY8eOsnfv3pNu43SFQiH57W9/K126dBFXTY1Iz54i06ZFLjR9ukj37iIikp2dLYBMmjRJamtrm6QMZ1LWrl27ysCBAxv8HEpLSyU+Pl7S0tLk+eefl/HjxwsgOTk5xgKrV4uAyJYtR1eaPVuqbTZJbd9eioqKGt32iy++KFarNeJY3q1bN5k5c2aTvb9zacyYMTJ+/PiIecXFxWKxWOQ//uM/Trpuly5dBJAJEyZITU3NWZXjqquuksm9ehmfwxdfGDMffVQ8KSkCSG5ubsTyy5YtE0Dy8vJEROSnn34SQBYvXtzoNhYvXiyAHDx4UEREampqwt8vq9UqgDz66KMNrltYWCg9e/YUk8kky5cvl0tTU42yLl8eXubyyy8XQOb94Q8S6txZxGIRKSs74bVCoZBs3rxZbr/9dgGkoKDgTHbVGdu1a5d069ZN7Ha7XHXVVfLwww/Lnj17REQkGAyKiHEM2bRpk1xzzTUCyPPPP99gueuPT8XFxU1WvtLLLpNtIF999ZWIiOzevVvMZrPMnz9fZNMmYz+vXSuBQEAyMzPlD3/4Q3jdAwcOCCBvv/12k5WnUVVVRllAZNEikdJSETH2YXp6+gnfebfbLTExMfL00083yeZHjBgh7wwcKBITI+L3i8ybJ2I2y3PDh8uoUaNOWP7w4cPyv//7v+JwOGTWrFkiIhIIBGTPnj3y3nvvNbqdhQsXislkks2bN59Wuf7t3/5N9u3bZzxYtEjEYpEN77+vddzzRBPCFk4Twma2YYMIyHUpKTJ9+nTp3r27FCcni9x2W3OX7JzbtWuXpKSkSGpqqrheesn4cWssyZsxQyQtTaS2Vt5+++1w5enZZ5+VL774Qvx+f5OXz+12S05OjnTv3v2E5O1YO3fulLi4OImJiTllElSf0E2ZMuWE5x5++GEB5JNPPpFAIBBR+a+trZX169dLSkqKpKSkiGvNmnDlRIqKREA2PPSQAPLYY49FvK7H4wm/NnDalYLNmzeH1wEkKytLsrKy5JtvvjnpegUFBZKYmCiAXHHFFZKXlyeldRWWM1FZWSmffvqpTJ48+WjF8P33Iyvq9eqSYtm8WV577bVwmQcMGCAfffSR5Ofny48//njGZThTL774ogCyatWqRpf55ptvIvZrZmamHD582HjyoYdE2rcXqasci4jxnQDpWrf8gw8+KJWVlSIi4TjZtm2bxMfHy4QJEyK2dcMNN8jQoUOb+m02uYKCArFYLEbF+zhXXnml9O3bV77++usG1926dWv4O2WxWCQnJ0cCgcAZl6GyslLefPNNMZlMsnbyZBG7XaQ+ufzgAxGQiX36SOfOnaWkpET2798vxcXFMmbMGOnUqVPECYBevXrJ4MGDj1ZORcLP+3w+ycnJkQEDBkRsvz7BAaRPnz6NntgREfnoo4/Cyy60WMQbG3u0rCKyZs0asdvtxmslJ0sAZNGYMfLggw/K5ZdfLv/+7/8uN910kzgcjvDrXHbZZWe8z/4ZZWVlct9990nv3r3D2+7Xr5/YbDZJTU2N+G5MmjSp0f3w1VdfSVRUlPTu3Vv+67/+Szwez9kVbPlyCZhM8kSbNhHxM2nSJBk4cKB4a2ok1LatVNx4o3z88ccCRJwEDIVCMnr0aOnRo4e43e6zK8up1MVjeHI4pCQvT6ZPny6ArF+//oRVbrvtNjGZTLJ06dKz2vQ777wjgBzo2VOk/gSOzydy5ZUSMpnkIpDVq1eL3++XUCgkX331VfjzTE5ODh+7Toff75f+/ftLTk5O+ITBaas7qVP1xBNaxz1PTCKtrDvEn6H58+fz7LPPUlRURL9+/fjLX/7SaIcRx3M6nSQkJDB27Fiys7OpqakhJiaG1NRUtmzZwsiRIxk5ciT5+fkMHjyYqqoqhgwZQnV1NT/88ANxcXF4vV6KiooYNWoUKSkp7N27l/j4+PAN8yJCYWEhHTt2REQabKoWCoXC800mEx6PB4fD0Wiztl+EXbsIXHst+7//nl6hEKvXrOGFF15g4po1/EswiGnLFmjkPq+Wxuv1YrfbMZlMHDlyhPvvv593332XIQkJfDZxIu0XLoTbboNXX234BbZtg0GD4Kab4M9/ZmdJCWPHjo24PyozM5Pbb7+dadOm0bZtWzweD/Hx8ZhMpnAzr5PFk4hQVVXFkSNHWLJkCXPnzsXpdLJq1apT3pv0008/MWTIEEpKSoiLi8Pv95Oenh7uPTQnJwez2cwbdc17XC7XCffpuFwuxowZQ15eHtHR0Xg8Hi6//HLS09NZu3ZtuPnmypUrGbdypbGviouNppOZmci11zKhoIBly5ZhtVoJBAInDFj/5z//mZkzZ570vRxr3759WCwW2rdvf0bjmVVWVjJt2jQ++OCD8LyJEyeSnp5OKBQiJSWFPn36UFNTg8vlIiMjA6fTSSgUYu3atezYsSPiPqmRw4axZvp0zHffDWPHwocfwrGfZSAA/fsb85YuxZ+ZyZIlS5g+fXpEZzv9+vWjd+/edO3alcmTJ5OcnMzmzZvJzs4Od7Xv9/uJiooiGAxiNptPeQzatWsXGzdu5LnnniM/P5877riDv/71ryddb8mSJZSWlpKZmckVV1xhDD9SUmK8hxtugJdeOrpwdTW0a8fmkSMZ+uWXANjtdlJTU6msrAz3Itq1a1fy8vIium9/7733uO6665g7dy533HEHSUlJP5tjqtSN7/n111/zyCOPYLPZ2PD++yRUVsLQoeEmwe+//z6//e1vAXjwwQeZMmUKQ4YMwePxUFZWxjXXXBO+12zdunWMHTuWJ554grvuuou0tDR++OEHLBYLXbt2xe12Y7fbCQaD2Gw2du/ezdKlS8nIyODJxx/Hs2cPM/v1476ffsJ05ZVQ30zX7YaOHanOymL8N99QAFQC1H3PHnroIZ599tnwe5s2bRpvvvkmYByXBg8ezGeffcbYsWPZtGkT1dXVrFmzhpycnPqdgc/jYfYzzzA4O5srf/Urovx+cDrhf/7H6NQkKwtiYiAuDg4fpmLTJnwffEBacTG88QbcemvE/q2uruatt95ixowZfAwMB54Dvq8ru9tq5erf/Y6BF1xA3wEDyOzSBXtMjHF/rsVybLphdHR2Oo9ra414TUkxhuxwOIypvvmiyXT0e2sy8dnSpbz2+uts2rSJi0eN4nBpKWu++goT8NILL3DH7bcTjtbIFAiAfyxdypQpU8LLDL/oIuw2G5dcfDE+r5cVK1bwf//4R9Lat6fs0CF+3L6drE6dcJeVgdtNz7g4vlm0iM779zPM5eIzYOm0abzy+uvh/VgfU7W1tTwKzAM+BXZ26cLD8+cbvWLHxkJMDN/u3s2lv/kNHTIyGDNuHLWBAJOvvprExES6detGhw4dwr9FbrebI0eOkJGRgc/nIyYmhlAoRFFRUcR9tCtWrMDhcBAXF4fN58NRWEiX2bMxWyxsGDWKnu+9R7vCQj6OieEun49H/vQnZj7wwAnft++++44hQ4YQCASYMmUKhw8fZurUqWRlZVFZWUlSUhL9+vUjLy+PkpIShgwZwpo1azCbzTgcDjasX8+7b7xBtNPJ7enpPF5YCAsWQH1z3mAQyc5m+4EDXFNdTWFUFLEpKRQXF5MEdO3enVcXL27wfsEIfr8RL3Vxkpuby6WXXkpmZiYOhwOPx8OECRMwmUzceuutFBYW8tZbbzFs2DDMZjO/ueQSCv71X7l+2TIAPuvbl4nbt1NVVUV8fPzJt63OiiaEzWzx4sXcfPPNzJ8/n5EjR/K3v/2N119/ne3btzfYc9Px6hPCtUAsEMI4lXPs34bmnc4yZosFR3Q01S4XQREcMTG43G7sDgchoNbvJyEpicNlZQRFECDKbichMZHyigpsdjuJycl4a2sJARarlRqXi8Pl5cYYW8XFpKWn0yYujpR27fD5/RQVF1PjdtMmLo7MTp0wWSwcOHSIktJSho8Yga+2FjGZqKyqwuZw0CYujoqqKuzR0VijogiK4PP7SUpOJhAMYrZaqa6pwRIVRXFpKRmZmZijomjTpg3llZVkduqExWbj0I8/QjCIBYiPjSXk92Mzm/G53cTFxBCoraVjXBwlO3YQKioi7fBhUsvK+BGYDFw/Zw6PP/44q1atYsrYsXwDdLDZONCvH/leL20vuAC/w8HGrVvp3KcPfouFL3Nz6dO/P526dCE+MZHElBR+PHAALBYGDx1KIBRiQ14ebo+HHj16UFJSQkpKCt26dWPLli1YLJbwQNBVVVV07tSJkpIS2rVrR3FxMS6Xi5KSErp160ZpaSnJyclGZwgHDrBrxw6CtbUMHjgQr8tF++RkCAb57OOPGT1yJN06d2bxu++SkZZG327d2Pb11yQAqXY7sT4f3YFBdjsdfT5o0wYefxwee8y4h7Ax77xjJI1mM4wciQwYwPbKSua99RY1gOeYyXdMXPbs1Quny0VFVRX9Bgyg0unEHh2Ny+OhrKKCQ430wnj9dddxxx130Ldv38bLdMzhz+l0cuONNxIKhciv61glIT6ezE6dOHjgAFV1FfcVy5cbycdxlRtEkGCQObNnU1RYyIrly4mq+14mRkUxOCuLuydNonNxMfz97/DII0fvDXrwQXjlFWpnzGBZYSGfbtwI0dH0HzqU/J07GTx0KFN//3viExKOVsrM5qP/Hz8dU6bjy3jaj0VYt24dS95/n08++YTUukG1vV4vJiAKcJhMRIlgg/DUq3Nn0hwOygsKuPyCC+gFpO3fj6W83LgnasECI2aOt3u3cT/LTz/ByJGQnU1FcjJbCwvZXVLC+m3bMDscfLt9OwE4YbLb7XjrOoSwRUVR6/cDcNGFF1LldFJaUkLvPn3Yu3cvFRUV+GprSU5KorxuWIRhF13EmEsvZerNN2O3WIwk1e83/jY0ud1G51GHD8PWrfD550blefNmo3fLY82eDU88gQwZQlX//uQVFZG/fz8/HDpEmcuFOTqaF/7yF9JSUoxter1gtRK02Xj5tddY+sUXmIBom42kxEQkFKJtSgqJ8fG0a9sWn9fLqlWrSIiLI6tnT0xAh7Q02rVty8H9+3HV1BBltdIhLY3du3bRLiUFf20tsQ4HLqeT9NRU3NXV2CwWnBUVZHTogM/tZk9BATF2O+1TUjCFQlSVl+Ow2aiurKS6shILYAGS4+P5P8OGEbN6tVF+ux0uvBC6dSNos/Htt9+yKS8PM0bHBTF2O/7aWhDBbrUybuxYkhMTIRRi29at7C0owFoXY9a6KalNG2rdbiyhEFEmE9FWK+L3G/cLAhGDM1x9Nbz+utGDbb1//MM4/hxzEspvtWKyWLBYrUaiXTeFgkG8Xq/xnQ6FMEF4spjNWMxmowOGY5OpxlitRo+6x49fmZoKo0bBfffBJZc0unppaSk7V6+m18sv027jRiznqNOTlqoUyAP+G4i/6y7+31NPkVp/f1yd5cuXM378eABuAf5fSgrdKysxnWbnVQEgiPF7FKybgIi4MNeduDz2MQDHzIuqW+8IMBGov2P2d8ACjO8SZrNxfKxP7M3m8F8xm3FWVRk99IpgPnb7p/jfjnF8DvuXf4E33zReu15uLjJxIqa6+yxDHNfRSFSUUZ6EBOP/UChycruNjuWiooxjoc0GMTG4fT5cNTUE/H7MGCftjt13prr3HgfUn7Z8H2hrMlESHc0NbrcmhOeBJoTNbNiwYQwePJhXXnklPK9Pnz5MnjyZuXPnnnL9+oSw8vbb8ZaXk5SYSK3PR7TDQaC2lpLiYiQQoENqKkeOHDF+yKurSUlMxG6zYTGZCIVC2KOiqHE6kWAQj9tNtdNJjN1OKBTCWVFB0O8nJTkZj8tFfHw8VpOJw4cPE1t31cFqMuF1u3HY7fi8XgK1tTjsdqj7MbWazUgoRKzDgdPpDB+krHU/rBIKheeZMX5069etr0SYTvH3+HmRo+KcufofgfqpBuNAfgTYHxPD5243HwEr1qwJX9EVEaZOncqnb7/N3cBvgG5AxwZev6VxAYHYWAJt2uDo25eY7GxMo0cbvbfVdapzSsXF8Pbb8PXXRo9vxcXhm/xbBYvF6EDlppvg0UeNH04Alwvuv9/oAryFjDt3SklJxrAaXboYV4yuvda4SnwyLhf853/C8uVGF/H79hkdtfxcWSyQnAy9exuV+nvvPTqcxvE++8y4YvXdd0Zy8DOJ+2MruQ1NIcAcFUXIZMJis1EbDGKyWvGHQkS3aUNCUhL22FhMiYkwfjxcfDGsXw/r1hnJl8cDda9VUVmJ2+cjEAxiczhwxMQQGxdHdEyMUdGsO8lRU1vL7h9/pLC0lLjkZKLj4igpK6NWhI6dOuH0ePCFQiS1a0dSu3bYk5LodOGFRGVmGsMLHNPhRQS/H77/3oirqirjMzj+aplIxMmVWr8fq9WKr7YWzGaio6MjT8ocO9VX4KOjjWNibCwMGGB8F+orzE6ncQWugV6PT/1hhYxjptNplN/jgWCw4amxE0cNnUiqn2e1Glcwy8uNq4U+39FtnOpE0vGvCQ2frDqN+S63m4rKSlLT0li3bh2xcXEkpKWR2KEDh2tqIDqaBf/930RlZDDgoosYPHgw7dq1i+i59nj1LUiio6ONHqcDASgsNK7su93GscftBp8PCQRwOZ0cKS3l0P79bFi3jnZt25IYF4fDasXndhMSwWKxEAgGOVJWhtfnIz4hgZqaGsorKujWowc1NTV06dIFk9mMs7qajgMGsHTLFg6mpSHR0XTs2JEOHTowbdo0osvKMG/cCGVlRlwGg8bnXf+3/n8gJIK3tpbyykosFgtVNTUcPHiQuPh4zFFR+Hw+omw2OnXtisvlIj4hAUtMDHGZmdg7djQ6fmvsO1JTAxs2GPvG4zE+k6QkY9tHjhifdVWVsf+Oj//6K+AejxE7Pp+xX4+LD7/fj8frZd+PPxIXH29chDCZcLRvz+7SUqz9+9Nh4kR6PvkkzqIiEtas0YTwPNCEsBnV1tYSExPDe++9x1VXXRWeP2PGDPLz8xvs+dDn80V0i+x0OsnMzPzZfllEJNycVOoOoI0tV1tbS2FhIVVVVWRnZ/PTTz+RnJxMVFQUXq+XPXv20Lt3b3w+X/i9lpeXY7PZKCgoYMCAAVjrz/RiNHPcvWsXJcXF9OndG1PdGbXEhAT8Ph87d+zAWVmJGUhq25buvXrhiI3lcHk5YjLh9njYu3cvKSkpBAIBvF4vTqeTiRMnRvQA1hCn00lMTAzbtm0zmutFRbFn61bS4uNJstux+P04oqLw+3xYTCZ+/OEHapxOOnXsSLTdzpdffEH7lBTaJidjBhISE9m9ezdpaWkUFBTQrl07/H4/ffv1IxgM4nK5KC8vJzo6mujoaJKTk3F7PFgsFoLBIBarlZjo6KNN6CwWsFqNyhkQn5SEPxQiKjoar9+PX4S4xESjgmCzQXw8IYvFaBrX1Dwe40fD4zk6+XxHz74f+4PY2HQ2zejOdt3jK1bHVriioo5WDGNioG3bk1cERYwrTmVlR/dF3ZWKRpt7NTT/ZBWwhsr9z8yz2Rqf4uKMv2dLxIgFp9OYGrtiV3c18Fherxez2RzuTr/+avopWa2nNzkckJh48qviJxMKHa001R/To6KOnl0PBo3P3us1KuenqNiHRDBbrQSCQbZ9/z3VNTUMHjqU2DZtCIkYCY3JhNvrJVQXI+3S0qisqqJNmzYEAgEqKipITEw0kh6OjrXX2HFbKaXOmXvvxblgAQnV1T/bOu4viSaEzaj+vrx169YxYsSI8Pw5c+awYMGCBrsYnjVrFk8//fQJ8/XLopRSSimlfhG++grn3LkkLFumddzzQMch/Bk4vpOAxjpuAXj88cepqqoKTy1ljCqllFJKKaVOy8UXw6JFzV2KVuPk7d7UOdW2bVssFgvFxcUR80tLS0+4Kbqe3W432r8rpZRSSiml1FnSK4TNyGazMWTIEFauXBkxf+XKlRFNSJVSSimllFLqXNArhM3sgQce4Oabb2bo0KHk5OTw6quvcuDAAe68887mLppSSimllFLqF04TwmZ2/fXXU1ZWxjPPPENRURH9+/fnH//4B51/IQOaK6WUUkoppX6+tJfRFq5+HELtgUkppZRSSv1SaB33/NF7CJVSSimllFKqldKEUCmllFJKKaVaKU0IlVJKKaWUUqqV0oRQKaWUUkoppVopTQiVUkoppZRSqpXShFAppZRSSimlWikdh7AFExGcTidA+K9SSimllFItXX3dVkfIO/d0HMIW7PDhw7Rv3765i6GUUkoppdQ5cfDgQTIyMpq7GL9oeoWwBbPZbABs376d9PR0TCZTM5dI/VI5nU4yMzM5ePCgDg6rzimNNXU+aJyp80Vj7Z8nIlRXV5Oent7cRfnF04SwBatPADt27KgHGXVexMfHa6yp80JjTZ0PGmfqfNFY++ckJCQ0dxFaBe1URimllFJKKaVaKU0IlVJKKaWUUqqV0oSwBbPb7Tz11FPY7fbmLor6hdNYU+eLxpo6HzTO1PmisaZaAu1lVCmllFJKKaVaKb1CqJRSSimllFKtlCaESimllFJKKdVKaUKolFJKKaWUUq2UJoRKKaWUUkop1UppQtgCrFmzhokTJ5Keno7JZOKjjz6KeF5EmDVrFunp6URHR3PppZfy/fffN09hVYs1d+5cLrzwQuLi4mjfvj2TJ0+moKAgYhmNNdUUXnnlFQYOHBgeqDknJ4dly5aFn9c4U+fC3LlzMZlMzJw5MzxPY001hVmzZmEymSKmtLS08PMaZ+rnThPCFsDlcpGdnc3LL7/c4PN/+tOfeP7553n55ZfJy8sjLS2NX//611RXV5/nkqqWLDc3l3vuuYcNGzawcuVKAoEAl112GS6XK7yMxppqChkZGcybN49NmzaxadMmxo4dy6RJk8IVJI0z1dTy8vJ49dVXGThwYMR8jTXVVPr160dRUVF42rp1a/g5jTP1syeqRQHkww8/DD8OhUKSlpYm8+bNC8/zer2SkJAgf/3rX5uhhOqXorS0VADJzc0VEY01dW4lJSXJ66+/rnGmmlx1dbX07NlTVq5cKaNHj5YZM2aIiB7TVNN56qmnJDs7u8HnNM5US6BXCFu4ffv2UVxczGWXXRaeZ7fbGT16NF9//XUzlky1dFVVVQAkJycDGmvq3AgGgyxatAiXy0VOTo7GmWpy99xzDxMmTGDcuHER8zXWVFPavXs36enpdO3alRtuuIG9e/cCGmeqZbA2dwHU2SkuLgYgNTU1Yn5qair79+9vjiKpXwAR4YEHHmDUqFH0798f0FhTTWvr1q3k5OTg9Xpp06YNH374IX379g1XkDTOVFNYtGgRW7ZsIS8v74Tn9JimmsqwYcN4++236dWrFyUlJcyePZsRI0bw/fffa5ypFkETwl8Ik8kU8VhETpin1OmaPn063333HWvXrj3hOY011RSysrLIz8+nsrKSJUuWcMstt5Cbmxt+XuNMna2DBw8yY8YMPv/8cxwOR6PLaaypszV+/Pjw/wMGDCAnJ4fu3buzYMEChg8fDmicqZ83bTLawtX3YlV/BqpeaWnpCWejlDod9957L5988gmrVq0iIyMjPF9jTTUlm81Gjx49GDp0KHPnziU7O5sXXnhB40w1mc2bN1NaWsqQIUOwWq1YrVZyc3N58cUXsVqt4XjSWFNNLTY2lgEDBrB79249pqkWQRPCFq5r166kpaWxcuXK8Lza2lpyc3MZMWJEM5ZMtTQiwvTp0/nggw/48ssv6dq1a8TzGmvqXBIRfD6fxplqMr/61a/YunUr+fn54Wno0KH87ne/Iz8/n27dummsqXPC5/OxY8cOOnTooMc01SJok9EWoKamhj179oQf79u3j/z8fJKTk+nUqRMzZ85kzpw59OzZk549ezJnzhxiYmK48cYbm7HUqqW55557ePfdd/n444+Ji4sLn81MSEggOjo6PH6Xxpo6W3/84x8ZP348mZmZVFdXs2jRIlavXs3y5cs1zlSTiYuLC98DXS82NpaUlJTwfI011RQeeughJk6cSKdOnSgtLWX27Nk4nU5uueUWPaapFkETwhZg06ZNjBkzJvz4gQceAOCWW27h73//O4888ggej4e7776biooKhg0bxueff05cXFxzFVm1QK+88goAl156acT8t956i6lTpwJorKkmUVJSws0330xRUREJCQkMHDiQ5cuX8+tf/xrQOFPnj8aaagqHDh1iypQpHDlyhHbt2jF8+HA2bNhA586dAY0z9fNnEhFp7kIopZRSSimllDr/9B5CpZRSSimllGqlNCFUSimllFJKqVZKE0KllFJKKaWUaqU0IVRKKaWUUkqpVkoTQqWUUkoppZRqpTQhVEoppZRSSqlWShNCpZRSSimllGqlNCFUSimllFJKqVZKE0KllFJKKaWUaqU0IVRKKaWUUkqpVkoTQqWUUkoppZRqpTQhVEoppZRSSqlWShNCpZRSSimllGqlNCFUSimllFJKqVZKE0KllFJKKaWUaqU0IVRKKaWUUkqpVkoTQqWUUkoppZRqpTQhVEoppZRSSqlWShNCpZRSSimllGqlNCFUSimllFJKqVZKE0KllFJKKaWUaqU0IVRKKaWUUkqpVur/A8wt1Hv7H5ZWAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pdiff.SetExtractionMode(False)\n", "pdiffn.SetExtractionMode(False)\n", "\n", "px.FitScaleFactorForRw()\n", "pn.FitScaleFactorForRw()\n", "\n", "pn.plot(fig=None,diff=False,hkl=True)\n", "px.plot(fig=None,diff=False,hkl=True)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Display the 3D crystal structure\n", "*Note: this requires installing `ipywidgets` and `py3Dmol` (as of 2021/05 the conda-forge version is obsolete, so just install using pip). Otherwise You will just get a warning message*\n", "\n", "This will be updated live during the optimisation, and also when using `RestoreParamSet()` to restore some specific solutions (and generally every time the underlying Crystal's `UpdateDisplay()` function is called). Just scroll back to see what is being done in the widget.\n", "\n", "The `display()` is only really necessary to make sure the widget appears in the notebook. In fact if `c.widget_3d()` is the *last* command in the notebook cell, the display is done automatically. See the ipywidgets documentation if you want to understand this in more details.\n", "\n", "Note that bonds may disappear during optimisation, because they are automatically assigned by the javascript viewer, which is quite strict about allowed distances. In the final solution some bonds in the middle of the chain are often missing, though you can see the atoms are reasonably close. But rest assured that any bond defined in the object still exists as defined in pyobjcryst !" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", "text/html": [ "
\n", "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "302d992dd76d4d0d9defd848b5ba02bd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(c.widget_3d())\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Run multiple optimisations\n", "We also enable the automatic least squares every 150k trials, which allows a better convergence\n", "\n", "We perform 3 runs, each of 1 million trials using parallel tempering, with default parameters (which should be adequate for all problems). Normally for this structure it would be better to use 2 millions trials so that the correct solution is found during almost every run.\n", "\n", "Each run starts from a randomised configuration." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "LSQ option: Every 150000 trials, and at the end of each run\n" ] }, { "data": { "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", "text/html": [ "
\n", "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "175ea346418c4b56b030dddf41e3c8b9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "699ea099342a44efb21ffd3671429ea7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(HBox(children=(Label(value='MonteCarlo:', layout=Layout(max_width='25%', width='11em')), Text(va…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Final LLK: 3104.24\n" ] } ], "source": [ "mc.GetOption(\"Automatic Least Squares Refinement\").SetChoice(2)\n", "print(\"LSQ option: \", mc.GetOption(\"Automatic Least Squares Refinement\").GetChoiceName(2))\n", "\n", "# 3D structure view which will be live-updated with the best\n", "# configuration of the current run\n", "display(c.widget_3d())\n", "\n", "# Small widget to see the progress of the optimisation, with the current run\n", "# best log-likelihood, the run number and remaining number of trials.\n", "display(mc.widget())\n", "\n", "# The powder pattern plot a few cells above should also be updated for each run best solution\n", "mc.MultiRunOptimize(nb_run=3, nb_step=1e5)\n", "print(\"Final LLK: %.2f\" % mc.GetLogLikelihood())\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### List solutions\n", "All solutions are stored in a \"Parameter Set\" which can be restored (assuming that the objects - crystal structure and powder pattern are not altered e.g. by changing the list of atoms, the profile, or the fixed parameters etc...).\n", "\n", "This will only record changes of parameters such as atom coordinates, but will not record other changes such as a different spacegroup, or a change of the Scatterers (number of atoms or molecules) inside a Crystal. It can only be used to browse results obtained at the end of `MultiRunOptimize()`.\n", "\n", "At the end of the optimisation the best solution is automatically restored." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0: LLK= 3784.00, name=Best Configuration\n", " 1: LLK= 3881.00, name=Run #3\n", " 2: LLK= 3827.00, name=Run #2\n", " 3: LLK= 3784.00, name=Run #1\n" ] } ], "source": [ "for i in range(mc.GetNbParamSet()):\n", " idx = mc.GetParamSetIndex(i)\n", " cost = mc.GetParamSetCost(i)\n", " name = mc.GetFullRefinableObj().GetParamSetName(idx)\n", " print(\"%3d: LLK=%10.2f, name=%s\"%(idx, cost, name))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Restore a chosen solution (set of parameters)\n", "Restoring a solution will also update the 3D crystal view above." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bc43bdf787dc44ccac923a33705710d2", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA+7tJREFUeJzs3Xl8VOXZ//HP7EvISsgCRBYBjYBFkVUrIIsiKBUtWgGlUlpFoT4gIBY0PrSA7U9BsVL1saCA0mJLa6tFcUMBkb1GBEQWASEQSCaZbLOe3x+ZM8xMJiHrzJBc79crL5KTMzP3ZON857rv69YoiqIghBBCCCGEEKLF0UZ7AEIIIYQQQgghokMCoRBCCCGEEEK0UBIIhRBCCCGEEKKFkkAohBBCCCGEEC2UBEIhhBBCCCGEaKEkEAohhBBCCCFECyWBUAghhBBCCCFaKAmEQgghhBBCCNFCSSAUQgghhBBCiBZKAqEQQgghhBBCtFASCIUQQgghhBCihZJAKIQQQgjRAowfPz7aQxBCxCB9tAcghBBCCCEaz+zZs6scUxSFrVu3RmE0QohYJ4FQCCGEEKIZWbNmDW+++WaV45988kkURiOEiHUSCIUQQgghmpEHHniA7Oxs0tLSgo7fd999URqRECKWaRRFUaI9CCGEEEIIIYQQkSdNZYQQQgghhBCihZJAKIQQQgghhBAtlARCIYQQQgghhGihJBAKIYQQQjQjf/3rX7nmmmuYMGECr7/+OldccQV9+vThnXfeifbQhBAxSJrKCCGEEEI0I/369eOTTz7BbrfTq1cvDhw4gNlsZtiwYXz++efRHp4QIsbIthNCCCGEEM2IxWLBarVitVoZOnQoiYmJAOj1ctknhKhKpowKIYQQQjQjvXr1wuPxALB69WoAnE4nrVu3juawhBAxSqaMCiGEEEIIIUQLJRVCIYQQQgghhGihJBAKIYQQQgghRAslgVAIIYQQogXIy8uL9hCEEDFIAqEQQgghRAtw3333RXsIQogYJP2HhRBCCCGakb59+1Y5pigKhw4disJohBCxTgKhEEIIIUQzYrfbyc3NrbLv4PDhw6M0IiFELJMpo0IIIYQQzcjChQux2+1Vjs+bNy8KoxFCxDrZh1AIIYQQQgghWiipEAohhBBCCCFECyWBUAghhBBCCCFaKAmEQgghhBBCCNFCSSAUQgghhBBCiBZKAqEQQgghhBBCtFASCIUQQgghhBCihZJAKIQQQgghhBAtlARCIYQQQgghhGihJBAKIYQQQgghRAslgVAIIYQQQgghWigJhEIIIYQQQgjRQkkgFEIIIYQQQogWSgKhEEIIIYQQQrRQEgiFEEIIIYQQooXSR3sAomG8Xi+nTp0iPj4ejUYT7eEIIYQQQgjRYIqiYLfbadu2LVqt1LCakgTCS9ypU6fIysqK9jCEEEIIIYRodCdOnKB9+/bRHkazJoHwEhcfHw9U/rIkJCREeTRCCCGEEEI0XHFxMVlZWf5rXdF0JBBe4tRpogkJCf5AuHTpUnJyclAUhcTERDZt2kSnTp0YPnw427ZtQ1EUfvazn/Hqq68G3VeXLl04ffo0Go2G3r17s2nTJpKSkjhw4AAZGRn+8yoqKujRowf5+fl06tSJvXv3Bt3PL37xC9544w2sVitJSUkcO3Ys6PPPPvssOTk5aLVaFEXh5MmTGI3GOt/n0qVLeeyxx5gwYQIrV64kKSkJRVFwu93ccccdrF69unG+yLVw+eWXc+zYMTweT8QeUwghhBCiuZMlUU1PJuQ2M4cPH2bevHns2bOHoqIibr31Vm666SYAfvOb32C328nLy2PVqlV4vd4qt1+9ejU2m40dO3awY8eOsI/x1FNPkZGRQVFRERUVFbz88stVzhkzZgw2m61KGATIycnhq6++oqioiK+//hqr1Vrv++zVqxcrV670f3zw4EFOnDjB2rVrKSsru8hXq/EcPnwYs9kcsccTQgghhBCiMUggbGaeeeYZRowYQadOnQD405/+xMmTJ3E6nQwePBgAq9Va46ster2eNm3a8NVXXwFw2223kZSUxNVXXw3AJ598wt133+3/3L/+9a8q9/HOO++QmJjI9OnTq3xOp9Pxpz/9ieLiYi677DL0en2D7zNQSkoKFouFI0eO+I8tXbqU1q1bk5mZicViYebMmWRkZBAXF8e+ffuCbr9//37S09NJSkryfx0D7yc1NZWMjAwsFgt/+9vfahyLEEIIEQvGjx8f7SEIIWKUBMJm5sSJE1x++eVBx8xmM99++63/47vuuosf//jH1XZsKigo4MyZMwwcOBCAsWPHYrPZKC4uZvXq1djtdtLS0gBo06YNBQUFQbefP38+paWl7N+/nz//+c9Vpn/+/e9/Z926dbRu3ZqePXvidrsbfJ+BDh48SEVFBVdeeWWVz50+fZq7776bt956i7y8PG6++WYWLVoUdM748eOZNGkSNpuNQ4cOVbkPr9dLXl4eTz31FAsXLqx2HEIIIUSkzZ49u8rbrFmz2Lp1a7SHJoSIUbKGsJnp0KFDUGUMKtf8devWDYDFixezbds2jh8/Hvb2EyZMQK/Xc/fdd5OdnQ1UBkiAa6+9lh07dpCQkMDZs2cBOHPmDCkpKVXGANC2bVu6d+/ORx99RK9evfyfv+mmmzhy5Ahut5vs7GyeeeaZet2nTqerMv4rrrgCjUbD448/jl4f/OOtVvu6dOnC0aNH/ce++eaboPNOnDjBAw88AFDlPgA6d+4MwNVXX81rr71W9YsohBBCRMmaNWt48803qxz/5JNPojCa6PJ6vTidzmgPQ1TDYDCEvZYTkSeBsJmZNWsWvXr14vvvv6dDhw48/PDDZGVlYTQa+ec//8miRYs4ePBg2KADlWsI77jjjqBj69evZ/bs2ezdu5exY8diNpv5y1/+wrRp03j33XeZMWNG0PknT56kffv2OJ1ODh48SL9+/YI+v3HjRoYPH45erycpKQmPx8PgwYPrfJ87d+6sMv6DBw8GNcCpTuCUWUVRgj532WWX8frrr7Nw4ULcbne1X6twtxVCCCGi6YEHHiA7O9s/60Z13333RWlE0eF0Ojl69GjYfgkidiQlJZGRkSGNY6JMAmEzc/nll7NgwQJ+9KMfBXUZBZg8eTIOh8M/lfKrr77isssuu+h9/vWvf+V3v/sdHTp0YMKECVRUVNC9e3cSExPp2LEjv/zlLwHIzs5m//79TJw40d+QZvjw4dxwww1B9/frX/+a48eP+9cqPv7443i93jrfZ7hA2BhWr17NoEGDeOmll2jdujWHDx9ukscRQgghGtuCBQvCHr/Y+vvmRFEUTp8+jU6nIysrSzY1j0GKolBWVuafHZaZmRnlEbVsGkVKHJe04uJiEhMTKSoqanH7EP7f//0f06ZN4+677w7qNBoNl19+OWfOnKGkpCSq4xBCCCFaOpfLxXfffUfbtm1JTEyM9nBEDc6fP8/Zs2fp1q1blemjLfkaN9KkQiguWb/4xS/4xS9+Ee1hAEgVUQghhIgR6p7ARqMxyiMRF2O1WoHKEC/rCaNHauhCCCGEEKLZkXVpsU++R7FBAqEQQgghRDOxceNG+vXrx8CBA1m7dq3/+KhRo6I4KiFELJNAKIQQQgjRTDz11FO8//77fPjhh2zfvp1p06bh/egjymRpwyXv008/RaPRYLPZoj0U0cxIIBRCCCGEaCZ0Oh1JSUlYrVaee+45evfuzZhhwyg5eDDaQxNCxCgJhEIIIYQQzUSvXr04duyY/+NJkyYxA7BHbURCiFgngVAIIYQQoplYtmwZHTt2DDo2BDgQldGIunI4HEyfPp20tDTMZjM33HCDfx9m1ZYtW/jRj36E2WymX79+5Obm+j/3/fffc9ttt5GcnExcXBzdu3fnvffei/TTEJcYCYRCCCGEEELEgNmzZ/O3v/2N119/nd27d9OlSxduvvlmCgoK/OfMmjWL//f//h87duwgLS2N22+/HZfLBcDDDz+Mw+Hgs88+Izc3l2eeeYZWrVpF6+mIS4TsQyiEEEIIIZq1srIyDhyIfJ30yiuv9O+1dzGlpaUsX76clStXMnLkSABeffVVNm7cyGuvvUafPn2AysZBw4cPB+D111+nffv2rF+/nnHjxnH8+HHuvPNOevbsCUDnzp2b4FmJ5kYCoRBCCCFEM2cH4qM9iCg6cOAAvXv3jvjj7tq1i2uvvbZW5x4+fBiXy8X111/vP2YwGOjbty/79+/3B8IBAwb4P5+SksIVV1zB/v37AZg+fToPPfQQH3zwAcOGDePOO+/k6quvbsRnJJojCYRCCCGEEM3EG2+8wR/+8AcMBgPjxo3j8ccfB2AM8LHXC9qWuVroyiuvZNeuXVF53NpSFAWoulm7oigX3cBd/fwvfvELbr75Zt59910++OADFi1axLPPPsu0adPqOHLRkkggFEIIIYRoJpYvX87u3bsxGAy88MIL3HXXXbwBKAAOB1gsUR5hdFit1lpX6qKlS5cuGI1GNm/ezL333guAy+Vi586dPProo/7ztm3bxmWXXQZAYWEh3377bVDwzMrK4sEHH+TBBx9k7ty5vPrqqxIIRY0kEAohhBBCNBNarRaDwQBUTh+8KjubkX/7GwXQogPhpSAuLo6HHnqIWbNmkZKSwmWXXcbvf/97ysrKmDx5Mv/9738B+N///V9at25Neno6v/nNb0hNTeUnP/kJAI8++igjR46kW7duFBYW8vHHH5OdnR3FZyUuBRIIhRBCCCGaiVGjRnHs2DH/1hPDBg4kE5gJUFERxZGJ2li8eDFer5eJEydit9u57rrreP/990lOTg4659e//jWHDh3iRz/6Ee+88w5GoxEAj8fDww8/zMmTJ0lISOCWW25hyZIl0Xo64hKhUdQJy+KSVFxcTGJiIkVFRSQkJER7OEIIIYSIJWfOQEZG5ftHj0LIHoXNUUVFBUePHqVTp06YzeZoD0fUoKbvlVzjRk7LXFkshBBCCNESlJRceF8qhEKIMCQQCiGEEEI0V+XlF953OKI3DiFEzJJAKIQQQgjRXLndF96XCqEQIgwJhEIIIYQQzVUDAuGpU6caeTBCiFgkXUaFEEIIIZqrWgbC9957L+hjRVHIycnh6aef5tZbb22q0QkhYoAEQiGEEEKI5iowENawhnDSpElcd9119O/fH7UBvc1mY+fOnRIIhWjmZMqoEEIIIURzVcsK4dGjR/nxj3/MgQMHGDFiBE899RRdu3blySefjMAghRDRJIEwxKJFi+jTpw/x8fGkpaXxk5/8hIMHDwadM2nSJDQaTdBb//79g85xOBxMmzaN1NRU4uLiuP322zl58mTQOYWFhUycOJHExEQSExOZOHEiNputqZ+iEEIIIVqKWgbCuLg45s6dy8svv8xHH33EuHHj5JpEiBZCAmGITZs28fDDD7Nt2zY2btyI2+1mxIgRlJaWBp13yy23cPr0af9b6Nz7Rx99lPXr17N27Vo2b95MSUkJo0ePxuPx+M+599572bt3Lxs2bGDDhg3s3buXiRMnRuR5CiGEEKIFqOWUUVV8fDzz5s3j//7v/1i6dGnTjUs0upycHHr16hXtYYhLkKwhDLFhw4agj1esWEFaWhq7du3ixhtv9B83mUxkZGSEvY+ioiJee+01Vq1axbBhwwBYvXo1WVlZfPjhh9x8883s37+fDRs2sG3bNvr16wfAq6++yoABAzh48CBXXHFFEz1DIYQQQrQYgYEw8P2LSEhIoG/fvk0wICFErJEK4UUUFRUBkJKSEnT8008/JS0tjW7dujFlyhTOnj3r/9yuXbtwuVyMGDHCf6xt27b06NGDrVu3AvDFF1+QmJjoD4MA/fv3JzEx0X+OEEIIIUSD1DMQCiFaDgmENVAUhRkzZnDDDTfQo0cP//GRI0eyZs0aPv74Y5599ll27NjBTTfdhMM3FSMvLw+j0UhycnLQ/aWnp5OXl+c/Jy0trcpjpqWl+c8Jx+FwUFxcHPQmhBBCCBFWwFIVXK7ojUPUitfr5ZlnnqFLly6YTCYuu+wyfve73wEwZ84cunXrhtVqpXPnzsyfPx/XRb6nf/7zn+nevTsmk4nMzEweeeSRSDwNcYmRKaM1eOSRR/jqq6/YvHlz0PG7777b/36PHj247rrr6NChA++++y5jx46t9v4URUGj0fg/Dny/unNCLVq0iKeffrouT0MIIYQQLZVaFdTr61UhHDFiBB988EEjD0pUZ+7cubz66qssWbKEG264gdOnT3PgwAGgcn3nypUradu2Lbm5uUyZMoX4+Hhmz54d9r6WL1/OjBkzWLx4MSNHjqSoqIgtW7ZE8umIS4QEwmpMmzaNd955h88++4z27dvXeG5mZiYdOnTg0KFDAGRkZOB0OiksLAyqEp49e5aBAwf6zzlz5kyV+8rPzyc9Pb3ax5o7dy4zZszwf1xcXExWVladnpsQQgghWgg1BJrNNQbCcePGVTmmKAq5ublNNTIRwm638/zzz/Piiy9y//33A3D55Zdzww03ADBv3jz/uR07dmTmzJn85S9/qTYQ/va3v2XmzJn8+te/9h/r06dPEz4DcamSQBhCURSmTZvG+vXr+fTTT+nUqdNFb3P+/HlOnDhBZmYmAL1798ZgMLBx40b/H9jTp0/z9ddf8/vf/x6AAQMGUFRUxPbt2/2Ltr/88kuKior8oTEck8mEyWRq6NMUQgghREvgC4GK2YymhumFO3bs4OOPP0arvbCaSFGU5tP9vKwMfJW2iLrySrBaa3Xq/v37cTgcDB06NOzn3377bZYuXcp3331HSUkJbrebhISEsOeePXuWU6dOVXtfQgSSQBji4Ycf5s033+Sf//wn8fHx/vV8iYmJWCwWSkpKyMnJ4c477yQzM5Njx47xxBNPkJqayh133OE/d/LkycycOZPWrVuTkpLCY489Rs+ePf1dR7Ozs7nllluYMmUKL7/8MgC//OUvGT16tHQYFUIIIUTj8AXCk+fOkVVDhXDWrFnEx8eTmpoadLzZrDk7cAB694784+7aBddeW6tTLRZLtZ/btm0b99xzD08//TQ333wziYmJrF27lmeffbbO9yVEKAmEIZYvXw7A4MGDg46vWLGCSZMmodPpyM3N5Y033sBms5GZmcmQIUP4y1/+Qnx8vP/8JUuWoNfrGTduHOXl5QwdOpSVK1ei0+n856xZs4bp06f7u5HefvvtvPjii03/JIUQQgjRMrjdeAAnUGKz0aqa06ZOnRr2eGDfhEvalVdWhrNoPG4tde3aFYvFwkcffcQvfvGLoM9t2bKFDh068Jvf/MZ/7Pvvv6/2vuLj4+nYsSMfffQRQ4YMqfu4RYsigTCEoig1ft5isfD+++9f9H7MZjPLli1j2bJl1Z6TkpLC6tWr6zxGIYQQQohacbtxA27gxNGjZEd7PNFitda6UhctZrOZOXPmMHv2bIxGI9dffz35+fns27ePLl26cPz4cdauXUufPn149913Wb9+fY33l5OTw4MPPkhaWhojR47EbrezZcsWpk2bFqFnJC4VEgiFEEIIIZorXyB0Ae7S0miPRlzE/Pnz0ev1PPnkk5w6dYrMzEwefPBBJk+ezP/8z//wyCOP4HA4GDVqFPPnzycnJ6fa+7r//vupqKhgyZIlPPbYY6SmpnLXXXdF7smIS4ZGuVhJTMS04uJiEhMTKSoqqnZhsRBCCCFaJtfixZTNnctRwDtwINfWsO2Aw+Fg3759FBQUkJKSQo8ePTAajZEbbCOpqKjg6NGjdOrUCbPZHO3hiBrU9L2Sa9zIkQqhEEIIIUQzVXT+PBoqp4xqHI5qz1u1ahXLly+nT58+JCQkYLPZ2L17Nw899BATJkyI2HiFEJEngVAIIYQQoplylpWho3LKqKGGbSdefvllNm/eHLTthNvtZvDgwRIIhWjmtBc/RQghhBBCXIrcFRX+pjJKDYHQYrGwadMm/8eKorBp0yaZcilECyAVQiGEEEKIZspdUYECaAyGGgPhqlWrWLx4MfPmzcPj8WAwGLjuuuukG7oQLYAEQiGEEEKIZsrtcPgDITUEwoyMDJYuXRqxcQkhYodMGRVCCCGEaGR79uxh9OjR3HHHHWzdutV/fPLkyREdh8fhqGwoYzSiuN0RfWwhxKVBKoRCCCGEEI1s+vTprFixAr1ez6xZs9i2bRszZszgyJEjER2Hx+HAC+iMRpBAKIQIQyqEQgghhBCNTKPR0KVLFzp27Mi6desoLi5mypQpuCMcyjxOJx6NBo3BgEYCoRAiDAmEQgghhBCNLC0tjWPHjvk/zsnJYdCgQezYsSOi4/A6HChaLYoEQiFENSQQCiGEEEI0srfffpuOHTsGHZswYQIVFRURHYfX6UTRatHo9eDxRPSxRWTl5OTQq1evJn2MlStXkpSU1KSPISJP1hAKIYQQQjRTXpcLjU6HxmBAK4FQCBGGVAiFEEIIIZopxelE0enQGI0SCIUQYUkgFEIIIYRophSXyx8INV5vtIcjLsLr9fLMM8/QpUsXTCYTl112Gb/73e8AmDNnDt26dcNqtdK5c2fmz5+Pq4a9JQH+/Oc/0717d0wmE5mZmTzyyCM1nl9YWMh9991HcnIyVquVkSNHcujQoSrn/eMf/6Bbt26YzWaGDx/OiRMn/J/773//y5AhQ4iPjychIYHevXuzc+fOenw1RKRIIBRCCCGEiJARI0ZE9PEUlwt0OrQGAzoJhDFv7ty5PPPMM8yfP59vvvmGN998k/T0dADi4+NZuXIl33zzDc8//zyvvvoqS5Ysqfa+li9fzsMPP8wvf/lLcnNzeeedd+jSpUuNjz9p0iR27tzJO++8wxdffIGiKNx6661BwbOsrIzf/e53vP7662zZsoXi4mLuuece/+fHjx9P+/bt2bFjB7t27eLxxx/HYDA08CsjmpKsIRRCCCGEaGTjxo2rckxRFHJzcyM6DsXtBr0erckkgTDG2e12nn/+eV588UXuv/9+AC6//HJuuOEGAObNm+c/t2PHjsycOZO//OUvzJ49O+z9/fa3v2XmzJn8+te/9h/r06dPtY9/6NAh3nnnHbZs2cLAgQMBWLNmDVlZWfzjH//gpz/9KQAul4sXX3yRfv36AfD666+TnZ3N9u3b6du3L8ePH2fWrFlceeWVAHTt2rW+XxIRIRIIhRBCCCEa2Y4dO/j444/Rai9MxlIUhYkTJ0Z2IL5AqDEa0VE5JTFwTCJ27N+/H4fDwdChQ8N+/u2332bp0qV89913lJSU4Ha7SUhICHvu2bNnOXXqVLX39eCDD7J69Wr/xyUlJezfvx+9Xu8PegCtW7fmiiuuYP/+/f5jer2e6667zv/xlVdeSVJSEvv376dv377MmDGDX/ziF6xatYphw4bx05/+lMsvv7xOXwsRWRIIhRBCCCEa2axZs4iPjyc1NTXo+MXWcDU2jduNYjajNRgwUFndMZlMER1DrHjo3w/xg/2HiD1eu/h2LB+9vNbnWyyWaj+3bds27rnnHp5++mluvvlmEhMTWbt2Lc8++2yd7wvgf//3f3nssceCjimKEvZcRVHQaDRBx0I/DjyWk5PDvffey7vvvst//vMfnnrqKdauXcsdd9xR45hE9EggFEIIIYRoZFOnTg17/O67747oODQeT2WF0GRCDzgcjiqBcNOmTSxYsICrr76aW265hTlz5pCYmMiiRYsYMGBARMfblOoSzqKha9euWCwWPvroI37xi18EfW7Lli106NCB3/zmN/5j33//fbX3FR8fT8eOHfnoo48YMmRIlc+npaWRlpYWdOyqq67C7Xbz5Zdf+qeMnj9/nm+//Zbs7Gz/eW63m507d9K3b18ADh48iM1m808RBejWrRvdunXjf/7nf/jZz37GihUrJBDGMAmEQgghhBDNlNbrrWwqYzSiB5xOZ5Vz5syZw7p167DZbIwYMYIdO3ZgtVoZO3Ysn376acTH3FKZzWbmzJnD7NmzMRqNXH/99eTn57Nv3z66dOnC8ePHWbt2LX369OHdd99l/fr1Nd5fTk4ODz74IGlpaYwcORK73c6WLVuYNm1a2PO7du3KmDFjmDJlCi+//DLx8fE8/vjjtGvXjjFjxvjPMxgMTJs2jRdeeAGDwcAjjzxC//796du3L+Xl5cyaNYu77rqLTp06cfLkSXbs2MGdd97ZqF8r0bgkEAohhBBCNFMarxfFYEBrNGKgskIYymw2k5WVRVZWFtnZ2bRv3x4AnU4X4dGK+fPno9frefLJJzl16hSZmZk8+OCDTJ48mf/5n//hkUceweFwMGrUKObPn09OTk6193X//fdTUVHBkiVLeOyxx0hNTeWuu+6q8fFXrFjBr3/9a0aPHo3T6eTGG2/kvffeC+oSarVamTNnDvfeey8nT57khhtu4M9//jNQ+TNz/vx57rvvPs6cOUNqaipjx47l6aefbpSvj2gaGqW6CcPiklBcXExiYiJFRUXVLiwWQgghRGyw2+3Ex8dH7PF2Wyx4unYlecAAWr/yCrYjR+jUqVPQOffccw9r1qwJCoBut5vhw4fzySefRGysjaWiooKjR4/SqVMnzGZztIcjalDT90qucSNH2kwJIYQQQjSyN954g549e3LttdeyePFi//HAqXeRoPV6K7ed8E0ZDVchXLt2bZVqoF6vZ+PGjREapRAimiQQCiGEEEI0suXLl7N79252796N1WrlrrvuoqysrNpOjk1F6/Wi0evRmUzVThmtjl4vK4uEaAnkN10IIYQQopFptVr/uqvp06dz1VVXMXLkSAoKCiI7DkUBgwGd2VxtUxkhRMsmFUIhhBBCiEY2atQojh075v942LBhvPTSS7Rr1y6i49ApChqDAZ267URFRUQfXwgR+yQQCiGEEEI0sieeeIKOHTsGHevevTsbNmyI6DgCAyGAq7y8yjkbN26kX79+DBw4kLVr1/qPjxo1KmLjFEJEjwRCIYQQQoimtn49/PjHEX1IRVH8gVBvsQDgLCurct5TTz3F+++/z4cffsj27duZNm0aXq+XsjDnXkqkkX7sk+9RbJBAKIQQQgjR1H75S9i8OaIP6fF40ANavR69r6W/O8yUUZ1OR1JSElarleeee47evXszZswYSkpKIjrexqJ2TJX1krFPfdEhcJ9DEXnSVEYIIYQQoql5vZX/ulwQoYtfp9NZGQiNRn8gDFch7NWrF8eOHfNPcZ00aRIdOnTgoYceisg4G5ter8dqtZKfn4/BYECrlfpHrFEUhbKyMs6ePUtSUlKVbU9EZEkgFEIIIYRoah5P5b+lpZCUFJGHVAOhxmjEYLUC4A6zhnDZsmVVjg0ZMoQDBw409RCbhEajITMzk6NHj/L9999HeziiBklJSWRkZER7GC2eBEIhhBBCiKamBsKSkogHQq3R6G8qE27KaHNkNBrp2rWrTBuNYQaDQSqDMUICYYhFixbx97//nQMHDmCxWBg4cCDPPPMMV1xxhf8cRVF4+umneeWVVygsLKRfv3788Y9/pHv37v5zHA4Hjz32GG+99Rbl5eUMHTqUl156ifbt2/vPKSwsZPr06bzzzjsA3H777SxbtoykCP1HIYQQQogICQyEEeJ0OomnMhBqjUYgfJfR5kqr1WL2TZUVQlRPJlWH2LRpEw8//DDbtm1j48aNuN1uRowYQWlpqf+c3//+9zz33HO8+OKL7Nixg4yMDIYPH47dbvef8+ijj7J+/XrWrl3L5s2bKSkpYfTo0XjU/xCAe++9l71797JhwwY2bNjA3r17mThxYkSfrxBCCCEiIEqBUA/ojEb/ukVPHSqEeXl5TTQyIUQskQphiND9gVasWEFaWhq7du3ixhtvRFEUli5dym9+8xvGjh0LwOuvv056ejpvvvkmv/rVrygqKuK1115j1apVDBs2DIDVq1eTlZXFhx9+yM0338z+/fvZsGED27Zto1+/fgC8+uqrDBgwgIMHDwZVJIUQQghxiYtCIHQ4HP4po+grL/lqO2X0886dmZqXx1elpWg0miYcpRAi2qRCeBFFRUUApKSkAHD06FHy8vIYMWKE/xyTycSgQYPYunUrALt27cLlcgWd07ZtW3r06OE/54svviAxMdEfBgH69+9PYmKi/xwhhBBCNBPRrBCaTP5A6HE4qpzXt2/fKm8zjh7lRHk5//3vfyM2XiFEdEiFsAaKojBjxgxuuOEGevToAVyYPpGenh50bnp6ur+TVV5eHkajkeTk5CrnqLfPy8sjLS2tymOmpaXVOEXD4XDgCPhjXlxcXI9nJoQQQoioiGQgdDjQ4QuEvimj4bqM2u12cnNz0ftCo9fjQavXM5wLL4wLIZovqRDW4JFHHuGrr77irbfeqvK50OkTiqJcdEpF6Dnhzr/Y/SxatIjExET/W1ZW1sWehhBCCCGiyeW68H4kA6Ev/AVWCL1hum4uXLgwqA/C2W+/BWAeUH6Jbk4vhKg9CYTVmDZtGu+88w6ffPJJUGdQda+U0Cre2bNn/VXDjIwMnE4nhYWFNZ5z5syZKo+bn59fpfoYaO7cuRQVFfnfTpw4Ub8nKIQQQojICFy3F8GApa4XDAyE4dYQ3nHHHUGzmvL37gVgEKD88EOTj1MIEV0SCEMoisIjjzzC3//+dz7++GM6deoU9PlOnTqRkZHBxo0b/cecTiebNm1i4MCBAPTu3RuDwRB0zunTp/n666/95wwYMICioiK2b9/uP+fLL7+kqKjIf044JpOJhISEoDchhBBCxLDAqlwEA6ErsELomzKq1GJfvqJ9+y58cPp0k4xNCBE7ZA1hiIcffpg333yTf/7zn8THx/srgYmJiVgsFjQaDY8++igLFy6ka9eudO3alYULF2K1Wrn33nv9506ePJmZM2fSunVrUlJSeOyxx+jZs6e/62h2dja33HILU6ZM4eWXXwbgl7/8JaNHj5YOo0IIIURzEjhlNGAbqyZ/WF8gNFgsNU4ZDeUMqAq6A6aSCiGaJwmEIZYvXw7A4MGDg46vWLGCSZMmATB79mzKy8uZOnWqf2P6Dz74gPj4eP/5S5YsQa/XM27cOP/G9CtXrkSn0/nPWbNmDdOnT/d3I7399tt58cUXm/YJCiGEECKyAkNYYDhsYv4po2azPxAqtXh8V8CSF7esIRSi2ZNAGEJRlIueo9FoyMnJIScnp9pzzGYzy5YtY9myZdWek5KSwurVq+szTCGEEEJcKgIDYS0qdI1FDYR6s7naKaN79uxh/vz5GAwGZs2axcCBA3EXFTEZeA3wRLCiKYSIDgmEQgghhBBNKcqB0BBQIQydMjp9+nRWrFiBXq9n1qxZbNu2jS7FxRzyfd4rgVCIZk+aygghhBBCNCU1hBmNUQmEWqPRHwhxu4PO0Wg0dOnShY4dO7Ju3TqKi4t58bvvcPi2wPKWlUVsvEKI6JBAKIQQQgjRlHzr9pRWrSIaCD0OBwAag6HaKaNpaWkcO3bM/3FOTg7ddTr2KgouQJFAKESzJ4FQCCGEEKIp+ULYiYKCqFQI0eurbSrz9ttv07Fjx6BjN2k0fJOejkurRfF1KhVCNF8SCIUQQgghmpIvBJYCrgiuyVMrhOh01U4ZDUdXUYHXYsGp06EJs5G9EKJ5kUAohBBCCNGUfIGwBCgrKorYw/oDYUCFsDbbXhicThSrFZdeDxIIhWj2JBAKIYQQQjQhp28vvxLAUVwcsccNCoQaDR6NplYVQrPH4w+E2ghOcRVCRIcEQiGEEEKIJuQICITOCG707t9iQt1yQqutEgj/+te/cs011zBhwgRef/11rrjiCn6lKHxcXo5Hr0erhkohRLMl+xAKIYQQQjShwAqhJ4JTMD1hAqEmJBA+++yzbNmyBbvdTq9evdi5cyf57dvzi1OnuMVoRCcVQiGaPQmEQgghhBBNyOlrJFMKtVrD11iCpowCXp2uSoXQYrFgtVqxWq0MHToUg8FAMqDT6/Eajehk2wkhmj2ZMiqEEEII0YTcvkDoNBjQRDAQhpsyqvF4gs7p1asXHt+x1atXU1ZWhgFIjovDazJhiOB4hRDRIYFQCCGEEKIJucvKcAL6uDi0tWjq0liqBEKdDkIC4dKlS9HpdP6Py8rKSASW33YbismEPoLjFUJEhwRCIYQQQogmpAZCY1wcuigGQkWnu2ggLSsrw0RleMVsxhgSIIUQzY8EQiGEEEKIJuQuL8cJmBIS0EUwYIUNhF5vjbcps9vRA4ZWrcBsxqQoeC9yGyHEpU2aygghhBBCNCFPeTkuwBIfjy6C4UpR1//5poQqen2VNYQADoeDffv2UVBQwLdffUV/KgOhxmzGCJSXlxMXFxexcQshIksCoRBCCCFEE/JUVOAELImJGBQlcg+sBkKDAaisEOp8FT+ttnKS2KpVq1i+fDl9+vQhISGBvV9+yRpg0tdfc5PFgpHKaaQSCIVoviQQCiGEEEI0Ia8vEJoTEiIaCJWQQIhOhx5wuVyYTCYAXn75ZTZv3uwPiH976SXGbNzIjZ9/zvCePf2BUAjRfMkaQiGEEEKIJuStqMCt0WCMj8dI5RTNiFADobqG0GBADzgDNpu3WCxs2rTJ/3FFURGbAKvFgs5XISwvL4/MeIUQUSGBUAghhBCiCSkOBy6tFlOrVugAu80Wmcd1ufCCfw0hOh0GggPhqlWr+Oc//8n1119P//79+d/ly/k3sHr+fHRWq1QIhWgBZMqoEEIIIUQTUhwOvFotBt86vPKiIkhPb/LH1bjdeLXaC6/++yqEroDN5jMyMli6dKn/41d//WumvPACZGZy1mpFgwRCIZo7qRAKIYQQQjQhxenErdOht1oBqCgujswD+wKhX5gpo1VuUlpa+Y7JhEEqhEK0CFIhFEIIIYRoSg4H3oBA6LDbI/O4bjdedboogF5fZcpoKI8a/kwmDHFx6JA1hEI0dxIIhRBCCCGakMblwqvX+6eMOkpKIvO4IRVCTZgpo6GUiorKd3yBUA+UqlVDIUSzJIFQCCGEEKIphQRCV4QCliakQqipxZRRr1oN9AVCLeCQKaNCNGuyhlAIIYQQog42bdrEsGHDmDFjBh988AHXXHMNgwcP5osvvgh7vsbtRgkIhM5IVQg9HpTAKaMGw0WnjAZWCLVmMxC5ACuEiA6pEAohhBBC1MGcOXNYt24dNpuNESNGsGPHDqxWK2PHjuXTTz+tcr7W5UKxWjHFxwORC4RajyeoQqitzZRRdY9EkwmMRgDcUiEUolmTQCiEEEIIUQdms5msrCyysrLIzs6mffv2AOgCq3EBtG43itGI0VchjFTA0ng8KPoLl3oak+miU0Y1EgiFaHFkyqgQQgghRB1kZGTg8XgA+PjjjwFwu914vd6w52s9HjAYMLZqBURmCqbH40GnKBc2padyDeHFpoyiBkKj0R8IPdJlVIhmTSqEQgghhBB1sHbt2irH9Ho9GzduDHu+zuMBoxGdxQJEpuLmcrnQA4rB4D+mNRovOmVU43Ti1mrRa7USCIVoIaRCKIQQQjTA+PHjoz0EESP0+vCvs+s8HjQRrrg5nU4MEFQh1NZiyii+QAjIlFEhWgipEAohhIgZe/bsYf78+RgMBmbNmsXAgQMBmDx5Mq+99lpUxzZ79uwqxxRFYevWrVEYTeyK5e9htOi8XjRmc0QDltPprFohrMWUUa3TiVsNtr7xetXOo0KIZkkCoRBCiJgxffp0VqxYgV6vZ9asWWzbto0ZM2Zw5MiRaA+NNWvW8Oabb1Y5/sknn0RhNLErlr+H0WLwetEGNGmJRMDyVwgDqpZqhbCmKaNalwu3WlVUK5oSCIVo1mTKqBBCiJih0Wjo0qULHTt2ZN26dRQXFzNlyhTcbne0h8YDDzxAdnY2gwYNCnq77777oj20mBLL38PGsnHjRvr168fAgQOD1hOOGjUq7Pl6Ranc0y+CU0YdDgd6KhvJqHS1mDKqdbvxhFQIFQmEQjRrEgjD+Oyzz7jtttto27YtGo2Gf/zjH0GfnzRpEhqNJuitf//+Qec4HA6mTZtGamoqcXFx3H777Zw8eTLonMLCQiZOnEhiYiKJiYlMnDgRm83WxM9OCCFiV1paGseOHfN/nJOTw6BBg9ixY0f0BuWzYMEC0tLSqhyfPn16FEYTu2L5e9hYnnrqKd5//30+/PBDtm/fzrRp0/B6vZSFmQrqdrsxQvQqhAGBsDZdRnUuF171NjJlVIgWQQJhGKWlpfzoRz/ixRdfrPacW265hdOnT/vf3nvvvaDPP/roo6xfv561a9eyefNmSkpKGD16tL9NNcC9997L3r172bBhAxs2bGDv3r1MnDixyZ6XEELEurfffpuOHTsGHZswYQIVckF6yWgJ30OdTkdSUhJWq5XnnnuO3r17M2bMGErCbDhfXl6OAdBZrf5w5lW3dmhC6hrCwAohej0GjabGKaM6t7tKIFQiMF4hRPTIGsIwRo4cyciRI2s8x2QykZGREfZzRUVFvPbaa6xatYphw4YBsHr1arKysvjwww+5+eab2b9/Pxs2bGDbtm3069cPgFdffZUBAwZw8OBBrrjiisZ9UkIIIYRoFL169eLYsWP+4Dtp0iQ6dOjAQw89VOXc8vJy4qByywmdDg+RmYKpVgiDAqHBcNEpozqPRwKhEC2MVAjr6dNPPyUtLY1u3boxZcoUzp496//crl27cLlcjBgxwn+sbdu29OjRw9+N7osvviAxMdEfBgH69+9PYmKidKwTQgghYtiyZcuqVEGHDBnCgQMHqpxbXl6OEdD79iB0abV4a9r2oZH4K4S+UAdUVgipORAaPJ4LnUnV20ZgvEKI6JFAWA8jR45kzZo1fPzxxzz77LPs2LGDm266CYfvFbS8vDyMRiPJyclBt0tPTycvL89/Tri1KGlpaf5zwnE4HBQXFwe9CSGEaHp1bSQiBEBZSQkGQG+1AuDRaiFCU0arVAj1+hq7jHo8HgyKciEISoVQiBZBAmE93H333YwaNYoePXpw22238Z///Idvv/2Wd999t8bbKYqCRqPxfxz4fnXnhFq0aJG/CU1iYiJZWVn1fyJCCHGJCJxxES11aSTSkklwDlZhtwMXKoQenQ4lghVCrcl04eBFpow6HA5MgBISCKVCKETzJmsIG0FmZiYdOnTg0KFDAGRkZOB0OiksLAyqEp49e9a/QW9GRgZnzpypcl/5+fmkp6dX+1hz585lxowZ/o+Li4slFAohmo1x48ZVOaYoCrm5uVEYTTC1kQjAc889x8qVK6ttJNKSqcHZaDQyb948tmzZwvPPP9/sgrPD4WDfvn0UFBSQkpJCjx49MAZOz1TP8wVCY6tWQGUg1EQoEFoAbciU0ZoCYUVFBSYANUT6qouaGprQCCEufRIIG8H58+c5ceIEmZmZAPTu3RuDwcDGjRv9FzenT5/m66+/5ve//z0AAwYMoKioiO3bt9O3b18AvvzyS4qKivyhMRyTyYQp8NU+IYRoRnbs2MHHH3+MVnthAouiKDHRgbkujURaspYQnFetWsXy5cvp06cPCQkJ2Gw2du/ezUMPPcSECROCzlUrhIa4OMAXCCMQsPxrCAOvGfR69IpS7ZRRh8OBEcBsrjyg1eLRaiUQCtHMSSAMo6SkhO+++87/8dGjR9m7dy8pKSmkpKSQk5PDnXfeSWZmJseOHeOJJ54gNTWVO+64A4DExEQmT57MzJkzad26NSkpKTz22GP07NnT33U0OzubW265hSlTpvDyyy8D8Mtf/pLRo0dLh1EhRIs1a9Ys4uPjSU1NDTr+yCOPRGlEFyxbtqzKseoaibRkLSE4v/zyy2zevDnohQu3283gwYOrBEJHSCD06vUQoUBoAHSBFUJ1H8Jq1gSqFcLAEBmpACuEiB4JhGHs3LmTIUOG+D9Wp2jef//9LF++nNzcXN544w1sNhuZmZkMGTKEv/zlL8THx/tvs2TJEvR6PePGjaO8vJyhQ4eycuVKdDqd/5w1a9Ywffp0/9qY22+/vca9D4UQormbOnVq2ON33313hEci6qslBGeLxcKmTZv81wqKorBp0ybMamUtgNNXGVWnjHr1erQR2naiyhpCfeVln+tigdC33hEkEArREkggDGPw4MEoilLt599///2L3ofZbGbZsmVh/2NUpaSksHr16nqNUQghhBDRsWrVKhYvXsy8efMqO3MaDFx33XVh/09XA6HJFwgVvR6t293kY1QrhKFrCIFqm9qoTWW0AYHQq9ejlUAoRLMmgVAIIYRogLy8PDIyMqI9DBFBGRkZLF26tFbnqoFQ3XZCMRgiGgg1IVNGAdzVVCgrKipIIUwgLC9vwpEKIaJNtp0QQggR82ranzXa7rvvvmgP4ZIQy9/DRhGmcziAS+2uqu7pZzSi83iafDhOpxODRuOvCgL+9z0XmTKqCwyEBgNaj6fGmVNCiEubVAiFEELEvPvuu48PPvggqmNQO0IHUhTFv+WQqFksfA+bzKZNMHgwbNsG/foFfcpdWlr5jlqpMxjQeb14vd6gpjRQ2ZhGr2+cSzO1QkjIxvRQ/ZRRfyD0VTOhsqJppHIz+3DbagghLn0SCIUQQsSMWA5ddrud3NzcKhfsw4cPj9KIYlMsfw+bzCefVP4bpgrqD4RqcxejESOV6/UsFgu5ubnMmTMHm82GXq/H5XKRmprKwoUL6dmzZ72HFLZC6AuHF60QhgmEDodDAqEQzZQEQiGEEDEjlkPXwoULsdvtJCcnBx2fN29elEYUm2L5e9hkTp6s/DdM5c2jThlVA6HJhJHK8GWxWJg6dSpvvvkmWVlZ/tscP36c8ePH8/nnn9d7SP4KYZimMt6LVAi1vi0yIDgQBnZTr49Tp07Rtm3bBt2HEKLxSSAUQggRM2I5dKl7zYYaNGhQhEcS28J9D8ePHx8T38Mmc/x45b82W5VPhQZCjdGIASgvLyc5ORmPx0NiYmLQbRISEvA0cJ2h0+nEoChhA+HFuozi64gKBFU06+K9994L+lhRFHJycnj66ae59dZb63RfQoimJYFQCCFEzLjkQtd//wsVFVXWjbVUs2fPBuCLL77wH1MUha1bt7JmzZpoDavpFRRU/ltYWOVTXrVDpy8QagMqhACLFy9m9OjRGI1GEhISKCoqwu1288wzzzRoSE6nEyMEB0L1/eoCYWkpOkAJaCqjqWcgnDRpEtdddx39+/f3N6Sx2Wzs3LlTAqEQMUYCoRBCiNh16hQ8/DCsWAFJSdEeTVW9elX+Kx0YAVizZg1vvvlmleOfqGvsmiu1ChimQqioWzz4wpjGbMZIZYUQ4MYbb+Szzz6jvLwcm81GcnJy2A3u68rpcGAMrRCq01arCXcu3xYZmsDHr2cgPHr0KC+88AK5ublMmzaNAQMG8OWXX/Lkk0/W6X6EEE1PAqEQQojYtWED/OMfcO21MH9+tEcjLuKBBx4gOzubtLS0oOPNfmsONRDWokKo8wXCipC9AC0WC5aAylxDudXHDRMIq9tovkoDHEDjq2jWNRDGxcUxd+5c7HY7zz//PEuWLMEWJjALIaJPAqEQQojYpV6EBkxBjBnVbO7dki1YsCDs8enTp0d4JBFWQ4XQ/zPs6/Cp9QVCexP//HjV+w8Id/51jNVMGa0pEIYG2NqKj49n3rx5FBcXc+DAgXrdhxCiacnG9EIIIWKXutm3eqEaSwK3UZApoy1bDRVCHA5cWi1oNEDlpu+BU0abijdkqipQvwqhL8DWtUIYKiEhIeyWJEKI6JNAKIQQInadPVv5r3rBHUsC95yLxcAqIkNRal5D6HTiDtiCQw2EasXtr3/9K9dccw0TJkzg9ddf54orrqBPnz688847DRuWGuDCBUK3O+xtQqe3woUmOA0NhEKI2CVTRoUQQsQutUIYi4HQbr/w/vnzwa36A+zZs4f58+djMBiYNWsWAwcOBGDy5Mm89tprkRipaEpOZ2UoTEoK+8KAxuHAo9P5P9ZbrUGB8Nlnn2XLli3Y7XZ69erFgQMHMJvNDBs2jNtvv73ewwpbIfS9r6umQhg2EPoqhLZ6BsKCggIKCgpISUkhJSWlXvchhGhaEgiFEELErkslEBYUQIcOYU+bPn06K1asQK/XM2vWLLZt28aMGTM4cuRIhAYafSNGjOCDDz6I9jCahvqzmZoa9udU43LhCawQ+gKhOmXUYrFgtVqxWq0MHTrUvyehXt+wS7SaKoSaagJh6J6JAFpfRbOuFcKPPvqIJ598ktTUVBISErDZbBQWFvL0008zdOjQOt2XEKJpSSAUQggRu86dq/y3iddb1UtohbAaGo2GLl26ALBu3TpycnKYMmUK7mqm7V3Kxo0bV+WYoijk5uZGYTQR4gtRxysqaFtRUeXCSuty4QnoHqoPmTLaq1cvPB4POp2O1atXA5V7CLZu3bpBw/I3jgkTCPXVbHqvhGlEo6vnGsInn3ySDRs2EB8f7z9WXFzMyJEjJRAKEWMkEAohhIhddjskJsZmhbC4GPR6cLvDd5f0SUtL49ixY3Ts2BGAnJwcVq9ezapVqyIzzgjasWMHH3/8MVrthRYFiqIwceLEKI6qifl+NveePElrna7KhZXO5UJJSPB/rHbtVCuES5curXKXRqORt99+u0HDClsh1OtRNBp0dVhDqKtnhVCr1ZKfnx8UCPPz84N+NoQQsUECoRBCiJhVfu4cruRkEs6dq1yn5evUGBPsdpT0dDQ//FBjBTPchf2ECROYMGFCU44uKmbNmkV8fDypqalBxx955JEojSgCfIEwHzB7PEE/p4qioHO78QaGMoOhQds41Fq4CqFGg0evR+9yoSgKmpDfp3AVQm09K4SvvPIKM2fOJC8vz/9YmZmZvPLKK/V5NkKIJiSBUAghREzyejwYnU72nDnDQACXK/jiNsoq8vP59ocf6A7oYrGCGQVTp04Ne/zuu++O8EgiRyktRQN4kpLQ2Wx4KyrQ+qaIOp1OjFClsYsecDT1z4waCAP3IQS8BgMmlwuXy4Ux9Pcp3G2MRkwaTZ0DbHZ2NuvXr6/rqIUQUSB1eyGEEDHp2MGD6ICz6oEYC135R49SBJRBzI1NRE6pb52r1Tcl+Pzx4/7PlZeXYwKUkIAF4LzIViV5gdua1IO/cUxI6PMaDJioDKtVqFXAkPHKthNCNG8SCIUQQsSkb3fvBkBp06byQIyFLvf589iBcqCshqYyonkrPHkSgNbdugGQ//33/s+pgTA0YAG4LvLzfN999zVsYOGmjFJzINRUEwhNSCAUojmTQCiEECImnfr2WwCs6nYOMRYIvUVF2KmsEJ47caLa8zZu3Ei/fv0YOHAga9eu9R8fNWpU0w8yRtgDO7I2M4WnTwPQvlcvILhCWFZWhgnQmM0XbuALaG7fz3Pfvn2rvPXp04ft27c3aFwatXFMSCBUfIHQFW7rCTUkGgwXjplMGBWl0QJhQyufQojGJ4FQCCFETHKoVbcYrRBSUoI+OZkyoCw/v9rTnnrqKd5//30+/PBDtm/fzrRp0/B6vZTF2vNpBG+88QY9e/bk2muvZfHixf7jY8aMieKomlaJb6/MjtddB4Dt1Cn/59QKoTZMIHT5poza7Xa2bt3K9u3b/W87duygT58+DRqXtpopo0pNFUKnE5dOF9y8yWTCADgbaeuXBlc+hRCNTgKhEEI0Y3v27GH06NHccccdbN261X988uTJURxV7bh9WznoMjMB8JaURHE0VenKyzG1bk25RoOruLj683Q6kpKSsFqtPPfcc/Tu3ZsxY8ZQEmPPpzEsX76c3bt3s3v3bqxWK3fddRdlZWUoihLtoTUZV3ExTqBVu3YAOAoK/J9TA6EmYB9CNaB5fAFr4cKFYSuo8+bNa9C4qg2EvjWB4QKh1uXCow/pN+gLs546voDRVJVPIUTjky6jQgjRjE2fPp0VK1ag1+uZNWsW27ZtY8aMGRw5ciTaQ7soNRAa27cHwH7mDIlRHE8og9OJMTkZt16ProZw16tXr6B9CCdNmkSHDh146KGHIjTSyNFqtRh80w2nT5/OVVddxciRIykICEmRsGfPHubPn4/BYGDWrFkMHDgQqHwh5LXXXmvUx/La7ZRrNBjj4gBwBuxJqQZCXQ1TRu+4446w9zto0KAGjUurThkNnP5JZYOb6qaMhg2EvvWE3jpWCO12O7m5uehD7m/48OF1uh8hRNOTCqEQQjRjGo2GLl260LFjR9atW0dxcTFTpkzBXc3G1LHE66uaqN0bi2Ns7ZHR7caQmIjbZEKpoWPksmXL/GFQNWTIEA4cONDEI4y8UaNGcezYMf/Hw4YN46WXXqKdr3oWKdOnT2fp0qUsWbKEJUuW8NxzzwE0yQshHrudCq0WfIHQFRAIy8rKsADaVq0u3MAXCL1NvA+h1u3Gq9WCThf8CV8gDFch1LndeEMCpL9CeJGuqKGaqvIpomP8+PHRHoJoQlIhFEKIZiwtLS2oOpWTk8Pq1atZtWpVdAdWC4rvYjKhSxcASmpYpxdpXq8Xq6JgSk7GYzLF3vrGKHniiSeqHOvevTsbNmyI6DjUF0IA1q1bR05OTpO9EKKUluLQ6cBqBSoDoqq8vBwLoEtIuHCDCARCRVHQeb14jMaqr/zXNRD6KoRKHcfbVJVP0bRmz55d5ZiiKEFLDkTzIxVCIYRoxt5+++0q1akJEybUeZPpqCgpwQskde4MQHkMbe1gKywkDjClpKBYLGgvha9nNLhc8Npr8N13EX1Y9YUQVU5ODoMGDWLHjh2N/2BlZTj1evCtE/SGBEIroA9TIfQ0UpOWcFwuF0bAGzr9E9BUM2XU7XZjUJRqK4RKQ8e7bx/8/OfQjNeTNgdr1qxh1KhRQW+jR4+mdevW0R6aaEJSIRRCCBGTtGVlOAwGElq3xgW4ioqiPSS/8z/8QApgTU2lzGpFW1hY4/kOh4N9+/ZRUFBASkoKPXr0wBjS7KNZWrECfvUrmD4dnn8+Yg/79ttvVzk2YcIEJkyY0PgPVlGB22AAjYYKnS6o+VFpaWllIEwMWP3q+74rTbivn9PpxEhlR9FQGrMZM1UrhBUVFZiobDoTpJ4VwirmzoV//QtyckDdSkbEnAceeIDs7GzS0tKCjkt32OZNAqEQQoiYpCsvx2UyEW8yUQy4a+jkGWnqZuRxaWkUtGqFIdyebj6rVq1i+fLl9OnTh4SEBGw2G7t37+ahhx5qmoASS9T9GQPW1TU32ooK3L4Q5TQYgqYPq4FQ61tfCPibvDQ4YNXA4XBgInyFEKsVC1BRTSAM7UqqBkJNQwOsGgJzcyUQxrAFCxaEPT59+vQIj0REkgRCIYRoAQoKCvzVqZSUlGgPp1b0FRW4rFY0Gg3lGk1MbTtR5NuMPD49HW18PMYa1qa9/PLLbN68Ga32wioNt9vN4MGDm38gVKf5NuNAqHM48KoNZQwGNAFTK0vtdszgn04K+Kdg0oQVQofDgYXKjqKhNK1aYQWKQwKhGiIJvU1jjTc5ufLf3FwYPbph9yWEaFQSCIUQohn76KOPePLJJ0lNTfVXpwoLC3n66acZOnRotIdXI73Tice3bsURMhUv2orVQJiRgS4uDpPXW+25FouFTZs2MWTIEKCyQcOmTZswB25F0Fz5tptwnj1LNCbIRuKFEIPTidf3c+o2mdAFBEKnOs3Z13AG8IdDXRMHQjPhA6G2VSssvnMC+SuEobdprAqhWjk9erRh9yOEaHQSCIUQohl78skn2bBhA/Hx8f5jxcXFjBw5MqYDocvlwuLx4PVdSDt1OpQY6uSpNrjRJySgi4/Hiq/CEuYCfNWqVSxevJh58+bh8XgwGAxcd911rF69OsKjjjz32bPogR9yc+kUwcdtjBdCxo8fz5o1ay56nsHlQvH9nHrNZnQBU5td4QKh731dSIXO7XZX2bOvvioqKiorhGFedND7fl5DG0tVVFRUVjNDb6N+HKYraZ2oL+iE2YpCCBFdEgiFEKIZ02q15OfnBwXC/Pz8oOmLschut9MK/Hu7OQ0GNDEUCB3qRutxcegTEiqn4BUX06ZNmyrnZmRksHTp0oiOL1bYDh8mFbA2NEzUUV1eCGlom32j2+0PeYrFgt7lQlEUNBoNLjUcBk4ZNRpRNBr0LhdfffUVjz/+ODabDb1ej8vlIjU1lYULF9KzZ886PusL1CmjQY/ro76AUR7SNbSiogIrQGBHVPBXCLUNrRCqgTCGKv2iqr/+9a8sWrSI7t27M3z4cBYuXEhCQgLz58/n9ttvj/bwRBORQBjGZ599xh/+8Ad27drF6dOnWb9+PT/5yU/8n1cUhaeffppXXnmFwsJC+vXrxx//+Ee6d+/uP8fhcPDYY4/x1ltvUV5eztChQ3nppZdo3769/5zCwkKmT5/OO++8A8Dtt9/OsmXLSEpKitRTFUI0c6+88gozZ84kLy/Pf5GamZnJK6+8Eu2h1ai4uJhWVK53AnAbDGhiaGsHp7omzmrFkJiICbDbbGEDYUumtdkoB+I9nsg+bh1eCFmzZg1vvvlmleOffPLJRR9HURRMXi9ONURZrVgVhbKyMuLi4i7sSRhYIdRocBsMmJxOpk6dyltvvUVWVpb/08ePH2f8+PF8/vnntXy2VfmrfWECoTYurtoKYZUGOOCvEGoaGurVje2lQhjTnn32WbZs2YLdbqdXr14cOHAAs9nMsGHDJBA2YxIIwygtLeVHP/oRP//5z7nzzjurfP73v/89zz33HCtXrqRbt2789re/Zfjw4Rw8eND/n8+jjz7Kv/71L9auXUvr1q2ZOXMmo0ePZteuXeh0OgDuvfdeTp486d+w95e//CUTJ07kX//6V+SerBCiWcvOzmb9+vXRHkadqRVCrW9Db4/JFFN7/XnUyo/Visn3Il7puXPQtWvY8xtzOuClxFxWxndAT68XxelEE6GtNuryQkhD2uyXlZVhBTy+QOhv2FJcTFxc3IV1r4GBEPCaTFicTlwuF4mBW1IACQkJeBoYoNUKoSbkcdWxWIGKMBXCNoAmNBD6vme6Gjrp1opUCC8JFosFq9WK1Wpl6NCh/p/Plvj3qyWR724YI0eOZOTIkWE/pygKS5cu5Te/+Q1jx44F4PXXXyc9PZ0333yTX/3qVxQVFfHaa6+xatUqhg0bBsDq1avJysriww8/5Oabb2b//v1s2LCBbdu20a9fPwBeffVVBgwYwMGDB7niiisi82SFECIGFRcXEw/ofBcjXrMZ3UX2+osk/xYYcXGYfN0TS/Pzg87Jzc1lzpw5jT4d8JLhdmN1uzmu19PT7abg8GFaZ2dH5KHr8kJIQ9rs2+12LECZLxBq4+OJo/LnNzMzE091gdBoxAo88cQTjB49GqPRSEJCAkVFRbjdbp555plajb06aoVQE6ZCiNWKFnCGVOrUcKv3vQjjp9Xi1unQ1tBJt1bUCqEEwio2bdrEggULuPrqq7nllluYM2cOiYmJLFq0iAEDBkR0LL169cLj8aDT6fzrnJ1Op2xM38xJIKyjo0ePkpeXx4gRI/zHTCYTgwYNYuvWrfzqV79i165duFyuoHPatm1Ljx492Lp1KzfffDNffPEFiYmJ/jAI0L9/fxITE9m6dWu1gdDhcAR1BiuOoX25hBCisdjtdjIAvS9sKRYLhrNnozuoAEpJCV6NBq3RiNnXvVJtNKOaOnUqb775ZqNPB7xk+C78PW3bwvHj5H/3XcQCYaQUFxfTFij2vXChrs8r8jWTUdQQFBLMvBYLFiovvj/77DPKy8ux2WwkJyc3SvdZh8NBPGGmf4I/nHpCglm1gZDK/Qz1jVUhlCmjVcyZM4d169Zhs9kYMWIEO3bswGq1MnbsWD799NOIjiXcemej0cjbb78d0XGIyIrtrgIxKC8vD4D09PSg4+np6f7P5eXlYTQaSVb33KnmnNDpKQBpaWn+c8JZtGgRiYmJ/rfACw0hhKitmv7OxAJ1DaHRNx1TsVoxNvSCtDGVluIwGECjwZKaCkB5SAXT4/E0yXTAS0XFuXMAxF1+OQA2dZP6ZsReXIwVMPh+TvVJSf4KIQDqtMyQCqFiNlduDu+bBm2xWMjMzGy0rUjULqO6cIHQF0491VQIDSE/swAeoxGdx4OiKPUek1Jaikerxd2M96SsL7PZTFZWFj179iQ7O5v27duTkpLiX2IkRFOTCmE9aTSaoI/VNQo1CT0n3PkXu5+5c+cyY8YM/8fFxcUSCoUQdXbffffxwQcfRHsY1VLXEBp91Tet1YoxhoKUpqwMp9GIBbD4Xvzzdx71Wbx4cZNMB7xUnDl8mA5Aas+e8MknFP/wQ7SHhN1uD2o001Al58+jBf+0YVNSkn8NIYC2mkCILxCGdvpsLOo+hGEDodoRVa1e+pSWllY2lQntMgp4DQbMVG4HY6znOlDHuXPke720LSsDRYGLXDO1JBkZGf5pmh9//DFQue7YW8P+pkI0JgmEdZSRkQFUvrqemZnpP3727Fl/1TAjIwOn00lhYWFQlfDs2bMMHDjQf86ZM2eq3H9+fn6V6mMgk8kUdp8rIYQIp2/fvlWOKYrCoUOHojCa2iu22YgD8F28a1u1wuz11urFt0jQl5fjVteN+f51hlQ+brzxxiaZDnipUANhm6uvBqA0glXpN954gz/84Q8YDAbGjRvH448/DsCYMWP8F9yqhrTZL/NVQc2+/+uNycnEcWHKqH+T+tC1fFZrkwZCtUJY05TR0EBYYbdjBP9WL4G8RiNmKoNmfQOhtqKCPCALKiun4RretFBr166tckyv17Nx48YojCa8xn4xRcQWmTJaR506dSIjIyPol9TpdLJp0yZ/2OvduzcGgyHonNOnT/P111/7zxkwYABFRUVs377df86XX35JUVGR/xwhhGgou93O1q1b2b59u/9tx44d9OnTJ9pDq5FDXY/nuwBR12aVxcBehIqiYHA48KgX+b4L29BAqGrs6YCXinPHjgGQ6guE5RFcA7p8+XJ2797N7t27sVqt3HXXXZSVlYWd8qi22X/22Wd5/PHH2b59O5s3b+YPf/jDRR9HXTdq8TXc0CUmEg8UFxWhKArGigqcZjOETP3TWCxYgc2bN9OvXz8GDhwYFApGjRpV/yfPhQphdU1lAAj5XXL6Qmy4oOY1mYKmuNaZ14vR6cT/koA0lqmVaHT2fOONN+jZsyfXXnstixcv9h8fM2ZMxMciIkcCYRglJSXs3buXvXv3ApWNZPbu3cvx48fRaDQ8+uijLFy4kPXr1/P1118zadIkrFYr9957LwCJiYlMnjyZmTNn8tFHH7Fnzx4mTJhAz549/V1Hs7OzueWWW5gyZQrbtm1j27ZtTJkyhdGjR0uHUSFEo1m4cCH2ME0c5s2bF4XR1J5LnX7pa3ARuPl7tJWXl2NVFBS1kuK76HZLs4wg6ppBY1YWXiqnDEaKVqvFYDAAld1CH3zwQUaOHMm5MGNQ2+ynp6f72+ybTKZaXYxX+H5O1bWuJCZiAMrOn6/ci9DjwV3NXoAW4M9//jPvv/8+H374Idu3b2fatGl4vd4Gv/ChVgjD7UPorxCGVCfdNQVCi4U4CGpqVye+x5JAGPvq8mKKaD5kymgYO3fuZMiQIf6P1TV7999/PytXrmT27NmUl5czdepU/8b0H3zwQVApfcmSJej1esaNG+ffmH7lypVBC4TXrFnD9OnT/d1Ib7/9dl588cUIPUshREtwxx13hD0+aNCgCI+kblxqgxbf31VDYiJW4JSvnX80FRUV0QogYDNyqNqkQ1VQUEBBQQEpKSmk+NZEtgSl6rKI+Hgq9HrcEdw2ZNSoURw7doyOHTsCMGzYMDIzM5k5c2aVcxvSZt/hqwr79+7zNWSpOHOGwsJCEgBPmGl22latKvcJ1GhI8oVJdX/jMWPGUNLAwKTuQ1hTINSGhE7/z2+4qZy+ima9K4S+53NWowFFoTQvj7jOnet3X6JRVLc3auiLKVdddRUjR46kIGSNtGheJBCGMXjw4BpfCdFoNOTk5JCTk1PtOWazmWXLlrFs2bJqz0lJSfH/5yOEEBFz9CikpYVdKxQr3OrFh+9i2piUhBawnzsHUZ5FUVRURByVe84B4JsKGhoIP/roI5588klSU1NJSEjAZrNRWFjI008/zdChQyM86sjzFBXhBbQWCw6jEU3ImrWm9MQTT1Q51r17dzZs2FDleEPa7PunCavByxcIHWfPUlBQQGLAsUBqIGzfvn1QcJ00aRIdOnTgoYceuuhj18RRVla5HjDcNGXfz60+pEJYYyD0bWZf78qlLxCasrLg+HHOff89cbI8xq8h61jrojZ7o9blxRTRfEggFEKIlsTrhc6dKy9gS0pAG5srB9whFUJ1r7+yCE47rI5aIdSp+7VptTh0OpSQi+Unn3ySDRs2BM0eKS4uZuTIkS0iECp2Ow69HotWi9NkQhfN9Z+KAr/7HQwZAtdf32h361anMKshyhf+nPn5/gqhNkwg1LdqhRW4++67/RfeqiFDhnDgwIEGjctTzf6H6jGPRoMhJBB61apkmECo8Y233oHQNx5rp05w/Dj2ME31GmLPnj3Mnz8fg8HArFmz/L0YJk+ezGuvvdaoj9UU1HWsdrudXr16ceDAAcxmM8OGDWvUQFibvVFr+2LKpk2bWLBgAVdffTW33HILc+bMITExkUWLFjFgwIBGG7OIDAmEQgjRkhw/XvlveTkUFUHIfqmxQlHXM4UEwtDN36PBZrORCegDvnYuna5Kkw6tVkt+fn5QIMzPz0cboyG8sWlLS3EaDFgAt8WCIZr7z/3wA8yfX/l+I66Fqi4Qus6do7CwkERAH2bqqaZVK+Joui6jXjUQhqsQajRUGI2YQtYD+ruOhgmEWl8grO943TYbeiCxWzfYtIny/Px63U91pk+fzooVK9Dr9cyaNYtt27YxY8YMjhw50qiP01TUdaxWq9W/jhUav6lMY+6NOmfOHNatW4fNZmPEiBHs2LEDq9XK2LFj+fTTTxtpxCJSJBAKIURLcvDghfeLi2M2EKJOX/OFKbWLY3kMrGMpKiqiKxf2SARwGQxoQi6WX3nlFWbOnEleXp5/u4zMzExeeeWVCI84OrRlZZUdNgGv1YqxkatCdRLY4dTrrVIZdzgc7Nu3z7/Ws0ePHrXaXqHKNEvfxbbXZqOgoIC2gCE1teoN4+NJ0GiarmuuGu7C7CkI4DCZMIcEQp16mzBrHnW+QFhYz/GWnDlDEtD6qqsAKG/kSr9Go6FLly4ArFu3jpycHKZMmYLb7W7Ux2kqDVnHWheNuTeq2WwmKyuLrKwssrOzad++PUBQrwxx6ZBAKIQQLUngVDS1CheDNCUleLVatL5AoXZxdESwMUl11CmjgYHQbTKhDWm4kZ2dzfr16yM8utihr6jA43vBQWnVCovHg8vl8jesiKjAMGqzQcD3btWqVSxfvpw+ffr413ru3r2bhx56iAkTJtR4t0ro1ExfmNIUFVXuRazVolU7kAaKj6eVolBaTfOYhu75pqkh3AE4zWbMIeFOr34cZoprQ7d9KfUFwsTOnfECzkb+PU5LSwta95aTk8Pq1atZtWpVoz5OU2nIOta6aMy9UTMyMvwhVt3b0+124/V6G3PIIkIkEAohREvi2xsOiNlAqCgKuvJynCYTZt8m9BpfBSaWAqE24GLbazSijeaUyBij7tXoVStnCQnEU/m1Sw1XMWtihQcP4q+FnzsXFAhffvllNm/eHDSV1+12M3jw4FoFQpdWi0Gd2qfT4TSbMVVUcPr0aRI1mrABi/h4DMCuL7+kZ8+eGAwGxo0bx+OPPw5U7vmmXmTXh7+DaDUVQqfFgiVkCxdjWRkunQ6DyVTlfLXLb32njKoVwYR27SjTaBo9EIYLThMmTLjo96+lslgsWMKtL62DwH0zVXq9PmgPbnHpaBkLGYQQQgBQ9N13fOv/IDYDYVlZGXFeL57AtUy+910xMObiwkKsEHSx7TWb0TudURtTrCkvLydOUVB8XyN1w/aiKH3/8v77X//7xSHryiwWC5s2bfJ/rCgKmzZtql3lpLwcV0jF09OqFUnAnt27SfR6oZoKIcDuPXuaZs83tfJYTSB0W61YQ6ZTGh0OHGHCIFxYQ1jfCmHFuXN4gKT0dCp0Ojwx8HssmkZjr3sUkSGBUAghWpATe/ZwWP0gBjZ5D6ewsJB4wBu4LYYvELpjYMz+xjYB41OsVkxeLy6X66K3t7eADezVKqrG14lVn5REPJUNeaIynkOHUB/5h4BwCJVTRv/5z39y/fXX079/f2688Ub+/e9/12pbKE1FBe7QtYapqaQCX2/ZgklRICOj6g3VqaUeT9Cebw8++CAjR47kXAPX2OkuUiH0WK3EhTQSsTgc/jWfoTRxcQ0KhI7CQkqAlNatcer1eFvA70BdORwOdu/ezYcffsju3btxRugFpj179jTK/YwfP75R7kdEh8R4IYRoIWw2G65Tp8gzGnE7nehj9FV6m81GPASvf7rI5u+RVKFerAdcbGt8+7TZ7Xb/5vNvvPEGf/jDHxp9OuClwGazBW3NYWjdmnjgZJR+5pw//MDJuDiSSkvJP3CA7IDPZWRkhF3DVRuGigo8IaHLeNllZB44QLJ6QV9DIOyUlNQke75p1amd1QRCb6tWJCiKfw0YgMXpxBUwlTZIXBxmoKKee0m6CwspBRItFs6aTBfWXgqgYetY6+Kll14K+lhRFJYvX87UqVOZOnVqre5j9uzZVY4pisLWrVsbZYwiOqRCKIQQLcShQ4dIVRQyr76aIipb48ciNRCq1SXA37QjFgKhS13/FBgI4+KwULnPoGr58uVNMx3wEqAGQr1vuqTJFwijVSHUFhXhSk6mSKOhLHAdbTiKAj/7GezYcZHTFIxOJ+6QbRp07dqRZTCQrh6oIRD2S02tsg9h9+7d+fWvf835Bmyxoq+owKPRQDVTQL2tWpEAVPgaISmKQpzbjTuwKh9InbJdzwq9u6iIcl/wdJvNF9Y4NpK//vWvXHPNNUyYMIHXX3+dK664gj59+vDOO+806uM0FXUd6/PPP8+CBQtYtmwZmzZt4k9/+lOjPs4f//hH/v3vf2O1WomLi6NVq1ZotVpaVfPCQThr1qxh1KhRpKen8+9//5v33nsPi8Xi74g6atSoRh2ziAwJhEII0UIcO3qUNkB6jx4UASWnTkV7SGGpgTBwnz/0elxabZXN36PBrYaagIsotS1/4HRQrVbbJNMBLwXqlFGD73tobtOGVkBRlJoCGUtLITkZu9GI52JB6/RpWLsWxoyp8bTy8nJaKUrw1GaAzEwyAX8MTE+nCnXKaJguoxXTptHt1lt56KGHADhVj99TQ0UFTqMRfE2ZQimJiSRzIRA6nU7ioUq106+BU7YVux2n73fBa7FcqGA2EnVj92effZbHH3+c7du3s3nzZv7whz806uM0lQatY62Dr7/+mgkTJvDPf/4To9HIxIkTad++Pffdd1+t7+OBBx4gOzubv/3tb2zdupXt27dTUlKC1WrF6/U23VYqoklJIBRCiBbih4MHMQOpV11FEVCRlxftIYWlriE0hExfc+r1F/ZXiyKvelEcGAh9bfkDK4SjRo3iWEA1atiwYbz00ku0a9cuQiONHjXUm3wdRXW+SmFZ4H6AEeLxeLA4nehTU3FYLCgXq1J+913lv6dP13ia3W4nAVBCt3bIyCBdUfjp9dejWCzht37wVb91IRfP77zzDh+/+CIHgSP79vHuu+8yZswY3nvvvZrHHMLgcFQGwmp4W7emNVDuC6SlpaUkhnsuKl/o9dZ3DW9p6YXxxMVhaOT1cerG7unp6f6N3U0m0yXT4KQh61jrQqPRcO+99/K3v/0Nt9vN7bffXucXqBYsWEBaWho6nY6kpCSsVivPPfccDzzwAGPGjKGkmq1URGy7NH5ThBBCNFjht5X9RZO7duUIkBKjlSqbzUaCRuMPESqXwYAmZK+/aFDUKmBAIDQkJmIBzgRUCJ944okqt73y9Gn+Vd06rWZEnTLq36vRFzQq8vMjPpbTp0+TCDjS03HHxaG7WKg5dOjC+w5HtdMu7XZ75dTm0BCVmYnO7eauK66oDJXhqnS+nx19SKVs0v330x/oDxjOn2fnzp3YbDZ27tzJrbfeWvO4AxhdruqnfwK0aYMWcOblQYcOlJWVkQj+oFqFeryeU7a1ZWW4fV9HbatWmNzuRt2TMlIbuzeVhqxjrQ+tVsvEiRMZP348efV8YbBXr15B618nTZpEhw4d/JVtcWmRCqEQQlwi3CFt4uuq1FetiuvYkRKtFk9BQSOMqvHZbLbK/dtCLrQ9JhO6GAiE/iplYCBMSKgyZTSUx+1GN3w4hrfeitmvfWOxFxRgJiAs+f51ROFFiJMnT5IExLVti5KYiPFiU9oCA2EN4y0uLiYeqm4837Vr5b9vvQU9e4a/sU6Hw2DAEPLzvGLmTH4MHAC62+089dRTdO3alSeffLLmMYcwuVy4a9hnTpOWBoDbFwZKS0tpDSjVBShfINTWs/qjq6jw70mpS0ggjsZdT7p06VJ/cxxVuI3dN23axLBhw5gxYwYffPAB11xzDYMHD+aLL75otLE0mn/+E/72tyZ9CK1WS9u2bet122XLllVZ/zpkyBAOHDjQCCMTkSaBUAgRU/bs2cPo0aO54447grqWTZ48OYqjip7c3FxuvfVWBg4cyE033cSAAQO47bbbyM3NrfN9ec+cASovBl1xcbG97UQ1gVDrcERpVJUURUGjBsKACowxKanKlNFQP3z11YX3P/+8qYYYE8rUSqAamn3fS3cU1hCeO3OGBMCamYk2JYU4l6vmlv6nToE6vbGGiqY6ZTRorStA9+6VTZDKy+Gaa6q9vcNqxRoSCMsPHWIu8EeDgR/KyrjzzjvrHJwURcHsduOpYf2Zzreu0eMLhGUlJbQBNOHWO0KDA6He4UDxBUJDUhJx0KCmOfU1Z84cVqxYwc9//nPuv/9+/vWvf/H3v/+duXPnRnwsNSouhp/8BO66K9ojES2ETBkVQsSU6dOns2LFCvR6PbNmzWLbtm3MmDGDIyGbSbcUU6dO5c033yQrK8t/7Pjx44wfP57P6xgqNGq1IzUVb3w8uhhd62Gz2YjzeqsEQsW3+buiKGiqaZbR1EpLS7EqCh6DAV3A+iRtmKYyoU5t3cpl6vuff85lF2lacilzhG7NEcVAWOpbC2ht2xZ9mzYkAWfPnqV9+/bhb3D+PGRnw3//W2MgLC4uphugD50CrNdXhsKdO2HAgGpv72zViviQn5dy3985XXY293/1FR0ee6xK5etiHA4HSVR2Eq2OPjMTAMW3ptOZl4ce0FVXLVL3k6xnwxCTy0W572fAmJJCHPBDFKrkZrOZrKwssrKyyM7O9v8M1PVr3OS2b2+yu3Y4HOzbt4+CggJSUlLo0aMHxhrWm9bWiBEj+OCDDxphhCIaJBAKIWKKRqOhS5cuAKxbt46cnBymTJnS4OmSlyqPx0NiYmLQsYSEBDwhm0pfjKIomIqLcVgsmIxGtImJGGN02mJJQQFGRanajMNiwULl5thxNa2PakJq90yPxULQJaTFUhkIa6gQFgZsAF3USJtBxyqn+rMVEgi9UdiHsNTXpdPYpg3GtDSswOn8/OoD4blztQqE6hpCg69xTpAVK+DYMRgxotrbuxISSPrhB5xOp/+C3PvDDxSbTBi7daP9V19x+vRpxo4dW8tnWqm8vJwkwFPdekDAmJ6OG/zPz+37GumrC4RWK16NBkM9uoOqFUunbzymlBQ0QEEE/v7k5eWREbDtR0ZGhn+toboXqNvtxuv1NvlY6qSJfk8aY7/DcePGVTmmKIp/1ordbie+uuZEImZJIBRCxJS0tLSgheo5OTmsXr2aVatWRXdgUbJ48WJGjx6N0WgkISGBoqIi3G43zzzzTJ3up6ioiGSPB2diIiYqL2ItBw82zaAbyF9dCr2oCNj8PVqBUG2W4g3Ze05ty19Ww0Wu4+BBSrRazrVqRek33zThKKPPo1YC1VDi+14qUdhH0uGbKk1SEpaMDOKAr2pqbnPuHAwZAmZzzYHQ97OghGsS1KNH5VsNPElJtKby51ltfmIsKKA0Pp74zp3J0mjYqnY8rYOysjKSASV0bWMAs9VKPqDzPT/FN3XUWF1I1mioMBrrFQjLysqIA8p8L2xZUlMxEJlAeN999wVVrdauXVvlHL1ez8aNG5t8LHUS+MKSywWN1HxH3e9Qq72wYsztdjN48OBaB8IdO3bw8ccfs379el555RX0ej2jRo3yN6cZM2aMP2yLS4cEQiFETAltAgAwYcKEWv9n1dzceOONfPbZZ5SXl2Oz2UhOTq7X3lR5eXm0obLdPIApLY1WXi+K14tGG1vLyV3qhWJIINT4pmUWFxcHveofSWogJDSQ+j521TAlUn/qFOesVnTt28M331BUVFSl+ttc+Ld2UJ+f2YxHowm7715Tc6pbXSQlEZeVhRk4/8MP1d/g3DlITYU2bWoMhBW+Fy40NVTiapSSQmsqf55bt26Noigk2O04u3WjMCWF0oCqS12Ul5eTDDhC1zYGsFgsfAOkqVtr+L5G5g4dqr2Nw2TCWI/tIgoKCkgEinzB2ZCUhAEoasRA2Ldv3yrHFEXhUGCDoBrE3PYUgYHw/HlopL936n6HQ4YMAeq33+GUKVOIj49n3bp15ObmYjAYeOGFF3A6nZSVlaEoSqOMVURWjP0GCCGECMdisWCpoWvgxZw5c4Y2gNbXNMKamYkeKM7LI6GeXeaaiqJOlwoJhOpefzWt02tqhYWFJAHa0IttX/Dx1hAITQUFlCUlkdapE+nffMN3331H7969m26wUaRRv0dqINRocJnNFxryRJC/o2tiImbfz7/9xInwJ7tcUFzMDw4HmampaGsIhC61KUo9A6E2NZUULvw8nz9/nuNeLwtOnaLd3/5GArDx3Xe54YYbePrppxk6dGit7resrIy2QH4N25uYzWaOAZf5gqDu7FnKAYuv+2g4LrMZcz0CfWFBAe0Ao9rB1PfiSYlauW0Edrud3NzcKsFu+PDhjfYYERU4ZTQ/v9EC4apVq1i8eDHz5s3D4/FgMBi47rrrqt3vMHT/S0VRWL9+Pb169UKr1fq3DZk+fTpXXXUVI0eOjEjlVzQ+CYRCCNECnDlzho6A0decJsH375lDh2IuEGrVV8dDLmj1vkBYFMXuqGog1IWuG6tFIGxVWoq3UyfMHTuSAez74YdmGwi1aiAMCPVuiwVDQQFut7vKhfumTZtYsGABV199Nbfccgtz5swhMTGRRYsWMaCGxiy1oajfk8RE8E2jLK2uQugLeb+aN48FaWlcE9JWP+h+1anN9dzrTp+eTivgB9/P88mTJ3kdePO22+g2fTr068cIvZ6333uPkSNH1joQVhQVYQW0NQRCg8HACY2GOF8gtJw6xVGNhqtqmC3gsliw1KMpkO30abSAVf2d8QXCikbsMrpw4ULsdjvJIS/UzJs3r9EeI6KKi0GnA4+nxip1XdV1v8NJkyZx3XXX0b9/f3/lT90Xc9SoUUHLO4YNG0ZmZiYzZ85stPGKyJFAKISISQUFBf4uaCktYCPvpnbmzBn6AsZ27QBI9k0NO3f4MF0HDYriyIJ5vV5MahUi5PtuSEzECpyMcoWwg0aDLjQE+AKhppqwarfbSXG78bRti/Xyy8kEPjh5solHGz2GsjKcJhPGgO6N3rg44gsKKCwspE2bNkHnz5kzh3Xr1mGz2RgxYgQ7duzAarUyduxYPv300waNRVNcjFOnw2gy+QNhRXWbcftC3nng67Nn+dHZs9Xvz6VWQur598mQkUECUOILRieOH8cElKelge/31JCfz/Hjx4PWfF2M01d504d8jUOdMhiIKywEj4dWp0/zncnEVTWc77ZaiatHcy+772ttVauPvkBY3oh7Ut5xxx1hjw+q5d+2mOuQWVyMp0MHdEeO+F+kiIajR4/ywgsvkJuby7Rp0xgwYABffvlltftidu/enQ0bNkR4lKIxSCAUQsSUjz76iCeffJLU1FR/F7TCwsI6TZlqTjZu3Mi8efPQ6XRMnz6de+65B4BRo0bx7rvv1vp+8k6fJl2j8e8z1rpzZwBsvs3qY0VxcTFJ6gchTTHUQBjtKaOtdboqY1MDYXVbeRw/fpx2QGGHDmjbtsUKnDt6tEnHGi0ulwuzy4UrOZmgZvbx8cRTOTUyNBA25XYA+pISKszmyrH4vm/+dYWhfCHlHJAPuE+fprqG/Fp1nWQ9K4Rm3++g6/hxAPK++Yb/A+Zu3syZrVtRgKPAo48+yiuvvFLr+3X4ApjZt7VEdY5bLOiKiuDbb0nKz+f0RRo1eeLjSVCUsBXempT4xhOnBkJf51lHFKYWXqxDZswoLubLU6foD2hsNqKzyQ7ExcUxd+5c7HY7zz//PEuWLMFmswVt/ZOXl4fFYmm266FbCgmEQoiY8uSTT7Jhw4agttXFxcV1mjLVnDz11FO8//77GI1G5s2bx5YtW3j++ecpq+N+YLYffsCiKOC7KDP71qTYY6xKZbPZSAFccXEYQi469QkJF938vakVFhaSpNHUORCe/O47ugOerl3964FKDx9uwpFGT1FREYmAJ2QfPG1iIvGE7y7ZlNsB6EtLcalj8X3fPNWFEV81pmPv3uTv2lXjdD19URFeQFvPNYTmyy8HwOtbz1j4zTdkA/9YsgSuvx5PRga/O3OGax99lOzs7Frfr0udBnqRqeBHW7euXKu2aRPJdjtnfQG1OmpX1PLy8jptK1Dhq1jq1OmcagMmNVBHkNohM7DiqigKEydOjPhYalRURF5FBcVAUW4u1bf6iYz4+HjmzZtHcXExOTk59OzZk8svv5y+ffvyj3/8g7i4OMaPH8+UKVOiPFJRXxIIhRAxRavVkp+fH3TBkZ+fX6cpU82JTqcjyXcR+9xzz7Fy5UrGjBlDSR2bOzjUJhrqq/S+AKPu0RYrCgsLSQG8YV5t1sTFYSH6FcJEr7dqIDQYcBkM1bblz9+3D4Ckbt38gVCtDDU3NpuNREAJCUr6pCR/hTBUU20H4PV6MVdU4FabcsTF4dFooLq1cOfO4Qb6Dh/O+b17Mdrt4HZXbjYfOr7iYkpNJuLr+bdJ41vHq/X9Dqqb0uOr7Gk7daJzfj7H6ljFV3wh1uSbdlodXevWnDl3jvTf/hadonDEN57qeJOTaU1l05q6BEKHGqrV32lfIPREYU/KWbNmER8fT2rIGuBHHnkk4mOpiev8eYoBG1Dw3XdRD4SqhIQEtmzZQm5uLmVlZVxxxRUcOXIEg8HAjTfeKIHwEiaBUAgRU1555RVmzpxJXl6ef1pKZmZmnaZMNSe9evUKWrg/adIkOnTowEMPPVSn+1H3GSNg2pYHcFQ3dS5KbDZb5R5q4VrmW63EAcVRuJBUFRUU0MrjgTDjc1osmKqp3BZ/+y0Aunbt/Bf8VLeO7RKnBkJNSKg3tG5NPHC4DmuiGrodgN1uJ4GAFxg0GhwWC7pqXlRwnj6NDeh25ZVsz8iAH36orBr6ploHMpWWUmG1Uu8tuBMSKNVoMPh+BzXHj1dWHH1BTpOdzY/27OH1OgZCbX4+HkB3kTWEycnJbMnMZOzBg+SZTJRdJEDSujWpwJk67kXoVr/fIYHQG4UXdqZOnRr2+N133x3hkdTMce4cRVQGQkeM/Z2wWCxoNBri4uK45557MBorJ1XH3NYdok7kuyeEiCnZ2dmsX78+2sOIGcuWLatybMiQIRw4cKBud6S+Sq8GQq2WCqMRTxQbFoSjVgi14dZl+TZ/d9Sj02FjcaiNMMJs+u2yWrEWF4ddY1WhrhfMzIT4+MpqYox97RtLUVERCVTdmkOXmEiiVhvRtvRqV1hNwPfL3aoVprNncTqd/otZVfHhw5wDunTpwr6OHSsD4blzYQOhtaICx0VCV400Gs4aDJh9P1NxZ89SkpiICdi3ezcFej1Wl4sjdZxarD9/ngKtljYXWX+ZlJTEqooKxvbvz4zNm2ldw76FAJrUVCxA+fnzUEP31VCewC6v4N+mQxuFPSkvFUpREXYqq+yx9jd65MiR/und/+///T8AnE4n3bt3j/LIREO0zDlYQgjRgiiKgrGwEEWjCWqA4bBYLmwPECPy8/NpDejD7Yfmu6B0N2J3wrryqhdnYQKht1UrEiHsdF7PDz/g1WgqNzzXaKhISiKpooLSKOzL19TUKm+VLpfx8SRqNBFdA1pQUFC5TUhAJ1BvQgLJwLkwP0dlJ05wDujatStJXbtWHgyzjlBRFFo5HLgb2EjjTFwc8WfPYrPZyHQ4WBUXx5AhQ3j99dfZVFzMW14vn37wQbX7xIVjtNko9O0PV5Pk5GROlJbCypV87nD4p6ZXR+f7nXSqm9nXls2GW6MBdfNzoxG30YjZ4cBdj66lLYG+tBRtUlLl35kmmBFR26/7xo0b6devHwMHDvRP654zZw6333570HlGo5EXX3yx0ccpIkcCoRBCNHNFRUWkeDw44uMr97byccXFYahjc5qmlpeXR4ZejzZcIFQv6qNYIdSpjx2mgulNTCSZ8E1v9Pn5lMTF+b/+3rQ0MoAfqtsP7xJWUFBAKmAM3Uw7JYUkRalTIBwxYkSDx5ICGAIqfJqUFFKofPEhlCsvjyK9njZt2pDeowcAnjBT9srKyshQFNwNqRAC59LTST9/nu+//55OwBvl5WzevJnnn3+eBS+9xFKNhl8YDPzpT3+q9X2ai4qwmUwXPS8pKQmbr7GLzWarsodfKL3va+ip4zRzrd1OuckEmgu9Ml2tWpHse9xYEM11yVUoCiaHA3NaGtrWrTE00otGubm53HrrrQwcOJCbbrqJAQMGcNttt9XYYVVtavbhhx+yfft2pk2bhtfrrXNTMxH7JBAKIWKOw+Fg9+7dfPjhh+zevRun0xntIUVVQ78eeXl5pAGekBDjjY+v16v048ePr9P5dZGXl0c6hJ2ip67b00TxItKkhpkwQUBJTaUNVS8u3W43cXY7joAqlbZdu2YbCM+dO0cqoA39GrVuTaLXS2mYise4ceOqvP30pz9t8HYAhYWFpBLcYEWbmUka4QOh7vx5XImJaDQaLuvZEydQ6Fv/Gchms9EW/A2C6qu8Y0faVlRw/MABrgDiEhLYtGlT5SdTUvjhiitoW1SEqRYBTxVXUoLdYrnoeUlJSRQWFuJ0OikpKblohdDge64eX9fQ2tKXluJQq4M+3vh4kmicQLhnzx5Gjx7NHXfcwdatW/3HJ0+eXOXcN954g549e3LttdeyePFi//ExY8Y0eByNprQULWDNzMSUnk4rt7tRqupTp07l5ZdfZuvWrXz22Wd88cUX/PGPf6x2XSVcaGpmtVp57rnn6N27d1BTs02bNjFs2DBmzJjBBx98wDXXXMPgwYP54osvGjxeEVmyhlAIEVNWrVrF8uXL6dOnj38fwt27d/PQQw8xYcKEaA8v4hrj63HmzBnS4ML6QVVSEklUdn1MDxPAZs+eXeWYoihBF12N7czp06R4PFXHCv5AqIvSthMOh4MENYyHdCkE0KSn0wawhYzv1KlTZCgKSsDX2NyhA5nA1zHW5bUx2M6epRVUraL6PlbCrIlqqu0ACk6frmwqExAITe3bkw7sCRMIWxUX4+3SBYD2WVmcA5zHjhH63bYVFHAFcNy3X2J9Kd27o92wAd369aQAaxYt4pl//pN58+bh8XhwlJQwGHghTLipTkJZGYdqEVSTk5Ox2Wyc8v0Mtr3INhVxvm0pPHX8mTWWl1eppCrJySR//z2FjVDtnz59OitWrECv1zNr1iy2bdvGjBkzOOLr2nrq1Cn/c1u+fDm7d+/GYDDwwgsvcNddd/HGG2+gKEqDx9FofH8/4tu1I85sRkvlBvE/+tGPGnS3Ho+nyl6BCQkJeDyeam/Tq1cvjh0+TMeCAujTp0pTszlz5rBu3TpsNhsjRoxgx44dWK1Wxo4dy6efftqg8YrIkkAohIgpL7/8Mps3bw66MHS73QwePLhFBsLG+HqogdAQcsGnS04micqKTrhAuGbNGt58880qxz/55JO6PIU6KTt5Ep2i1FghbKwpVHVls9loQ2XzGEOYio2pfXvaAIdCgsbx48fJBAyXXeY/ZrjsMjI1Gj5ohoGwQq16VhMINWGayjTVdgDFvmY+gVOQDe3bh68Qer0kOZ0ovjDVvn17jgLmMHt1lh47hp7g72l9mAcOpPDZZ+nta6SVOXIkS3/2M//nd23fTod+/XB9+ince+/F71BRSC0vp/gi1T6AlJQUvF4v33zzDQDtLtJlND4jAxugqUPXS4/Hg9npxBu6J2VKCknQKIFQo9HQxRfif/7zn7NmzRpuueUWzp49y7vvvktOTg5PP/00t956K1qtFoNvfeX06dO56qqrGDlyZEQbHV2Mt7AQLRCXmUliUhI6YEcjBMLFixczevRojEYjCQkJFBUV4Xa7eeaZZ6q9zbJly+CPf4RHHoGvv4bu3YOampnNZrKyssjKyiI7O5v2vhdIdBdpaCRijwRCIURMsVgsbNq0iSFDhgCVVYJNmzZhDply1FI0xtfjzJkzXKXRVAmEhoyMyrVU1TRpeeCBB8jOziYtpFp333331e1J1IFXbVgRrkJoNOI0GDBFKRAWFhbSBnAnJxOuZUdchw7EAfkhF8wnTpzgBsDq24gcgIwMUhWFvDBh41LnVqcUVhMIdWGmCTbVdgCl339f+U5A0NSkp5MCFIQGm/Pn0QN630VtfHw8BTodGWHWzJV+9x0Acb4gUl/drrqKfwH3OZ0c7diRTiFBrm1WFpuAwVu21O4Oz5/H7PVSFq5Lbwj14n3btm3AxQOhVqslT6tFX4cpo0VFRSQBSkhlSp+aSjKQ1whTRtPS0vxb80yaNInrrruOuLg4Dh48yM6dO7HZbOzcuZNbb72VUaNGBW3jM2zYMDIzM5k5c2aDx9FYik6cIBlIaN+e+KQkNMCxMNOW6+rGG2/ks88+o7y83L9mtFb/j/i+3xvmz+f6118P2oMyIyPD33H0448/BuBnP/sZXq+3weMVkSWBUAgRU1atWsXixYv9U6YMBgPXXXddnbrsxZo9e/Ywf/58DAYDs2bNYuDAgUDlGpfXXnutxts2xtfjhx9+oL1Ggybkgs/Urh2pwP5qAuGCBQvCHp8+fXqtH7suFEVBq1ZtwlUIAYfVirmO+6A1FjUQKtVcbGt9Y1arUqqzeXlkAPrAalJGBlqgNOTc5kBRf56qCYSGCE75dajVysDKo+/7VK6GRZ+KY8cwA+aALRXscXFkhfn9cPgCYeJVVzVofFdeeSVDLRYKy8sZ9dJLVT6fnp7OFzodY779FjyeoKZQYfmek0vd67IGl/l+Hr/44gvMZvNFm8oA5BsMJNVhGwS1wVDomltDmzYkAfsboUL49ttv+98/evQoL7zwArm5uXz++ecMGDCAL7/8kieffBKAJ554osrtu3fvzoYNGxo8jsZiO36cZCCpQwc0vpkhxSdONNr9WywWLLVYY+rnq56eW7+e33fv7v9/Yfbs2Vx22WXMnTvXf6qiKGzbto1Dhw412nhFZEggrAd1+kGg9PR08nyvNiqKwtNPP80rr7xCYWEh/fr1449//GPQHi0Oh4PHHnuMt956i/LycoYOHcpLL73kf8VOiJYqIyODpUuXRnsYjepia1xq0hhfj3Pff0+S1wtZWUHHze3bYwLOxcjm9MXFxSS7XJUfVBMInXFxWIuKUBQFTUDXwkhQA6EmXPUS/Be95cePBx0u+f77yopiYIXWd8HuasQLvVjhnxIaGgh9TXXMEazw+hughAmEoWvhCr/5hkwgvls3/7HilBQSwvx+aI4coRywNML/2e9v38758+fpMmhQlc9ptVrOZ2aiP3kSjhwBdSuM6qg/ex06XPRxMzIy0Ov1bNu2jXbt2tXq96nQbKZtHap6hYWFpAG6kICqSUmhtUbT6F1G4+LimDt3Lna7neeff54lS5bETCfT2ir2zRpI7dwZfGMvi+bU8mPHAMgG/vDOO8yZM4eSkpIalxTIJvWXHukyWk/du3fn9OnT/rfATmi///3vee6553jxxRfZsWMHGRkZDB8+PKjz3KOPPsr69etZu3YtmzdvpqSkhNGjR9e4uFcIcWlS17h07NiRdevWUVxczJQpU+q3B9fJkzB3LlRU1PomLrUKFRIItWlp6IDSGJm2mJeXRxbgjouDgGlJgdyJiaQA5VGoEubn51dZCxjEFzS8IZ1DXepFeuBFsW+dmlLXPd0uAZaiIjxarX/Np59eT7nZTFwdWtbn1WG9Wjja8+fx6HT+zdAB8FXKDSFTH0sPHsQLpARU/ZwZGaSUlYH6QoWP6eRJTprNoG34ZVSPHj0YFCYM+seghsB9+y56X57vvqMUsNZibaNOp6Ndu3aUlJRwVS0rnUWtWpFQhwpvwfnztAGMoQ1rWremNVDYRGv34uPjmTdvHv/3f/93yb3AWOoLf206d/bvd+qoY2fXRuULhFdqNBw8cIBXXnmF++67z7+kYNCgQUFvTbmkQDQdCYT1pNfrycjI8L+18b0yrCgKS5cu5Te/+Q1jx46lR48evP7665SVlflfSSkqKuK1117j2WefZdiwYVxzzTWsXr2a3NxcPvzww2g+LSFELdR12wV1jYsqJyeHQYMGsWPHjjo/tnf0aFi8GDZurPVtNGrgCwmEatWkIsYCoaeGboeelBTSCb/XX1M7c+YM7TWa4KmfgXzVIkNIiFHUV/cDA2FaGopGg/H8+djqcNhA5eXlJJaXU5GUFDYslSclkVyHFzMacnHpdDpJKCmhLCkpaA880tNx6fXEhTSVcR08yA9AesD3V+nQAR1UvhATICE/n7OBIbMJJWdnU6zV1ioQOnNzOQik1GINIUCW72/CTTfdVKvzCxMTSSkthVq+mHX++HGsQCtfh1K/9HTMikJFmE6vjSkhIYG+ffs26WM0trLTpykBLPHx/kDoasKvU017ffbt25e+Bw5wFTBEUbAYDPz2t79l+/btLFiwoMr6cmi6JQWiaUlNt54OHTpE27ZtMZlM9OvXj4ULF9K5c2eOHj1KXl5e0C+YyWRi0KBBbN26lV/96lfs2rULl8sVdE7btm3p0aMHW7du5eabb672cR0OBw6Hw/9xNC6KhGgpGmvbhcA1LqoJEybUuWuqt7AQ5b//rfxgwwa47baL3kZRFMzqxURo0wjfC1nuaqowGzduZN68eeh0OqZPn84999wDwKhRo3j33XfrNPbaUAOhrobpbt70dNKp3Osvo4F7wNVV/qlTpClK1a+jymSiyGolLqTqYTp7Fq9GgzYwEBoMOOLjaV1cTGFhISkBexReys6cOUNbqHbDdkfr1mTk5VFRURHU0CLcRbuiKA1ai5SXl0c7wB06/VijoTglheSQ9WvK4cOc0OkYEPC9MPmmj3qPHEHbqZP/eLrNxlcNbChTW50vv5yvgQHffMPFJnUq+/dzEGhXy5+nZcuWMWHCBH7yk5/U6nx7mzbovvmmcmpqaMgLd75vWrwxdGqt73uiNLACDJH/O9XUnKdPU2wwVG7d4guESiOstRw3blyVY4qi1LjXp724mFyPh+eBmcDy225j4ebNXHnllQD89a9/ZdGiRXTv3p3hw4ezcOFCEhISmD9/PrfffnuDxywiRwJhPfTr14833niDbt26cebMGX77298ycOBA9u3b55/eEtrCPT09ne99i73z8vIwGo1VFnAHrkOszqJFi6qsXxRCNI1obLtQk91Ll3Id8DnQf+vWsJ0uQxUUFNDW6aQ8ORlL6FYJvgqhUs2rz0899RTvv/8+RqORefPmsWXLFp5//nnK6jDlry7y8vK4UaNBF9DUI5Q2I4MM4Pswm5s3NcexY5XTamroxliakkJSyNczpaAAW0ICKUZj0HFPmzZkFBdz6tSpZhMIT58+TSZU+zVSMjNpu28fZ86coUNA8Lfb7eTm5lZZezR8+PB6j+XUqVO0BbRhxuLIyKDd2bOUlpYSFxcHgOnUKc4nJQWtpYu/+mpcQPmOHSQMHVp5sLCQdg4Hn9Xwc9qYOnfuTK7XS5///veiv/P6w4c5AFxdywphr169+Prrr2s9ljL1RY0jR2oVCMvUmRGhLxD4rpG0jVD5ivTfqcYSuD9iIOXcOcqt1soP4uNRNBpohL939dnrc+GcOdgfeICvzGYUh4O+SUmcPHnSPw332WefZcuWLdjtdnr16sWBAwcwm80MGzZMAuElRqaM1sPIkSO588476dmzJ8OGDfO/AvX666/7zwldnF2bBgi1OWfu3LkUFRX53040w4YEoqq6TlEUjSOW1kgUFhby5QsvcFav532tFu/Bg1CLqYaHDx+mC+AOqG74paTg8U1bDEen05GUlITVauW5556jd+/ejBkzhpKSkgY+m/BOnTrFZRoNmhrWP5k7dKA1cL4RKgt1pahrA2toJOJITyfd4fCvD3W73aQVF1MSppqpbduWTPBvDN4cnD59mraAsZoqr6FDB9pS2fk20MKFC4PW2avmzZtX77GcOnWKdoAxTHDxduzI5QSsUVQUWttsVIQ0P2nbsSP7AcfOnRcO7t0LgLNHj3qPrS46d+7MPkB36FBlp9Hq5OVhLCxkHzTZCwyetm1xAxw+XKvz3er3OXRqoe/3wdgIla/a/J2qaVpkJLz33ntBb++++y5jxozhvffeq3Ku1mbDra6h1mpxWizEOZ2UNrAZk7rXZ4cOHfxvHTt2rHGvzzv69CEZ0GRloenQgW6+a1Q1VFosFqxWK+np6QwdOpQjR45gMpmkqcwlSL5jjSAuLo6ePXty6NAh/7SLvLw8MgP+Yzl79qy/apiRkYHT6aSwsDCoSnj27Fl/O/rqmEwmTGE2RBbNQ2NNUbzUud3umPgPJdLbLtRkwYIF3FJSQtwNN2C22TDt3Qv5+eH36wvw3Xff0QUwhWsaodNhb9WKuGpefe7Vq1fQnl2TJk2iQ4cOPPTQQw17MtUoOHqU1l4vBO7XF6JVly5ouTAVLZJMamOHGgKht0MHuu7aVdmAJjOTY8eO0UlR0ITpDmnMyiIDOBQSji5leXl53EDw1g2B4rp1IwHYFfKc77jjjrDn19Rs5WJOnTrFTYA5zIshuh/9iCvfeYft33/P5ZdfDqdOkeRy4fJNhVO1a9eOj4D2AVU0x2ef4QKMEQqEnTp14htA63RWBrGALqhBdu0CYCdNFwiT09I4qtXSdf/+Wp1vzMvDqdViDP07lZyMW6vF3AjLXgL/TqnTIu12OwcPHmTcuHEXnRYZCer+iP379/evGQ7cH1GlKErlPqsBP7OelBTSysr44Ycf6Fbd974W6rXXp6+C28o3nvjTp2nbti1btmzh9OnTaLVaXnzxRbRaLQMGDGDixIn88pe/pHUtK9QXc7oZNt2KVdG/4moGHA4H+/fv58c//jGdOnUiIyODjRs3cs011wCVC9s3bdrEM888A0Dv3r0xGAxs3LjR/8fr9OnTfP311/z+97+P2vMQ0RdrUxQjKTc3lzlz5mCz2dDr9bhcLlJTU1m4cCE9e/aM9vCaxIgRI/jggw9qde4XX3zBPIOBuIEDSSkshL17UQ4erH4LBJ/vDh3iVo0GYzVdBMtSUkiqpqnMsmXLqhwbMmQIBw4cqNWY60qrhrwaWusbfU0wyqOwf1/8uXOUm81YatqvrWdPOv7973x15AiZmZns//prbgKcvv8PAunat6edVsumaiqEmzZtYsGCBVx99dXccsstzJkzh8TERBYtWsSAAQMa6Vk1rvxjx0iDoAvaQJauXdEAhRf5GVq5ciUbNmzgz3/+M1Z1+lwdFRw+TBJAmHAad/31GICynTvhppuo+OILzICpf/+g89LS0til0fCzw4ehtBTi4vC+9x4fA2m12OuvMcTHx5OXklK5H9y+fdUHwp07KbNaKdBqm+yF47S0NP7r9XL5f/9bqylm8efPU5SQQJvQBkMaDWXx8SQ0wmyDwL9T9ZkWGQmB+yNOmzatyv6IKrvdTpLXizbg77omM5OMkyc5efJkgwJhvfgCYeqVV1bOSHnvPcaMGcOaNWtITk6mY8eOtGrVyj+7TavVkpSUFHbd/MWEVksVRWH+/PkNfw6iViQQ1sNjjz3GbbfdxmWXXcbZs2f57W9/S3FxMffffz8ajYZHH32UhQsX0rVrV7p27crChQuxWq3ce++9ACQmJjJ58mRmzpxJ69atSUlJ4bHHHvNPQRUtlzpFMbRzV0to4zx16lTefPNNf9c7gOPHjzN+/Hg+//zzKI6s4eqzmD+Q2+3m1N69pFRUwDXXkOX14l2+HNuXX5Ly4x/XeNuzX39NkqJUexHpTksj4/vvKSkpoVWrVrUaT1OxqlWjmvZa800n9YZsKt7UCgoKaFteTnnnztS0pbO1Tx8Aynftguuv5+xnnxEHWIcMqXpyRgYZisKpaiqEc+bMYd26ddhsNkaMGMGOHTuwWq2MHTuWTz/9tMHPqSlUqJWjataXqZVSZw0VptOnT/Pzn/8cqNy4PScnp15jUdSGNGF+nuIHDsQD4JsKWvThh5QBbUOCtk6nY3daGrozZ+Djj6FvX0y7drEBeDiCTY1adelCyd69tNq3D6qppvLZZxxLTyfTUJvVxfXTpk0bdgJ31PJvV6rdTmmnToRrMVSamkrakSONuqeoOi0yNXDfSahxWmQk1HZ/xLy8PFIATUAfCkNWFhk7dkRliZA7Lw8FaHvVVZVdkpct41eDBrF8+XL+/ve/c/ToUdatW8e4ceO4++67+ctf/lLv65VwVdSiKKwVb6kkENbDyZMn+dnPfsa5c+do06YN/fv3Z9u2bf4F8rNnz6a8vJypU6f6N6b/4IMPiA/YV2vJkiXo9XrGjRvn35h+5cqV6HS6aD0tEQNiaYpipHk8HhITE4OOJSQkNIu9ORv6qvWhQ4e4Qm3V36sXVxsMHAdcX3zBxSaGadVW9VdfHf6ErCza7djBmTNnohoIFUUh5dw5yuLisPo664WVloZDo8EQ4WmWhw8f5nJAU8N0VoCkAQPwAMqePQCU+l7M0Fx7bdWTMzKwKAoFIRvZq8xmM1lZWWRlZZGdnU1731TVWP5/QlGrvNU1HPEd1wdswxLqP//5DxqNhqFDh/Kf//yn3oHQoL5oEOZ7pomPJ9dqpY0vEBo++oiNwE1hwqOjQwdOOhy0/+MfYfNmvHo9b3k8/G9o99Im1Pnyyzly4ABXVxfEKipgyxZ2XXUVmU24HUabNm3YC+jOn4cTJ6puZROgrKyMtm43rmoaDDkyMuh4+DClpaWN9renXtMiI0jdH7G4uDjsTIu8vDyuAcoCpqXr27WjnU7Hl42wPVBg+M7Ly8NisVT5fzdQ0bff4gAu79IFBg6EhAR6/PnPaIADBw7w85//nHvuuYc1a9Zw++23c+7cuXqPLVwVdcuWLRyJwvKAlkgCYT2sXbu2xs9rNBpycnJq/E/MbDazbNmysFOyhGiJFi9ezOjRozEajSQkJFBUVITb7fZPtY4ldZnqCQ1/1frbb7+lF+Bt1Qpt585cptHwuclE8ldfXfS2SceP4zIYMFRzgW7o3JnLgNy8vMq1VCEcDgf79u2joKCAlJQUevTogTGkW2ZjsNlsXOF2U3LFFdQ4QVCj4WxcHNazZxt9DDX57rvvuB6wXmT6siUlhZ16Pa127qwMuV9/TX5KCm3CXXT5phy6qnnlPyMjA4/Hg06n4+OPPwYqq8Ver7dBz6UpmU+dwqXXY6iuema1ct5iwVJDI52NGzfSt29fxv30pzz40EPYbDaSanqRoBrxZ85gt1iIr+aC9+uOHbnrwAHYupWU777jI4uFcSG/owDt2rfnzxUVPPn++/D+++weNYqS99+PaGfYzp07s8Xr5erNmyun7oVW1D76CBwOPtbrg/oXNLa0tDS2qR988UWNgfD0qVN0BfKreRFF6diRjlu2kJeXR5cm2MLDbrcHvRAfS6rbHzH/xAniAW1gUyZfZ+WTDQyEzz//PK+++iqXX345ffv25R//+AdxcXGMHz+eKVOmhL1N2eHDnIHK/xssFnjtNXQ//Smj2rblm2++ASqniU6cOJHx48f7mzTl5eXVeVugcFVUqRBGzv9v777Do6i6OAD/tmWzqaQXkkACoXcChN4E6UgT6Yig8ikdG4iIBVBRRJGOSC/SkRpaIHQSQg0hhZDee9t6vj+WLFnSIYXAeX32wczcmbm7s2XO3HvP5YCQMfZK6NKlCy5cuICcnBykpqbCwsJCb56yqvCyXT3zvOxd6+DgYHiKRBC0bAkIhRAAkNeuDaMSuk2mpaWhblYW0t3cYFVEq5JR06YwBZD68CHQsaPeuq1bt2L16tVo06YNzMzMkJqaCj8/P0ydOrXMcyiWJCoqCs0BqIoY65hfWo0aMC+ku1VFenL3LkYBQCFjAZ93394eQ4OCEPLgAXrm5iKjb99Cu8zlZVqkIoKjwm4+isVieHl5lb7ilUilUsEuLQ3pDg6wKqYLYIq1NWyLyGwLAJcvX8ZqFxe89euvmKHRwNvbG4MHDy5zfWqmpiK1Zk0UFRKEdOsGVUAA0LEjEo2MENKiRaFdF52cnLArIADfnD4NpKRg96VLcH30SK/Fv6K5ublhf2YmpmZmAsHBBbvB7tkD1K+PK2lp6FeBAaGNjQ3iAGTY2sLUxwco5DsyT8rt26gDILWw1nEARo0awQbAhZCQlwoIt2zZgl9++QUSiQTvvvsuvvzySwDA4MGDdTdSqouswEAAgFH+Lv729rBQqxHzkt3kd+zYgbt37yI7Oxv169dHaGgoJBIJunTpUmRAqI6IQKxAgJZ5gf877wA2NhhnaIgtz3X7FgqFumk0xo8fX6abpvnlb0X19fVFjx49Xmg/rGw4IGSMvVJkMhlksuJGaVWeVyVBQXBwMEYLhRDkS3hh2LQpnAIDoZLLIS4igURISAjaA1B6eBS5b9On65R5XUvzWbt2LXx8fPSev0qlQrdu3co9IIwNCUEPACnF1DVPjr097J+m/q8sCj8/7f+UIrNkUJs2MD1wAPL+/WENIL2orKxPA0JJUpKuJbA0XoUMvIWJiIhAYyLIS0h8kebmhnoXLhQ6diw6OhrK8HD0e9qNdp6lJc6cOVPmgDAnJweNlUpkFlMXFw8PDCTCiXHj8L63N5oU8d5zd3fHmjVroOjcGQYGBni4aRPq169fpvq8LDc3N3gD0EilEB48CHz22bOVycnAv/8C8+Yh5pdfytwyUxbGxsaQyWR44uaGJiVc8Mtv3AAAmBcxzrmGhweEAFJ9fYG3337hOq1evRp+fn6QSCT4448/MHz4cGzZskU3Dg14sRarqiB/2j1SkD+T8dP/V75kIi2ZTAaBQABjY2O89957up4exX6fREdDbmX17LtJLAa6dUPrK1fw5YMHhbZyEhGC8sbvvgQzMzO0bt36pffDSofnIWSsGqjqOZTeVC8yb1NFSLpzBw5KJZAvIDT18IAUQLiPT5HbRfj5wR2ASTHJqoR160INQFjID7hMJoO3t7fubyKCt7d3hbTcyi9fhhCAWWHJV56jrFsXbioVlDk55V6PokiDgqAWCIDnpiUojEnbttgkkcD6yRP8V6MGzIqaXN3cHGoDA9gRIaEcJuiuag8DAtAEgKyEoF7ZuDHciJBeSFfZY8eO4R2BACQSAe3bY6ihIU6fPl3mukQ/egR3AFTU2FkAPXr0wHkAmzt1wn/h4WhVREtW69atoVAocP/pTZOHDx9WSUCYCSCuTRtg82Ygf7fhX38FiJA5ejTS09NRs4gxe+VBIBDAxcUFN6ytgcDAYucjFN+5g2QA5o0bF7pe+vRiX3379kvVSSgUQvI0kc706dPx8ccfo2/fvnrj2ao6MZuXlxfatWuHDh066LX89+/fX6+cOq8VMP85fNrlVvqS46b79u2rG5O/bNkyANos+I2LOD9EBKO0NJg+/15v0wYuCQkIf/wYqampWLlyJRYvXow1a9bAx8cHN27cQJunybVY9cEBIWOvkHfffbfAY8SIEVU+h9Kb6n//+1+BcX/AiyUokMvl8PPzw+nTp+Hn5weFQlGq7dRqNSR5rVP5AsKaTwOn2AsXitxW8/RC2qRv36IPYGCAaENDGBQSEG7duhWHDh1Cx44d4enpiS5duuC///7Dtm3bSlX3sjD080OmQABJERfl+YmaNYMUQOK1a+Vej6I4REcjycYGKEUwPGrUKHxuZoYGAM5PmlR0QYEAipo1UQevx+T0kVevwhKA+XNdj58neZrJM/XkyQLr9u/fj/EWFhB06QIMG4Z6iYkICQgo8+sTd+gQhAAsi7mZVqtWLTRs2BAfffQRxGIx+vTpU2i55s2bQygUwtfXF9nZ2QgLC0ODUtwYKE81a9aERCLB5TZttFNPbN6sXXHlCvDLL8DcuQh/mniqVv7xZxXAzc0NJ4kAIyNg9+4iy1ndvQtfY2MIiupaa2WFBImk0O+esujfvz/CniYpatu2LebNm4fk5GSEh4ejbdu2aNOmDa5fv/5Sx3hZCxcuxMmTJ3H69Glcv34d06ZNg0ajQXZ2tl45VXg4siQSIH+SHRcXaIRC2GRkFChfFl988UWBXggGkZFY+dFHhZaPiYiAtUYDm+bN9Ve0aQOJXA47aAPKjRs3wtvbG5s2bUL37t2xbds2fP311y9cz+TkZAQHByM5OfmF98HK7tXsd8LYG+pV6aL4KilrApdX0cuMxQsICEDz3Fzk2trC8On4DACwbtUKcgBZTyejLoyNry+CZTLULWYidQCIrlkTdoUkLLC3t8fvv/9e7LblxTYwEPdMTOBZim6TJu3aAQAyrlyBQ7duFVwz7VjMFrm5SG/fHsXP+qhVq1YtzJ4zB/PmzcOGoqYIyNOwIRo+fozo6OgiW6ie96p+JjSXLgEAhCXMkejSuzdiAGQfPQrkG7tERLh9+TI8srKAAQOAbt0gVijQDoCPj0+hY3qLQmfPIkEggF0J449GjhyJb7/9FkOHDoVdEVlDjYyM0LBhQ/j6+qJx48bQaDSlPlflRSQSoXbt2rgsEGDYxInAhx8C+/drk8m0awcsWIDwp+PlXJ5OzVJR3NzctD0Hhg0D1q8H5s4Fnk80lZkJl+honC0hcI60sIDNSyZLmTdvnu7/MzIycPfuXYjFYkRFRSEoKAjdunVDr6Ja6SuJSCTSJUb67bff8M8//2Dw4MHIfG4eRmlcHLIsLGCcf6FEArmdHdxiYhAVFQX34qblKYuYmGcZeCMj9VslAURdugRHABYtWuhv16oVSCCAkgiLFy3ChAkTdKvyhhT4FNNzpShnzpzBN998A2tra93v5MtkLWVlwwEhY6+QV3UOpcpQXglcXkUvMxbP29sbnQUCiDp10lsuEIsRZGICk3v3Ct9QoUCzx49xrn59lJSuQd60KZqFhECdmwtRES1gKpUKn40ahb6uruj9888l7LGMcnPhHhWFf5s0gWfJpWHXtCmiAGiejlGqaKH+/mgO4Mlz56A4n3/+Odq2bYuOJbSWSZs1Q4Njx3C8kBaw6vaZMLt3D/EmJrAtYToGG1tbHDA2RrvLl/WWh4WFoVVamvbCZMAA7cWqhQWGqNXw9fUtU0Bof+cO7lpZoUcJNximTp2K+Ph4LFq0qNhyrVu31gWEBgYGaFKKsaTlzd3dHQEBAcDBg9rX5tw5YNYsYN48wMAA4eHheok9Koqbmxs2bdoE2rEDgm3btK2VzyclOXAABhoN4ku4ORDn6op2N29qu8CWQ5KexYsXIyMjA/7+/rpkJFevXn2pFqvy0KJFC4SFhaF27doAtHPu1apVC1PzjS9OSkpCLbkcikJaeKlOHTSIiUFYWFj5BYT//fds/5s2QfDca5T2tFXVvmtX/e3MzCCoXx+2wcE4fPiwLiAkInj/+isM/f2B8HDdnLGl9c033+DEiRN6mWEjIyP15iZmFYcDQsZeIa/6HEoVqTq1jpY1QUHeWLzuT7t5lmUs3sWDB/ExEUT9+hVYF+nqilYPHxaahj5z1y6YqdVQjBhR4jGk3btDdvAgoo4cQc1CymdnZ2POqFH4/fBhSAH4WVig1Vdflbjf0pKfOAFDjabQ51gYK2trHBaJ0LIU026Uh6wjR7TdD4cOLfU2IpEIPXv2LLGcsEkTOANIKmQsVnX6TOTm5qJpfDyS27UrVSvqo6ZNMeTqVeDePV2inuvXr2MAAJWbG8R5yWC6dUPvCxcw/el8gaXy+DHqpKTgQikSldja2uKvv/4qsVzr1q2xe/du7NmzB61ataqQqVdK4unpid9++w0asRjCr78GnruADw8PR82aNSs86ZCbmxuys7MRb2sLuxEjgO++A0aMAPKmBiGC5vff4Q3ApoSxZJnNm8Pi2jVQQAAERYxlK4shQ4bg8ePHWNC7N5Y0bIj1ubn43//+V+VdRgubYqx79+56cxEGBQWhEQDx8100ARi2a4cWPj44HhJSfq2dp08jtVEjnH7wAJ02boT9c+8n1f37yBYIYFRYBtg2bbA+NhbDr15Fx44dtUMbJBJ4+PlhW3Y2dvXqhT7XrpVpuhihUIiEhAS9gJBbCCsPjyFkjL0SXpUELqVR1gQFLzoWT6lUwuTCBYgAoJDxTZmenrBVKqHJG2OYhwiZ338PHwCeH3xQYv2s+/RBEgDFoUOFrp8+fTo8jx6FxtQUUTIZUr/5BhFFzJ33IhJXrUIggKajRpWqvEAgQIidHeyePAHk8nKrR1GMLlxAiFAI8+e7TpWHp4k1JIUk1qhOn4n7x4+jCQCDd94pVXnRgAGIFwhA+bokH92zB++JRBAPG/asYI8eaJCaigc3b5Z6/sWclSuRAcCoFDdDSqt///6Qy+W4ePEiZs2aVW77LYsOHTogNTVVl9zmebdu3aqUsY1uT+c0DQ0NBX76CcjI0AaEeXPGLVsGoZ8fvgVQr4SMs6LOnZELIGf//nKr36Ft23BSpcKXAQE4PWQI/Pz8sG7dunLbf0V5fPs2nADU8CzYT0LYujVqAYguz94Bly7hSGoq/gNgGxYGPJfYShwcjCgjo8Jbbj080CYzE1kpKbhw4QKuXr2Ki2vXYnl2NoQAGj96VOY5hNetW4c5c+agffv28PT0RPv27bFgwYIXfnqsjIhVa2lpaQSA0tLSqroqjL122rRpU+Dh4eFB5ubmlXL8Gzdu0AmA0po3L3T9qWPHKA6g5HHj9Jar9u0jAuinLl1KdRyFQkFbAUqxsyPSaPTWqdVqamZuTiqhkGjZMspetowUAM15//0Xek4FJCZSjkhEK6ysSPPcsYszt1cvIoDo9OnyqUdRlEpKNTSk7fb2FbN/tZoyJRL6y8mpYvZfSbwHDaIcgOTx8aUqf+bMGZoNkEYkIrpyheRyOX0jkZBaKCR6/PhZwfv3iQDqD9CjR49K3nFqKsnNzGgFQEFBQS/2ZIowZ84c+uKLL8r0Pi1P2dnZZGlpSTNnziywTqVSkZmZGf3www8VXo/09HQCQNu2bdMuOHeOyMyMyMqKqHlzIoAChw8nABQZGVnsvq5du0ZHAMpo0aLc6je/fn3td0PPnkRmZjSnf39q2LBhue2/oqwfO1Zb79u3C64MDCQC6DtPz/I5WHQ0EUBDARr/9ttEAN2ZO1e3WqPRUIBIRNeK+O2hy5eJAGoJ0L1794iISLV0KWULBLSsQQMigNzNzUmhULxUNfkat/JwCyFjr5gXzUbJyl9GRgYuX76M69ev6x4vm1JbqVQi6dw5YNIk4PjxYsveO3AAvQDIipjHrnW7dlgNwHTXLiAvU9+jR9B88AGOAOjwww+lqpNEIsExOzvUiIvTjkvK5/r165iRlga1uTnw0UeQjR6tbbE8cqRU+y7RmjUgtRoZY8YUOil4UQw8PBAnFJZfPYpAJ0/CPDcXCRU1ObJQiIQ6dVA3KgpKpbJijlHRiOB2/jwuWVnBwMamVJu0atUKfwBIcHUF+vRBep8++EapRNy4ccDTcVYAgIYNoWrcGJMA3CxNt9EvvgCys/GPnR3q5CXMKCfLli3D0qVLy/Q+LU8ymQwffvgh/v77b2RkZOit8/f3R3p6Oro+P96rApiamsLGxkbbQggA3boBd+9qE920bAns34/D7drB2Ni4xPGMderUwU4AJv7+z77DXkJ8fDzcAgOR4ugI7NsH1KyJHy9eRHpAAIKDg196/y+jpN92k1u3kCkSAYV1nXV3R4qJCRyfmwz+hT1NRibx9MT6w4cRYGqK6PXrda3wQVeuoIFaDWlRWXpbtAAZGeFtAL5P95W8eTNOE6H3ihXaImlpuPQ00RR79XFAyNgrZOvWrejevTs2b95cII0zq3x5CQqe9zIJChZMnAhhjx7Apk2gCROAlJQiyzr+8w/SJBJI8mVxy8/S0hL7XV2RZGwMdOkCTJwItGmDVIkEM0xN4VlCQof84hs1QrC5OfDVV4BKBUA7Xm3x6NGYAGjHLJmYAA4OSHR3R5fERKSmppbhmRciLQ2aFSuwGUCdMtQVANzr1cNOjQa0c6euvhUh87vvcB1A0+Kmj3hJ6h490IUIAcVkjH2lHT8Op/R0BJRiDsk8NWrUgFu9eljWowcwahRyAwOx2MAANmvX6hcUCCCePh3vAIg+dqz4nW7aBKxdi5/t7dH07berLHCrSP/73/+QlZWFf/75R2953pjkypr/zd3dHbfzd3N2cQEWL9aegyFDcPfuXdSrV6/Ec2BlZYVLdnbIMjICli596XodOXwYbwOQDhoEmJsD3t6QyGRYLhJhdzFTZFS00vy2u4SE4ImTE1BYIiSBAClt26JzWhpiymGKmtT//kM0gJGffQYDAwNIhw2DZ1oabj5N9PRwyRKoAdQrYkoKyGQQDB6MyVIpTp04Afn9+7AMCMCd2rXRtHdvUP366C+T4cSJEy9dV1ZJqrqJkr0cbk5/vXTs2JHUarXeMqVSSR07dqyiGlW9mJiYqq5CudBoNDTp/ffpOEAxIhE1AEhpZETKjz4qtHzG/v2kBujs8OHF7vfzzz8ndyMjyn33XaJWrYhmzaJebdrQsGHDylS/X375hbqKxaQRCommTCHKyaF7R49SAEAZLi5Eubm6sjGffUY5AF08dqxMxyhgyhRSGhmRE0B37twp06Y+Pj7UTJtOh2jLlperR1F8fYkAGi+Vklwur5hjEFGOvz8RQIcL6Yabm5tLvr6+5OXlRb6+vhVajxcil5OyYUO6CNDOHTvKtOmYMWPI09OTgoODydzcnD755JPCCyoUFG5mRqFGRkRxcQXX5+QQLVhABFD22LEEgLZU1HviFfDuu++Su7u7XtfVnj17Uvfu3SutDj/++CMZGRlRVlZWgXVpaWlkbGxMCxcuLNW+evXqRWubNSMSCIj8/V+qXp927ar9Tjh16tnCVatILRBQ99q1q6y7b0m/7eHXr5MKIL+pU4vcR9KuXUQAeX3//UvXJ9rFhXYIBJScnKyty717pAbocL9+pM7NpYcSCd0uqRv7pUtEAC0B6BxAUQAty6vb1KkUY2xMHdq3f6l68jVu5eGAsJrjD8vr5a233qKzZ8/q/tZoNHT69Gnq2bNnFdaqavXq1auqq/BMUhKRl5f2ArSM9uzZQ1OeBjA5+/ZRgwYNaCZAKkAbeOT34AFlm5jQCYGAoksYgxMbG0sCgYD+/vtvIiL66aefCABt2LChTPWLi4sjgUBAFydNIpJIiIyMSCUQUIRAQPKnY0TyKIOCiADa2bt3mY6hZ9s2IoDOjBhBIpGIcvMFnKWtLwCKbtOGqG5dIqXyxetSGJWKqH17CpPJaOigQeW770I8NDWla7a2esu2bNlC7du3p+nTp9PXX39Nn376KXXo0IG2bt1a4fUptblzSS0SUUuAQkNDy7TpypUrSSAQkL29Pbm7u1NiYmKRZdfPnk2xAgFpLCyIvvqKaNcuos2biWbOJHJwIBKLiRYtop07dmjfF9HRL/vMXlmnTp0iAOTn50dERLt27SIAtHv37kqrQ2hoKInF4kLHLG7dupUAUHh4eKn2NX/+fKphbEzyOnWImjQhesHrmczMTPpBJKJcqVT/OzozkxSmpvQrQFeuXHmhfb+skn7bbwwYQNkApYSEFL0TlYqeiMXk7+b2UnVRPH5MKoDWPTce0cfdnbIAiq1dm5QA+a5bV+K+cmbMIAIoBaDVo0ZRTt7rfvIkEUDtRSJKSEgoVb02b95MTZo0oZYtW9KSJUuIiK9xKxMHhNUcf1heLzExMTRjxgzq0KEDtWvXjjp16kQzZ858bVrJilPVCVxKdOMGkYWF9u5zv34Fkq8UR6PR0HstW1J2XusbaQO50SNG0F2A0tzciEJCiOLjif78kzSmpvRIKqWJAwaUav/t27enoUOH0qVLlwgAffjhhy/UkuTh4UGjRo0i+b175DtmDE0BaPOffxZa9o6bGwULhZReyiQierZt017Av/8+tff0pL59+5Z5FxqNhszMzOjvadO05+TpBUS5WbqUCKDuEgktX768fPddiP+GDSMCSJHv5sAr32Ng3ToigA527kyOjo5lbn1JTk4mAASAfHx8ii0bEhJCTmIx+bZrR2RtrT3nAJGLC9H//qdNukFE/fv3p9atW7/wU6oO5HI5yWQyAkDvvfceAaCRI0dWeuvXzJkzyczMjFJSUoiI6NGjR6RWq6lv377Url27Uu8nLS2NHBwc6Nt339Ump+naVXvzrYzW/PknhQGUWkivCvUXX1C6QEAzJ00q837LQ3G/7ZrQUMoUiWifs3OJ+1nbpYv2fX/w4AvXxX/oUMoC6N6lS3rLE8PDaaOhIZ0FaF7z5gW+e4oUFkaJz98MUqlIVbMm7ZNI6KMiesE8z9PTU5eEZsWKFTRs2DCKiYnha9xKwgFhNccB4espLi6OVq9erfuhfRM0aNCAlIW08rz11ltVUJvn+PoS1ahBGk9PUv3+u/YH+Z9/Sr35weXL6Ule18v0dN1ytVpNn7RvT7ECge4CVyMU0t3WrckEoFP5uz0V44cffiATExPq3bs3NW7cuPQ/5M9ZtGiR7gLdwsKChgwZUuRFZrSXF+UC5NemjbY1rTRiYojef1/7XCdMoPOnTxMA2rdv3wvVt3fv3tShQweiefOIRCLtXenysGULEUDREycSALp8+XL57LcYNy9fpocApTVsqGvtfGV7DCgU2lY6gHI++IAc7O1pajFd3Ypz5coVunHjRqnKTpgwgWxsbCgjPZ0oJYUoM1Nv/dWrV0kgEJS5dbw62rVrFw1/mskTpcjmWRGio6NJJpNR+/btqWnTpgSAXFxcCADt3LmzTPv6+uuvydTUlNKPHtVmK3VxIdq9u9Q33ry8vGgOQGqAqLDu51FRpBQK6UdDwyp5rQoTFRlJvw4aRFEmJhQK0KFSdHPetnUr7QNILZUSHT9e5mNqQkMpQyikg7VqFbr+xo0btGLFijL32CjUxo1EAE2QyZ61HBajQ4cOen97eXlRx44d+Rq3knBAWM2VFBAmJCRQbm4uHThwoHIrxl7K0KFDCQA1bdqUrl69+sIX+NXJ/v37deMZ8jt//nwV1OYZzeXLpDI3pycODtTC1ZVsbGwooV8/khsZUe6DB8VvnJtLtHo1ZYhEFCmTEUVFFSgSFhZGpgIBLWnThuLWrKEmpqYEgKZMmVLqO/7+/v66C8NNmza9wLPUSklJIRMTE92+Snrt13foQGqANJ06abvSPt8qqdFo05vv3k00ejSRgYG2lXXdOlKrVOTh4UFt27Z94ZaNvXv3EgC67eurbbU1MCD6++8ytd7qyc4m+vxzbcA6aRJ9OGUKGRkZlepi5mWpVCoa7uxMKoDUn35KpNG8ej0GFArtuWzQQBuAL1lC740cSRYWFmUeA/oiTj+9gdCyZctC3zN9+/al5s2bF3pj6XUVGRmpd9Ogsh08eFB30Q6APD096d9//y3zfqKjo8nQ0JDatm1L/61cSTRokPZz2KgR0Y8/Et28qX3/FSIjPp4WWVqSSiAg9YwZRR4j/ZNPSA5Q7xfoUl/e7q5fTw+kUiKAbguFtKOU4wKzs7PJwcKC7rq4aF+f8eO1r01J1wgaDdGpU5RmaUnBAF05erQcnkUJNBpK7d+f1AA9HDqUqJgu4UTacamP8085Q9qbPBwQVg4OCKu5vIDwxo0b9Nlnn1FUVBQtWbKE7t+/r1tnbm5OAMjLy4tu3ryp2/bevXukVqspIiKi0H0fPXqUnjx5UllP5Y22Z88emjVrFl26dInWrl1LAGjGjBnkAFAXgCQALV68uMoGxL+RMjOJvv+elEIhXQTIRiKh0aNHk52dHdmIxRQIUJZMRvTTT0S3bhGFh2sfN28Sbd1K9MknRLa2pBEIaBNA+56O8SvMpk2bSCqV6j6vpR17k0ej0dCkSZPI09PzpZOOqFQq2rNnD+3Zs6fEshcvXqTOACU5OGgvTgwMiNzciFq0IKpf/1kXW4CoaVNtN8ynQf/Ro0dLFXQWR6FQkL29Pf3vf/+jnLQ0okmTtMfq1o3o6NGCAWpREhKIfvlF2yohkRD99BMd2L+fANCaNWteuH5ldfnyZfoo7/UaMYIoNrbSjl2knBxty+v06dqxegDRW28R3bpFwcHBJBaLacWKFZVSFY1GQ0uXLtXdMDlx4gSp1Wp68uQJxcbGkoGBAf3222+VUhemLyIigqIKueFVFvv376c6deqQSCSibt260aaJEym+Vy+SSyTa3hOGhtrvld69iYYNIxo6lNRt2mi74gOUOHZs8WOJFQrK6tqV1ACtFwopfO9eUmZlkVwur5ybrsnJlL17Nz3x8CAC6IGREQWtWVNyMPecpUuXkkQkohuTJhE5Omo/k9bWRH36EH34IdHChUQ//KANpOfOJRo5kjS1ahEBdFUgoK+fm7e2QqnVtMrennKFQu1NpLZttb+Ny5YR7dmj/W65ckU732hQ0LPHo0dE4eHcC64SCYiIyjlxKatE6enpMDc3x0Job8+pxGKkq1TIAeDZrRuOnz+PHAA5AAQyGZJycpADYNiYMdiwfTuatmkD7xs3EBoWBicnJwiFQuTm5mLcuHHYt28f6tati6AS5gY6cuQIZs2ahVatWmHq1Kno3r07kpOT8fHHH2PFihVwcHAo03PKzc3FxYsX0aVLF0ilUt1yX19fWFhYwM3NrYyvUsVJS0vD3Llz8f7776NDhw6l2kalUkEgEEAkEume5/NcADwYPhxG+/ZBQITzAPoAWLVxIzp37gx3d/fyfBqvjNzcXCiVSiQnJ+P777/HqVOn8MEHH2DhwoUVf3ClEggJQc7Zs7j6009oExUFI4EAv6pUuDF4MJb8+ivq1KkDb29vjB8/Hl0bNUKnEycwSSCAuJCv0QRzc5yWybAoNhatRo3C9u3bi03B7uPjg+PHj+Odd96ptNTx5eGDDz7A33//jd6WltgxbRqs5HIgLQ2QyQArK6BRI6BVK21aegC3b9/GjRs3sGbNGhARbt68+VLTAyxYsAA/PJ1v8ccff8RXzZtDsGABcOuWNu18585As2aAoyNgYQFIJEBmpna6j0ePgBs3tGUlEmDECGDBApwMC0OfPn3QvXt3nDlzplKnL+jevTtqXbuGlRoNZAA0AwdC2bYtjGrWBAwNkZyTg2OhoRg0YwbMzMzK78AqFRAeDgQHax937wI3boDu3IFAqUSOjQ1u166N2IEDkVyzJlJSUrB27Vqo1Wr4+/vD1NS0/OpSDLVajZ49e8Lb2xsAYGNjg4SEBACAiYkJ7t27h1q1alVKXVj5UygUcHJyQkJCAmQyGXJyciAF0ApAWwADmzaFUWIiNFlZILUaT9Rq3FUoMHrPHjQbNqzkA6jVUPz8M9K+/ho2Gg3kAIIEAsSIxZC4uUHs5gazhg2RptHA0MwMienp0IjFaNuhA6QGBhAAuHfnDsxMTCCVSOBWuzbS09IQ6O8PFysr1BCLERMcDGF2NlxMTZERGIhYPz+Yp6fDXi4HAAQAON6kCT65dg1SI6MXeo0mTpyInTt34u0ePeAcFoa3xGJ0t7KCWVoapKmpUMvlUCkUoBo1kGliguOxsdiQkgKzfv2w599/YfQCx31RW7duxezx4zHd0RGT69eHUXAwDKKiIHs652FxVvzvf5i5ahXS0tLK9/uOFcABYTWXFxD6AbAFIMv3KAulQIBsIohNTJCp0SA5O1sXSBpbW0NiZobGrVtrA0qNBmoDA6TK5fAPDERCZibC4uNhYmWFiKQk1KpfH7cCA3XbT/vsM3Tv2xeB4eFo7OGByKQkGFtbw8nFBV5eXpg9ezZ2796Ntm3bAnh2gfnZZ58hICAA5ubmWL9+PYyMjCCRSJCSkgJfX1+cPHkSFhYWmDt3LgAgMzMTJiYmWLVqFVq1agV/f3+MHj0aSUlJWLZsGd5++228/XRuqi+++AInT57E/v370aBBA0RERGDDhg24du0atmzZggsXLsDZ2RkeHh7Izs6GRqOBubk5iEh3cRgeHo7WrVsjMTERvXr1wqlTp3Sv58KFC6FUKmFiYoJ+/frB398f3t7eGDRoED744AM0bNgQ8+fPx4gRI5CdnY0PP/wQEyZMwJL338fQuDiMTkuD1M4OmD8fKgcHCMeOxVlLS/SOiQEB2Lx5M8aMGQOVSgWVSgVjY+MSzzERITg4GIcPH8bQoUNhZmaGRYsWoU2bNhg0aBDMzc11ZXNycmBoaFjohXBOTg6uXbsGtVqNu3fvYsKECdi5cycmT54MAwMDpKamwtDQEIaGhrptNBoNVq9ejb1792LixImYMGECAgMDUbNmTQQEBEAkEuHXX3/FoUOHIBaLoVKpYGZmhpYtWuDE8eOY+/nnMDIygrGxMfr164fIyEgYGBigW7duCA0Nxf79+zFt2jTs2rkTTevUQX0nJxgTAVlZ2ov/rCxcPXMG9kZGEKWmIjUkBHXMzREfEAAXIyMInjwBwsMh0GigAXAHwAmRCGvUahjWr487d+7AwMBA/zOjVOLzzz/HoR070E4mw5qff4a5qSlW79uHeRs3IhVA//790aVLF0ybNg0yWVk/ldVDamoqpk6dil27dqFFixb45ptvIJPJEBgYCCcnJzRp0gQuLi54+PAhVCqV7nMOANeuXdP7+0VERESgTZs2EAgEiI2NxbBhw7B71y4I79xB2B9/wODWLdjHxwPx8RDluwBRGxoisUYNpLq44IJYjHMyGXqNGYOoqCgsWLAAALBlyxaMGzfupepXVmvWrMHUqVNhCeAjACMANAUgfq7cAwsLCN96CyEmJriblISgpCTYOTlBBKBWzZoY+c472LdjB44fPAhTAwMIMzMxslcvSDIyYAEgOTgYzRwdEe3rC7OcHNirVJA83bdaKESKjQ1ymjbF5nv3sCc2FncB3QU6nv5/27ZtsW7dOtSrV69yXpyncnJyEBERgV27duHs2bN47733oFQqMXLkSNja2lZqXVj5e/z4MXx9fdGxY0esWrUKn376KYKCgrB9+3asW7cOzZo1g6enJwwNDSGTyfDOO++U+Xvk4tmz2PPZZ4CfH9yhvQnr/PRfm5eouxpAJoAsAKkAogBEA4iB9ndF1rkzvty48aVv6ubm5uL777/HnTt3cOvWLcTFxUFVwnysf/31F6ZOnVol83P++++/WLVqFS5dugSlUgkAcLOwgFQuhykR3KytkZaYiOyn3y/1AawF0B7AVYADwkrAAWE1lxcQAkD9+vXh4eGB7du3AwAMnz7e6tABAX5+aNesGe5cv64LGCeMHInDu3frBZF5j5pWVqjn5ITA27d1y2yMjaHOyoJhvnKmYjEkKhVMxWKIyzg5tBzagDH36UMglSKXCBkKBeRP1yue/ksSCTKVSsgB2Dk5ITgyUrd+7KRJ8Ll5E75376JDt244ce6c3vaap9sqADRp2RL3Hj5Eek4OVABUAAYMHoy9hw5BBe2XuVgqRaZcDhWAZq1aISAwECQQYN68eVi+fDnWrFmDs2fPYv/+/VAqlRg0aBD+/vtv1KpVCx4eHkhKSsL58+cLPF8RAOOnDysDA0gUCjSzssK6+fNh8OgRcOUKcPs2yNwcymnTYPDFF9qJwAFg1y7Q6NEItLLCV4mJuALAo29feF+8CHNzc9y7dw8ymQyPHj3CsmXLULNmTYwZMwb//PMPLC0t0axZM5w7dw6//vprkedjxIgRmDBhAtavX4+TJ0+iV69e+O+//1C3bl1MmDABoaGhaNq0KW7fvq03KbKRVAqNXI7e3brB3sICxw8dQvOGDbF761Ys/+knWJqa4tHdu/C7dg0GAAwAvN2tGy6fPw8TAOZPH/ZSKdysrGCmUsFBIEBNsRiC+HhoVCpEEyEWgAaAgVAIoUYDAwDGEgmgVEIKwFQohKFGA2EJ77ssAEkAEp/+K7C2xt2MDATI5QgBUGvoUMxcuBC2trZYv3493n//fTg5ORW5v4CAAHTp0gVmZmaoU6cOvLy80KlTJ7z77ruYNm1aCbV5fezZswcjR44sdJ1UKoX86d1xMzMz/O9//8PAgQNL3apeEiKCWq3G8uXL8cUXX6Bly5awsrKCl5cXAEAgEICIYARAAu0Fmzrf9jVq1ICVlRVCQkIAALNmzULv3r3Rq1cviAqbJLoC5ebm4t9//8Xw4cOxY8cOREZGwsnBAfd8fRH+6BHGDBkC4eXLkB44gNYKBcoS/mgApAFIfvpIApBpYgLzBg1wyM8PgRoNggFEQP/1+eSTTzB16lTUqVMHJ06cQO/evSu1hYGxPFlZWTAyMiq3oEYul2Px4sX46KOPEBERARMTE2iys2EqFiM5NhZmhob4dfFiQKVCTScnPAgMxJQPP4S9oyN8/fzw+x9/oE/fvnhv4kT88Pvv8HvwABs2bsTff/+N8+fPY+PGjfDw8IBUKkV0dDRcXV0rJCAjIpw8eRJBQUFYuXIlatWqBVtbW0gkEtSuXRtffPGF3k3aqqBUKvHBBx/g33//xbFjx1CrVi2MGzcOSUlJEAqFCAgIwIIFCxAfH48JXbui/ejR8P35Z3h8/jkHhJWAA8JqLi8gPH78OJo0aQJHR0eo1WoQEXx8fJCcnIzhw4frlp0+fRp9+/YFoG1RW7FiBRo3bozJkycjMTERAODu7o5Hjx4BAD7//HMAwNq1a5Geng6RSIRffvkFDRo0gK2tLVq3bo24uDjY2tpCQARFRgYO794Na2NjnDp0CKH376Nr27ZIj4vDiIEDcfXcORz591/IAAzr2xeWMhlaNmyI4wcPIjIkBA4WFtDk5qJb+/YIDQhAbUdHGAC4ff06RCoVZEIhRGo1bM3NYWZoiKzkZAieBgSGAgEkRAXupJcH9dOHKt/DQCqFoVQKkUiE7OxsqBQKaIiQ91UvACAWiUBEkAKQFNU9QiIB6tYF2rUD+vUDBg4ECvvi9vIC5s0Dbt4EACgBJAiFyNBooIA2oM4hQpZCAcHT4wuFQuDpcfOW1alTB9mZmchKS4OToyPCHz+GkAgiaINWsVCofQ01Gt0yEQCJQADB03LCvLJP/30ZCqkUcpkMBra2kNrYAJaWgL09YGenfYjFoMhIqKOjkZiYiENHjkAjkaBJy5bIkMshMDCAlYMD7j1+DEtnZ1i6uGDFhg1IValg5uCAFh074lF0NDr06oWvfvwRGSoVli9fDnNzcygUChw+fBhSqRT9+/fHu++++0Jd3x4/fozx48fDyMgI9vb2WL169Rt5wfzw4UN8+eWXUCqVEAqF+OGHH5CUlKTrWmhgYIDhw4dj6NChFVaHixcvYuLEiTA1NcW3336Lrl274tChQwgNDcWAAQPw+PFjWFtbY8uWLejcuTO6dOkCe3t7mJiY4MGDBwgNDcWgQYMqrH7lhYgQGxODpIcP0cjGBsqYGGgUChgaG+PilSs4dOIEZnz+OVzc3QGpFDAzg9zQECoihIaGIj4+Hjdv3sQHH3wAa2trAMDVq1dRv359ZGVlwdLSEl5eXkhLS8O4ceOqpFWBsVdd/l5Dzy9XqVSQSCSFbPVmK+o1i4+Pf9bCHxsLODggffdumI8cyQFhJeCAsJrLCwjL8mE5f/487Ozs0LBhQ92yrKwspKWlYdu2bWjTpg26d++ut41Go8Hu3bvRoEEDtGzZ8qXqrHkaoAiFz9pyiAgajabIu/FqtRpCoRCpqam4du0aunfvDqlUipiYGBw+fBg9evSAqakp2rVrhz+WL8fgPn0AhQKQywG5HPGRkYgLD8fXn3+OCWPGYOjgwdAoFIh68gSRYWFo26oVRETacTRqNaBS4aqPD1avXIkv58yBlbk5fM6fR68ePXDk4EG0ad5cv8vH0y83DQCVUokn4eFQKJWoV68eRGIxBFIpBCYmgLGxttXP2Fj7cHDQBj+lbYUgAp48geL6ddw8fBhtXFxww9sbMU+egHJyYGNmhqYNGyI7OxtBwcFo0bIlJBIJ5AoF5AoFbO3sIJZItPUViXQPuVqNjOxsnPX2Ro9evWBlYwNvHx+IpVK4ubvDytYWBjIZfG/dwp0HD9ClWzeYmJtDIxTimr8/Bg0fDpFMBhgYAAYGGDluHKISE/HnmjVIzc6G2MgInXv2BAwMEBoRgdTsbLTy9ASMjEr/3J++T95++22MGDECU6ZMKbLcokWLcOjQIRw9elRvDKu/vz8EAgGaN29e6mMyxlh1dzniMm5E3cAMzxlVXRXGSpaSAlhaIn3zZphPmMABYSXggLCae5GA8HVW1J2n0q5/vuydO3c4eHgBcXFxSE9Pr7LkN2U5z4wx9rrbc38PHiQ8wLfdvq3qqjBWspwcwMgI6evWwfzDD/katxJURO86xqpMSUFAWYIEbkl6cXZ2drCzs6uy43MwyBhjz8RnxSNHmVPV1WCsdPIyzD8de84qXkn5FxhjjDHGWDWWkJWAXFVuVVeDsdIRCrX5FXL5PVtZuIWQMcYYY+w1Fp8VDzWpSy7I2KvC0JBbCCsRtxAyxhhjjL3GErITkKPiLqOsGpFKOSCsRNxCyBhjjDH2GkuXp1d1FRgrG24hrFTcQsgYY4wxVsGICLGZsVVybKlYCoVaUSXHZuyFcEBYqTggZIwxxhirYKEpofjqzFdVcmwBBCDwLGOsGpFKOalMJeKAkDHGGGOsgiVkJyApO6lKjs3BIKt2uIWwUnFAyBhjjDFWwRKyEpCUUzUBIWPVDieVqVScVIYxxhhjrIIlZCcgOSe5So4tgKBKjsvYC+MWwkrFLYSvgFWrVsHV1RWGhoZo3bo1Ll68WNVVYowxxlg5SshKQGpuapUcm57+x1i1wQFhpeKAsIrt3r0bM2fOxPz583Hr1i107twZffv2RXh4eFVXjTHGGGOlpCFNsesTsxNhJjUDUeUGZkTELYSs+uEuo5WKA8Iq9ttvv+GDDz7A5MmT0bBhQ/z+++9wdnbG6tWrq7pqjDHGGCsFIkL/Hf2LLZOQnYC6lnWRJk+rpFppKdQKGIgMCg0KqyI4ZaxUDA05y2gl4oCwCikUCvj6+qJ37956y3v37o3Lly8Xuo1cLkd6erregzHGGGNVJyI9AlcirhRbJjU3FXUs6pR7plGVRoX4rHhkyDMKXS9XyyEVSwvtMvrL5V8wfM/wcq1PUZKykzD+4PhKORZ7DUilwKNHVV2LNwYHhFUoMTERarUadnZ2esvt7OwQG1v45LVLliyBubm57uHs7FwZVWWMsSoz4t8RVTb2qiRXIq7gRPCJqq4GK2dj94/Fnbg7pS5/NfIqMhWZUGvURZYhECwMLZAuL78buSeDT6LhXw0x7sA4DNw5sNCgVK6Sw1BkCKFAWKB+F8MvwlxqjqCkoDIdN1eVC6VaWaZtHiQ8wI2oG2Xa5k32k89PVV2FqtW7N/Dc9TGrOBwQvgIEAv1uHERUYFmer776CmlpabpHREREZVSRMcaqBBFh74O92Ptgb1VXpVBnHp+BT7hPVVeDlaMcZQ6Ck4Ox/OryUm8TmhIKVwvXYruDEhFkEhlyVDkvXcfAxEBsurUJ31/4HucmnMPxMcexZcgWrLi2okDZXFUupGIpZGIZclXPuuCpNCoIIMC7jd/Ff4/+K9PxPzv1Gd7a+hbuxN0pdTfQgMQARGdElzmQfBOpNWp8fe5rxGYW3jjwRhg1CvDh79bKwgFhFbK2toZIJCrQGhgfH1+g1TCPVCqFmZmZ3oMxxspKpVFVdRVKJVORCSczpypL11+Se/H38Dj1cVVXg5Wja1HXMKTBECRkJegtX3Z5GeadmVdoQJOYnYi6lnWRkpNS7L6NJEbIVma/dB3nn52PTEUmTo8/DSczJwgFQriYuyBdnl6gFVCulkMqkhYIRsPTwuFawxUtHVriTnzpW0MzFZkISQnBxkEbsfbmWkw+PLlUQeGDhAfoVrsbf15KIS4rDiYGJjgderqqq8LeEBwQViEDAwO0bt0aXl5eesu9vLzQoUOHKqoVY+x1l5CVgKG7h1Z1NUolOScZ7pbur2xAmKHIKNcugKzqBSQEoLFtY4iEIl3wF5cZB59wH9SzqodF3osKbJOUkwR3S3ek5JYcEOYoX6yFMEuRheNBx/GP/z+wlFliWrtpMBQb6pVp7dAavjG+esvkKu0YQkORoV4LYWhKKNws3GBrbFsg+C3Ornu7MLrpaNS1rIu/+v+FZnbN8OGRD/Ew8WGx20VlRKFLrS4ISw0r9bHeVNEZ0WhXsx2epD6p6qqwNwQHhFVs9uzZ2LBhA/7++28EBARg1qxZCA8Px8cff1zVVWOMvaauRl7FrdhbVV2NUnnVA0KhQMiZE18RCrWiXPYTmBSI+lb1Uc+yHoKStWPrtt3Zhg9afoAJzSfgauTVAlNMJOckw83CrcQWQplY9sIthCuurcCJ4BNIyErA6v6FZyLvVacXToWc0luWq8qFodhQ20KYLxjNCwgB7dCVkqbNyHM8+DiGNnx2Q2l6u+noU7cPPvrvI3x67FOsvbm20KBXrpLDxdwF8VnxpTrOmywqPQptHNsgOiO6qquCLEVWmbsUs+qHA8IqNnLkSPz+++/47rvv0KJFC1y4cAHHjh1DrVq1qrpqjLFq5HjQ8VKPs7saeRUmBiZV1rKl1qhLHUQl5SShrmXdIgPCuMw4nHt8rjyrV2qZikwYS4whFoqLTSbyJstUZGKD34YK2XdKTgoOPTwErxAv9NzSE54bPF+49S2/x6mP4WrhiqZ2TXEv/h5yVbk4FnwMfd37QiAQoLNL5wLjRjWkgZXMqsgWQrVGDZFQ9MJdRg8EHMB/j/7DL71/wWcdP4NIKCq0nKeTJ25G39RbpusyKtbvMpo37hEA7I3tSxWoERFyVbkwkhjplgkEAgxrNAz96vbDh60/hFKjxBKfJYVub2tsi7jMuBKP86aLzohGa8fWiMmMqeqq4Jtz3xTaKs5eLxwQvgL+97//ISwsDHK5HL6+vujSpUtVV4kxVo0o1Ar8euVXbPLfVKqLurvxdzGi0QgEJAQUWBeXGVfuLV5R6VEITg7G4F2DsfzKcozaNwq9tvbC997fQ64qfuLh5JxkOJg6QK4uWG7R+UUYf3A8fr78c5mzJJZky+0tJbaYxGXGwc7YDjUMa7yyWVCr2t24u5h5Yiai0qMKrMtR5qD31t7YdmdbmfZ5J+4OvvP+DqP2jUJgUiBOh57GwZEHMbv9bEw+MrnI6ReKsj9gv964QJVGBbFQjCa2TXA37i4uPLmA/u79IRaKAQCjm47G7nu7C+zHQmZRZAthhiIDJgYm2i6jZUwqo1Ar8Pu139HDtQcMRAbFljUQGUCp0R/jqOsyKjbUC5jjsuJgb2IPAHA2d0ZEWslJ6h6nPoZrDddC133R6Qs0s2uGT9p8grjMOGy9vbVAGVtjW24hLIXI9Ei41nAtcC7Lm2+0b4llApMCYWdsxz0hXnMcEDLGWBnEZ8Xj7OOzBZZX5o/l8+NKDgQcwNCGQ/FVp6/wnfd3uBp5tcht1Ro1NKRBA+sGCEkJ0Vt39NFRtNvQDhMOTsCOuzvKXK+UnBR8dforrPNdh18u/YKHiQ+x7c42jDswDrNPzsYHLT9AYFIgmtg2gdc4L1gbWWPAzgHYdW9XkftMzkmGpcyy0HXXoq7h+Jjj+Lbrt/jh4g84+PAgDj48iG/OfYO7cXfLXP+HiQ8x7sA4fOH1BX648AOG7RmGL09/WWT5vAtqK5kVknLKd265V5lao8YGvw3ovbU3hu4eim13thXZMvcg4QE6unQstIvysaBjGFR/EDbf3lzqlr2k7CTMOjkLLe1bYlnvZfi84+f4qddPMJWaYmyzsfiw1YeYcmRKodv+cOEHHHp4SG/Z2cdnsc53HQbvGowcZQ5SclJQw7AGAKChdUM8SHyAyxGX0cmlk26bupZ1EZYWVmD/NQxrFNlCmCHPgKmBKWSSsncZPRN6BoPrD8YPPX4oVXlLmaXeXIf5u4zmH0OYmpuqe67OZs4ITwsvcd+BiYFoaN2w2DICgQA/9/oZ/wU962aY9/1oZ2yH+Gz9gPBE8Am8ve1tDNk9BGtursH9+Ps4HnS8xLq8zsLSwlCrRsX2FIvPikeXf7oUOxUIEYFAsDexR1wWt+y+zjggfE0UdTFa2PLToacRkqx/IajSqJCam4pd93YVOYg5LjOuxLv5jL0K1Bp1mVsJCpP/85OjzMGck3Mwat8oLPJepNcScC/+Hjpt6oR+2/uh7/a+yFXlltgd8yefn/CP/z+6vy8+uYiJByfiSOARJOckF3kXPS03DW03tNV1w/OP9cfyq8sxpukYdHLphFrmtTD75GxceHKh0O0fJj5EQ+uGqF2jtl5yh513d2LFtRU4N+EcBAIBttzeUuoupX4xfrj45CLe3vY2ErITcDv2Nq5GXcUSnyXQkAb7R+7H4VGHMaj+IKwZsAbfdP0GAoEAU9tMxcmxJ/Veh+clZSfBUmYJAfSn4knISoCp1BRCgRDtnNqhR+0euBVzC6Epoejp2hPfnP8G2+9sB6A9j89/dwUnByNdno7U3FTkqnJxIOAAPj32KeZ3no93GryDWx/dwu9v/45HSY+K7K4amxkLOxM7WBlZ6ZWRq+Q4EHAA63zXler1yy9DnoH39r73SmSBvRd/T2+OxVxVLj488iF6b+sNpVqJY2OOYV7nebgRdQPfnPum0H08SHiAAe4DEJoSWmDdngd7MLzRcLzf4n38fOnnEuuTmJ2ITps6YWLziRhYfyCa2DYpUKZr7a6oXaM2TgafLLDu7OOz2Hb3WWskEWHZ5WXYPnQ7pnpMxfcXvsftuNtobtccACCTyKBUK3Hm8Rm0sG+h204gEEAsFOvGLOa1KFoYFt9CaGpgWmiX0ed/j9Ny0/RuaBx5dASD6g8q4dV5prFNYwQkPmv9L6rLqFqj1rV6upi7ICK95BbCkJQQ1LGsU2I5c0NzZMgzdK3smYpMmBiYwEJmoResAsDGWxsxt/1crOm/Bo9THuO7C9/hl8u/4Nzjc2/s2LW03DTUMKxR6NyRKo0K+wP2Y9aJWTgQcECXEChLkQWVRoVd93YhKCkISdlJiMmIKbQnCACs912PJT2X4K8bfxVZjydpT1DLvBbcLNwK/Qw/73zYeewP2F/k+sOBhzHzxEzdc4rPikeuKhdEhItPLpa4f1ZxxFVdAVY+FpxdgAntJsDOxA4PEh4gW5kNpVqJhOwEvNv4XSjUCogEIpx5fAYHHx5ER+eOmNpmKhacXYDhjYZjf8B+XI68jLTcNAxpMAQLuy0EAHiHeUMmkeHoo6P498G/+Kj1R/iw9YeQSWQl1kmpViJLmaW7A5knQ54BA5EBpGJpub8Op0NPo3vt7kWOrwhPC4ejqaPuR7AkAQkBaGhT/N1QVtDjlMeIzohGR5eO5b7vP679gR6uPQq9GMyz7c42LLuyDEdGHUHtGrW1d+elplh7cy0eJDzA731+h5rUiMmIwVrftZAIJXAwdcDQhkNhYmACQ7EhgpODMWb/GLSwa4H2zu2x895OzPKchWW9l+FQ4CFs8NsAVwtXKNQKbLm9BXtH7IWDqQP2PtiLVmtbwVJmiUY2jRCWGoavu3yNLrWedQVXqBXwCvWCUCBEt9rd8MOFH6DSqLCk5xJMPjIZG25tQGpuKtYOWIsG1g30nptXqBe+7fotdt7bifHNx+PL019i57CdMDc0BwB81vEzTGwxERMOToAAAnRy6aQ3r+mTtCdwtXCFaw1X/JP6j2750aCj2D50O2yMbbD5nc3YfW83ll1ehu+6f1fk60xEWHBuAU6GnIREKMGJsSd0rXnFzaean1AghJ2JHX678humtJoCU6mp3vrknGRYyaxAIL19LvFZgultp+vKTWgxQW+7Ti6d8PXZr9FnWx+IhCKky9MxpdUUHA06CmuZNQKTApGryoWByAAyiQw1TWvi+JjjkIgkun0YGxhjboe5GH9gPFb1XwUXcxe9Y8RlxqFWjVpQqBV6F7knQ07iW+9vIYAAvev0Ru0atfW2y1HmFPodejL4JLbd3QaBQICF5xbCw9EDrhauaGHfAgq1AkFJQWhs27jE17Q0cpQ5CEoOQlPbprrXdPe93bA3scfx4OOISI9ASk4KCIRtd7YhXZ6OTEUmZrSbgX7u/XSvk4ejBzwcPdBvez/dRX9+oamhmNJ6CtbcXKO3/MKTCzCXmsPexB6jmozCh0c+hHeYN7rW7lpofYkIM0/MxKp+q9DdtXuxz21+5/l4Z/c76O7aXdfFMkuRBRtjG2QpsnTlAhID4G7pDisjKwysPxBHg47ip0s/YWnPpboyX3b6EknZSQW6aja2aYwHCQ/Qwr4FUnJSYGFooe0yWkwLoZnUrECW0ZScFHTe1Bk/9vgR77d8HwBwKuQUfMJ9sKKvdk7B8LRw1LWsW+xzzs/F3EWvtS+vyyiAIltinc2dSxV8haaEoned3qWqRwfnDjgfdh49XHsgKScJ1kbW2iRMeHajTalWIleVi151egEAfuqlnYzdP9YfZ0LP4HbcbVyPuo4ahjWQqcjEqZBTaO3QGh2cO0AmkUGlUcHD0aPAZ7M08gL5AwEHMLjBYAgFhbeR5ChzYCAygEgoQrYyW2/85J24O2ho3RASkQRR6VF4nPoYnVw64V78PVyOuIwPW38IQPud7xvti1YOrQq99pGr5DAQGeg+i3n/2hnbIT4rHg6mDgC0N2VG7h2JTs6dMLzRcNyJu4ORe0dCKBBCJBRBoVagmW0zrPdbj+iMaAggQF3LukjNTUX32t3RzK4ZBjcYjGuR13A/4T62D92OIbuHwCfcB51cOkGpViIpJ0nXlfh2rPYGiYmBCZ6kPkEH56Iz4K+8vhIHHx4EAAysN1D3HZGSk4JPj3+K5Jxk1LOsBzOpGTb5b4KVzAq/X/sdWYosGIgMYG5ojuZBzeEX44d5neehqW1TSCAp8nisfHFA+Jo4FXoKdRzqICAxACdDTiIxOxFNbJtAKBDii9NfoGutrpBJZHiY+BDRGdEQC8VoaNMQZx6fwe77u+Hh6IGk7CT82vtX/HL5F6y9uRaNbRvj1yu/Ik2eBgtDC3hP9Mb4g+Ox4dYGWBtZw8LQAp+2/RTHgo5hUbdFMDYwxpHAI9gXsA+NbBohJScFQclBEAgEyJBnYHq76bj45CL2BuxFpiITc9rPgZXMCuObj8fPl37GiZAT8KzpiZTcFKzqvwr/+P+DwfUHw1Rqijkn56CeVT2k5KbgaNBRHBh5AE5mTjgQcAC/XP4FXWt1xdQ2UzHuwDj82vtXtK3ZFnbGdrov/Ij0CAQmBmL2qdn4pdcvGN5oOFQaFU4Gn0RISgg+bfup7sdAoVZAIpQgKScJbda3QfiscAggwC+Xf8Gibosw59QcfNDyAzS3b17gPOR1r7gZfRNCgRCtHVpDQxoIBcICF8cxGTGwM7Er8kco/z5zVbl6F5BEhB13d2BU01E4GXwS9xPu40nqEziZOWFW+1lIzE7E1ttbMdNzpm7/crW8wMVa/v3J1XLMOTkHP/X6CSYGJth6eytqmtWEaw1XOJk5QSKSwDvMG3/7/4257edCKpbCTGqGv67/he+6f6f3/H678hsuR17Glx2/RFhqGGyNbXUX7IceHsKduDuY13kefGO0P5BCgbDE1yGvnnvu78G5sHOY1GISbkTfgFQkRduabbHyxkp0r90dao0aBwMPYsfQHZh2fBqICGKhGBKRBMk5yfBw8EC3zd1gJDFCTEYMVvVfhcTsRKTL0zFk9xBIhBLYmdghKTsJe4bvgW+MLy4+uYjjY47r6jiw3kC0WNsCY5uOhbGBMXYP360LyIY3Gg53S3dIRBIYSYxgYmCCyYcnw8TABK0cWgHQtg5+2PpDyMQyzDwxE+80eAcTW0wEABwdfRSANqnAuAPjcPi9wzA2MAagvYBZ67sWO4ftRLo8HeMPjMfbdd7WJYbIY2NsgxGNRmDVzVVIyknCOw3e0a2LSo+Ck5kT7EzsdJMeZyoyEZ8VDxtjG125dxu/i2/Pf4vlV5ZjVvtZALQX1X9c+wMTW0xEDcMa+PnSzzAUG+L65OsgkN45LE0wmOe7bt/h4MODWHVjFb7o9IXeuuRcbZdRM6kZMhTai2pA2/L029u/FblPkVCEJW89S2zhHeaNhecXYlG3RZCr5WhXsx0yFZmwM7Er9gZRB+cOmN95Pn6+9DNW9lupty42MxZta7ZFliJLr8vowYcHcWz0MYSkhODvW3/rBdV7H+zFDxd+gO+Hvno3rgITA/Hn9T/xZacv0dG5Izbe2oj4rHgceHgAyTnJyFXlonaN2ghPC8dbbm/hetR1GIoNYSWzwvR206EmNZKyk1DPqh723N+DDbc2YFG3Rejl1guZikxkKbOw98FepOWm4Xr0daTL01HPqh7UGjXqWdXDkUdHYG9ij6a2TdGlVhc0tW0KJzMnPE59DLVGjbqWdYs9p1M9pmKpz9IC3RpVGhXqWNTBkzT9nicLzy/E4fcOA9C+V37q9RM+/u/jIgPCW7G3YG9iX2IwCACmUlO83+J9rLy+ErPbzwagDf4aWjeEX4yfLsHLqZBT6FO3j267NQPWFNhXURfArRxawS/GDy3sW+iCHQvDYgJChfam1PNZRg8+PIilby3F1jtbMbHFRAgEAvjG+Oq11pXlswRou39ejris+ztXlQtjA2MIBUK9LqP5OZk5ISpDf5znvfh7qGlaExYyC92ysNSwAjc4ijKm6Rgs9VmKHq49kJCVAGsja+3zydfa7x/rj5b2LQts28K+BVrYt4BKo8KpkFOQiqTIVmbj6y5fwzfaF4+SHiE+Kx4CCDDx4ETMaT8H/ev1L1W9AGCz/2asvrkazubO8An3wf2E+7gccRm2xraQiqSoaVYTcpUc1kbW+C/oPxBpv99CU0Lxfov3IRaKEZISgqScJCRlJ6GXWy+cCzsHQ7EhTAxMEJEegc4unTFo5yCoSdsa1tyuORaeX6j77Wxs0xgejh5YfXM10uXpaOvYFot7LoZCrdDdgHA0dUR0RrQuINxxdwcG1RuED1p9AADo6NIRE1tMhFAg1As0c1W5iMuMQ02zmiAiZCuzcTf+Lm7F3MKAHQMgEUmwfeh2CAQCbBu6DYN3DcaKPivwxekvYCwxRrYyG993/x5XIq/gnQbvIFuZjduxtwt9LXNVuZh1YhZis2JxfMxxLPVZiutR13U3hP+8/ifGNRuHt9zeglgoRnRGNH659AuczZ1x6L1DMBQbwlBsCCLC3gd7MaLRCCzxWYL9AfuROiu11OeUvRwOCF8TbRzbYMW1FRhUfxAcTBzwQ/cf4GrhisG7BmNs07FY77ceo5qOgomBCdrVbAdjiTE+OfYJfn/7d7x/6H3sGbEH/rH+aGbXDD1ce8DtDzeYGpiig3MHLOm5BGKhGDbGNjg2+hgEAgFUGhUi0yOx0W8jhAIhdt/fjSa2TbD86nIMazgM6/zW4V78PdSuURvrB66HrbEtToeeRk+3nmjv3B5SkRQKtQK3426j2ZpmmOoxFUdHH4VfjB/2B+zHjxd+RFhaGA4FHoKGNJjedjp+vvwzbIxs8Fe/v/DOrnd0d/bPTTiHbXe2YdS+UTg59iSmHJkCA5EBwtPC0cC6AeQqOQgE/1h/bBi4AT9f+hnJOcmwNbbFqhur0NC6oTbJhVsveDp5YtKhSWhh3wJOZk4Y0nAIph2fBrlKDjcLN7Rc2xKTW03GZ16fob5VfczwnIE6FnWwyHsR/GP9kZSTBBMDE113tJ/e+gk77+1EQ+uGmN95Pr4++zVmtZ+FbGU2hu4eir/6/aX3I6YhDc6Hncf5sPP4rvt32HN/D3678husjaxxeNRhhKeF4+dLP8NSZgmfcB94P/FGSEoIPmr9EVo5tEJQUhBardUGHeObj0e/Hf2g0qhgJDFCYnYiBrgPwNhmY/Eg4QH2PNiDv/r9halHpyIsNQxEhM4unTFk9xB0dO4Ivxg/nAs7ByczJziaOkJDGphLzdGuZjv03d4Xrhau6OLSBb4xvph8eDJCU0NhLDHWBZ7nJ5zHN+e+gZ2JHc6GncXDxIewNbbF8eDjGNFoBDw3esLZzBlJOUlIl6ejb92+aFuzLXJVuchR5mBc83EQC8VYdH4RLkVc0gbqIgnGNhuLuMw4nAo5hQktJiAwMRC/XP4F+0fux/fe36OxbWOs6rcKTe2a4sioI7rX1i/GDw4mDjA2MEZCVgLqWNYp0Io1ttlYAMDN6JsQC8WoVaMWatWopZdiHdAGG3c+vlPkhdrzNwv+6vcXxh4YiyU9l+A77+9gbGCMr7t8DYFAgIH1Bxa6D0dTR8zvPB9fnfkKf/T9AwC0P7LOHWFtZI1hjYYhKiMKMzxnFLr9+y3fx1tub2Hh+YV6AWFkeiRaO7bWu1O/+OJizO0wV297gUCAb7t9iz7b+8DZ3BkOJg6YfWo2RjQagR8u/ICYzBi80+AdjG46GgKBoECXzrKoVaMWJreajAkHJxRYlzemy87YDnGZcTCTmiEiLQJOZk5lOkbX2l1xfuJ5vWV5QXxJ2ju3x7fe3+pu7uTJG0OYmpuKu/F39ZbXNKsJR1NHfOf9nW6sVmR6JNb5rkN/9/64EnlFNy4tS5GFqUenYusQ7U0YAJjcajIA4COPj/TqIlfJMe/MPPzV7y8Yig1x4ckFLL64GKGpoahvVR+pualobNMY3hO98fvV37HUZymsjayRJk/DV52+goHIAJ91/Ay3Y29rx/bF3EK2MhufdfgMQoFQr4UUgG5agpIMrD8Q2+9ux/34+wVaMSUiiV7Slqj0KNSxqKPXGmwps9R1tc4L+vPLG29YWmOajsFbW9/S3RR7lPQI9azqITE7ERHpEahdozYuRVzSvc5l1cqhFX678hsmtZyExOxEWMmsCozRyy9dnl5ol9HApECMazYOYalhOPv4LHq69cT9hPu6LsN5mWzLwtncGZH3I3V/y9VyWIosIRKIigxYn092k6PMgecGT6wdsBZjmo3RLVdqlCUmtsnjauGqC2wj0yNR01T73s7f2n8q5BS61y46yBcLxejn3k9vWZuabdCmZhvd3wPrD8T8M/OxP2A/LGQWWPrWUvhG+0IgEKBtzba6ckFJQZh2fBocTR2RnJOMS5Mu4U7cHUjFUhx9dBS/vf0bUnJSYGdih/C0cEhFUkRnRGNGuxno4NwBEqEEBiIDnAo5BWsja/R174sW9i2Qo8zBjegb+NjjY1gbWSNLqW2FzrsBG5keiRxlDtyt3HV1eZL6BKEpodh1bxdW9FkBF3MXLDy3ELvv70Yjm0aoZ1kPAFDTtKY24yhaI12ejm13tuHYmGN6r0dhvQ0MxYZ6YxDNRebo5NIJnVw6YVq7aXplTQxMMKPdDAzaOQgnx56Eu5U77sffx7Y72/Dvg3+xoMsCPEl7ghOZJ54/DOKz4jF412DMaT8HnVw6QSKS4C23t3Aq5BQ6unREWm4afMJ9sKDLAt3vpaOpI5b3WV5gXwKBACMajwAA7H13LwbtLP3nnZUDYtVaWloaAaC0tDQ6G3qWNBoNXQq/RLnKXCIienvr2xSQEEBuK9woMSuRbsfephxlDhER7X+wnzQaDZ1/fL7AfuMz42n2idl0PfJ6iXWIz4yngTsG0tyTcyk4KVi3/LNTn+mOVRSNRkN3Yu/oLXsQ/4B6bO5BSdlJdD3yOt2Lu0dERAvPLaR/7/+rK3cj6gbdirlVYJ9nQs9QXGYc/Rf4H2k0GkrLTaN5p+fRjagbpNFoKD03neafmU+t1raixKxEIiK6FnmNph+bTp3/7kxxmXG0/Mpy+uPqH5SlyKLL4Zfp3ONzRER0N+4uEREpVAq6E3uH+mzrQ0cfHaXpx6ZTQEIAqTVqisuMox8v/Ejzz8ynPtv60Mngk/S99/fUcWNHOhhwkDpu7Eh9t/Wl+/H3qfPfnelk8El6EP+AotOjyWW5C3lu8KQum7pQUnYS9dzck6LSo2jyocnUc3NP6v5Pd+q7rS8tvrCYshXZdPTRUTobelbv+afkpJBaoyYiorTcNFKoFEREFJcZRzOOzyD3P9xpzsk5dCLoBLVY04LGHxhPhx8epvTcdCIiik6Ppq23t1JKTgpdi7xGWYosvf1nKbJo1fVVdCTwCI3aO4oy5Bk09b+puuMEJwXrXtf8tt3eRp+f+pwuhF0gIqKk7CRSa9SUKc8kjUZDBwIO0Pfe39NPPj/RupvrqMfmHjR632iadWIWEREp1UqSq+TFvZ1eaQlZCTRizwjyCvHSnZ/SGLJrCF2LvEZERD94/0DeYd5lOm7vrb31jjfp4CSKzYglIqJBOweRWqOmftv7FVmn4KRgGrBjAHX+uzOl5KQQEdG4/ePo4yMfl6kepdF3W1/SaDR6ywbuGEhEREsvLtW9d7bd3kZb/LeU+/GLs+DsAroScUVv2ZBdQ0ihUtCtmFv09ZmviUj73TBo5yBdmeuR12nAjgGkUClo5bWVdCTwCO29v5f+9vtbV2b5leW09/7el6rf869bVQhPDaehu4fqLRuwY4Dev0REBwIO0Nqbawtsf/HJxSLfV3239dV9x5TWzOMzKSAhgIiIfrzwI10Ov0wrrq6gE0EniIio3/Z+ZdpffhqNhvpu60tE2uezwXcDEek/z/z+ufUP/Xv/X0rPTacx+8bolo/dP5aSs5MpOj2a3v33Xd33RN5+7sTeoa9Of1WmuslVchqya4ju79+v/E5eIV507NExWnltJRFp36f5yzxf98DEQOr+T3fd+7qwMqUxfM9wypBn0IqrK+hk8EkiIhqzbwyl5qQSEVGvLb1IpVaVaZ+F0Wg0dD3yOi29uJS6bOpCc07Ooe7/dCeFSkEajYb+9vubuv/TnaLSo8g/xl93jfQqyVJkUfd/utO6m+to+53tRET0X+B/tPrGaiIi2uC7gXbc2VFhxy/s9zXveyU5O5nG7R9XYP38M/ML/CYp1Urqt70fpeakUseNHXXf22U1cMdAvWtcVrE4IKzmSvqw5P2APn8hUx2V5SK6svbnHeZNdf+oq7tgz5OtyC4QSOUJTw2nDHkGERHFZMTQiD0jqMumLtRlUxc6HnScHqc8poXnFlKbdW10502pVtKT1CekUCl0F+UvKv+FY1pu2isbZGk0GopKj6rqalS5pOwkGrBjAN2JvUMDdwws84XMF15fkG+0r+7vgTsG6t77Hx35iEKSQ/QCmMKEJIdQUFKQ7u8sRdZLvw8L8+nRT/VuKuXVl+jZBTUR0ZTDU+hJ6pNyP35xbsfeprH7x+p9fvIujqPTo2nyoclEpL2A/+zUZ3rbfnvuW7r45CK9+++7lJKTQv4x/jT/zHzd+iG7hlCmPLMSnkXF+/Dwh/Qw4SEREeUqc3UB4tDdQ3Xv3TH7xtDjlMeFbj9wx0BKyk7SW5aQlUAj/x1Z5rrsvrdbF3hPPjSZotOj6UTQCfrj6h+UnJ2sF5i9iP7b+5NKraINvhvoYMBBIio6YPrz2p90IugEKdVKvUBswI4BuvfU2P1jaeS/I+nYo2M0dPdQylHm0N77e2mj38Yy1y1/PZZcXEI+T3zo3ONztOzSMiLS3iCcdHBSkducCj5Fiy8sphF7RuiWaTQa3eextFZdX0W77+2muSfn0oP4B0RENOvELHqU+KhczkFxVl5bSbNOzKIem3vQkotLdEHoq+xM6BkyWWyiu1HuF+2nC8pH7BlRId+7paHRaAp9b/fe2rvQm1ETD06k9w++/1I3ugbsGMABYSXiLKOvubzuP55OnlVck5dXmjFmlb2/LrW64N7Ue3rdUgBtF478A8/zczZ31nUlsTexx54Re3Bq7CkcHX0Ufer2Qe0atfFN12+wZcgW3XkTC8VwMXeBRCQpkKSnrPJ3czSTmpW6+09lEwgEcDR1rOpqVDlLmSV+eusn/Hn9TwAoczKmdxu/i0Xei3RZ3dSk1r33a9eojd+u/IbebsUniXCzcNNLamEkMXrp92Fh2ju31xv7lF/+MY8R6REvlETiZTSzawZ7Y/tC62dnYqdLyX448LDeuDRA+z1x6OEh5KpyUcOwBupY1kFwcjAAbdc8uVquGyda3b3f8n1d1tjE7ERYy7TjxhxNtGOh8rqFFjUObVrbaRi6eyjmnJyDhecWIiUnBRv8NmB009FlrkuXWl1wLuwcACA2S5sRtr51fQQmBcI/1l8vc+iLaGDdAIFJgdouo0ZWxZbNSyojFooLZJDN+05e2Xcl+rn3Q1/3vujo3BGnQ0/rxlm/jLwkRvmzjKbkpOiNDQS0XQfzsjOHp4WjoU1DXfdHAEjJLbhNSUY3HY3td7cjIj0CzubOALSJUuKy4nA/4X6xycFe1oQWE+Bi7oKDIw/iy05flrqLeFXq4doDW4ds1SUTc7VwRWhqKHJVubrvj6ogEAgKZK1/lPQILmYuhQ6dWNxjMVo5tMKQhkNe6rjPH5NVHA4IGXtJ5ZEtVSqW6iV8EQqEBbJLsjdXI5tGyFRkFgg0SqOVQyt0dO6IE8EnEJsZC1tjW9262jVq42jQUV1Cm6rW2aUzvJ946/7OfzFgb2KPmIwYxGTE6DLgVbbhjYbjVMgpXd3y6pd/PKZPhA+61tJPjNKmZhscfnQY8zrNA6C98E7OSQYRYfnV5ZjSqvB586qjdjXb4WbMTag1aiRkJ+jeb3nJMaLSo4odl9irTi+cGX8G45uPR3vn9nj/0Pt4lPQIA+oNKHNd8uZO23p7K5RqJYQCIZzNnBGcHIxbsbcKTWZSFnmJZfKSygDQTRNwPuw8Ru0bpXuP5CWVKY65oTnGNx8PQDsGcue9nbgXfw+NbV4ss2zesXNUOZCJZXoT06fkajOj5udg4oCYzBgA2oCwlnktyMQyXWbWuMw42BrZoizMDc1hLbNGUHKQ7jcub3L6e/H3KjQgNDEwwUzPmSW+7q+adxq8o7uZX8OwBtJy03A+7Dy61e5WtRWDNknU+bDziEyPxNdnvy4w9jyPg6mDXrK+F2EgMnglpt95U3BSGcYYqwZ2DCv7RPF5JraYiE+OfQINaeDh4KFb3sutF1rYt3hlWqeczZ0RmR6pywKZLk/XXczVtayLoOQgXHhyAV1cupSwp4rh4eiB7y5oM4bmz3iaR6lW6tLT52diYILATwML7OtyxGX4hPvgy05fVmzFK5FAIED32t1xPuw8knKSdC2BNc1qIjI9EiqNqsSEQCKhCM3tm6M5mr/QTZD8fun1C2adnIVutbrp9u1m4Yad93ZiQvOCSYzKopVDK6zzXYfApEA4m2lbv1zMXPAk7Qn+uvEXTA1McS/+HpraNdUllcmvsGV57EzskJyTDKlIWiDRT2nkz8qbo8yBkcQIIqFIl/SmsBZCBxMHxGTEoJ5VPUSmR8LJzAkejh64GX0TXWt3RXxWPOxM7MpclwVdF+hNd2FvYo+QlBA8THyIt+u8Xeb9vYnW+63HH33+qNI6tLRvCZ9wH0w7Pg1ioRjDGg5Dfev6FXY8qUhaZJImVv64hZAxxl5zeanU/7z+p17GPisjq1euJbpb7W66ydAPPjyInq49AWiDqixlFryfFD1XXUUTCUWQCCXIVeUiIk2/26qVzArXo66jjkXJk3YDwKdtP8XX576GuaF5uXeHr2ojGo3AvoB9OBZ0DH3d+wLQXkzejL6pCzQqSzO7ZtjyzhbM6TBHt2xBlwVoZtusxG6eJXG3dMeJ4BOobV5bd1OlkU0jeIV4QSwUY2TjkTgdehpA4S2E0RnRusybhent1hsftf6oyPXFsTGy0U1Ynq3MLthltLAWQtNnLYSJOdpusK0cWsE/1h+ANnuunXHZA8LaNWrrzefbyKYRHiQ8QFhqmF4mTFY4G2MbNLFpostAXFV61emFb859g4nNJ2JYw2H4qtNXFXo8Q7EhFGpFhR6DPfN6/Qoxxhgr1JKeS1Dfqn6BOQtfNR97fIyNtzYCAPY/3I/3mrynW2cgMkBgUiBca1Tdc8hrMXmS9kQvIGxp3xL/+P+DRjaNSrUfR1NH/Nn3TyzpuaTkwtWMu5U7QlJCEJcVpxsH3Ni2Me4n3K/0gBDQtk7mH9PtYOqAjYM3vvR+RUIRutfujoXdFuqWNbRpiPln52N62+no5NIJF8MvAtCOIXy+NTAqParYi/xZ7WfpAuqyyuuWCTzrMiqTFD+GMK+FEIBu3j0bIxvdHJtR6VHlMq7bxVzbivr83KWscCv6rNB7j1WVTi6dEJcVh+6u3fF1l68L9IQob9xCWLn4k8gYY28AZ3Nn/Nnvz6quRolqGNaAhjRIydHOl5b/Qn5a22mY1GJSmSfqLk+dXDrhUvgl3RirPP3r9ceu+7vK1MWxiW2TUk/yXd3UNq8Nz5rPkpkJBUK41nDFrvu7Xqvn/Ff/v/TG5Ta3a47Z7WejvXN7GBsYQ6lRQqFWQKVR6bp+SsXaC92ojPIJsApjY2SDhGxtC2GOSptUxlBs+KzLaAkthHksZBZIzU0FAERlRJVLMC8QCJCryoWTaeXeGKiuzKRmr0TgLBQI4TXO66XH3paWodgQcpW8Uo7FeAwhY4yxV8zAegMxcOdAXYKNPD1ce1RRjZ5pW7Mt/rz+J+pZ1kNH54665XUt6+LqB1crvfXrVTWt3bQCGRF/fftXhKWGvdavkYXMAvM6z9P93cKuBe7G3dUrY2loiZScFERnRKOzS+cKqUf+FkK1Rg2xUKztMqosoYUwMwYa0uhuutQwrKEXEJZXt8Wdw3YWGIPLXn2Vmd1ZKpZCruaAsLJwQMgYY+yV8kGrD/BBqw+quhqFMpIYQQABzj85j/ld5uuta2z7YtkgX0eFZY80FBu+cmNWK1peJtK8LLSANmhMzkkuscvoy7AxtsGDhAd6y0RCEdSknX6msBbCGoY1kJKTgqTsJN10IWZSM6TJ0wAAmYpMvWzYLyN/qypjhTEUG3JAWIk4IGSMMcbKYM2ANYjJiCm3i2P2+mrl0AoLzi2AVPRseiILQwuk5KYgOjMaDiYOFXLc/C2EhUnNTS3QgisQCKAhDSLSI3RdWYUCIc8Fx6qEVCTlLqOVqOo7JTPGGGPViLWRNZraNa3qarBqwMXcBfcT7qO9U3vdMkuZJZJzkqFQK8plHtvC5B9DmJ8A2q6g+cc05mdvYo/Toaf1WngJxEEhq3Q8hrBycUDIGGOMMVYBBAIBVvZdiXcbv6tb5mTmhIi0iAo9bv6unvnl77paGA9HD2zw24Dm9s31lidmJ8LayLpc68hYcXgMYeXigJAxxhhjrIK0d24PZ3Nn3d+NbBrhbvzdCs0c+aKZeEc1GQUbYxu4W7o/2xcE2oQyxcyZyFh5y58Vl1U8DggZY4wxxiqJs7kzfGN8YWv06iVWsZBZ4NKkS3pzzBmIDBCSHPJaZ4dlrx6piFsIKxMHhIwxxhhjlUQoEMLW2BaeTp4lF34JAggKHfunVCshFpY+p6CbhRsuPLnALYSsUvEYwsrFASFjjDHGWCU6OvpohU+tYm5ojrisuAKJawrLMFqcelb1cCr0VKXOQceYodgQ2crsqq7GG4MDQsYYY4yx14ytkS0CEgJgY2Sjt7ywOQiL427pjqTspELnlmSsokhEEsw9Nbeqq/HG4ICQMcYYY+w1kzc5ff7soFKRFHGZcbCQlT4gbGzbGJ+2/VRvXCFjFa1rra4ImR5S1dV4Y3BAyBhjjDH2mrE1tsWDhAd6LYSGYkNEZ0SXqYXQ2sga33T9piKqyFiRpGIprI15qpPKwgEhY4wxxthrxsbIBg8S9VsIZWIZItMjYWVkVYU1Y4y9ajggZIwxxhh7zehaCI2ftRDKJDKEpITA0dSxCmvGGHvVcEDIGGOMMfaaqWNZB/FZ8bCSPWsNNBQbckDIGCuAA0LGGGOMsdeMtZE1dg7biXpW9XTLjCRGCE4OhoOJQxXWjDH2qin9zKSMMcYYY6zaeK/Je3p/N7VtisTsRBgbGFdRjRhjryJuIWSMMcYYewP0cO0BZzPnqq4GY+wVwwEhY4wxxtgbwEJmgQMjD1R1NRhjrxgOCF9A7dq1IRAI9B5ffvmlXpnw8HAMHDgQxsbGsLa2xvTp06FQKPTK3L17F127doVMJkPNmjXx3XffgYgq86kwxhhj7A3ibuVe1VVgjL1ieAzhC/ruu+8wZcoU3d8mJia6/1er1ejfvz9sbGzg4+ODpKQkTJgwAUSEP//8EwCQnp6OXr16oXv37rhx4wYePXqEiRMnwtjYGHPmzKn058MYY4wxxhh783BA+IJMTU1hb29f6LpTp07hwYMHiIiIgKOjNrXzr7/+iokTJ+LHH3+EmZkZtm/fjtzcXPzzzz+QSqVo0qQJHj16hN9++w2zZ8+GQCCozKfDGGOMMcYYewNxl9EX9NNPP8HKygotWrTAjz/+qNcd9MqVK2jSpIkuGASAt99+G3K5HL6+vroyXbt2hVQq1SsTHR2NsLCwSnsejDHGGGOMsTcXtxC+gBkzZqBVq1awsLDA9evX8dVXX+Hx48fYsGEDACA2NhZ2dnZ621hYWMDAwACxsbG6MrVr19Yrk7dNbGwsXF1dCz22XC6HXC7X/Z2enl5eT4sxxhhjjDH2huEWwqe+/fbbAolinn/cvHkTADBr1ix07doVzZo1w+TJk7FmzRps3LgRSUlJuv0V1uWTiPSWP18mL6FMcd1FlyxZAnNzc93D2ZnTRzPGGGOMMcZeDLcQPvXpp5/ivffeK7bM8y16eTw9PQEAwcHBsLKygr29Pa5du6ZXJiUlBUqlUtcKaG9vr2stzBMfHw8ABVoX8/vqq68we/Zs3d/p6ekcFDLGGGOMMcZeCAeET1lbW8Pa2vqFtr116xYAwMHBAQDQvn17/Pjjj4iJidEtO3XqFKRSKVq3bq0rM2/ePCgUChgYGOjKODo6Fhl4AoBUKtUbd8gYY4wxxhhjL4q7jJbRlStXsHz5cvj7++Px48fYs2cPPvroIwwaNAguLi4AgN69e6NRo0YYN24cbt26hTNnzmDu3LmYMmUKzMzMAACjR4+GVCrFxIkTce/ePRw4cACLFy/mDKOMMcYYY4yxSsMthGUklUqxe/duLFq0CHK5HLVq1cKUKVPw+eef68qIRCIcPXoU//vf/9CxY0fIZDKMHj0ay5Yt05UxNzeHl5cXPvnkE3h4eMDCwgKzZ8/W6w7KGGOMMcYYYxVJQHmZTFi1lJ6eDnNzc6SlpelaHxljjDHGGKvO+Bq38nCXUcYYY4wxxhh7Q3GX0Wour4GX5yNkjDHGGGOvi7xrW+7MWPE4IKzm8uY+5KknGGOMMcbY6yYjIwPm5uZVXY3XGgeE1ZylpSUAIDw8nD8sr4G8eSUjIiK4v/xrgM/n64fP6euFz+frh8/p64OIkJGRAUdHx6quymuPA8JqTijUDgM1NzfnL77XiJmZGZ/P1wifz9cPn9PXC5/P1w+f09cDN3ZUDk4qwxhjjDHGGGNvKA4IGWOMMcYYY+wNxQFhNSeVSrFw4UJIpdKqrgorB3w+Xy98Pl8/fE5fL3w+Xz98ThkrO56YnjHGGGOMMcbeUNxCyBhjjDHGGGNvKA4IGWOMMcYYY+wNxQEhY4wxxhhjjL2hOCBkjDHGGGOMsTcUB4TVwIULFzBw4EA4OjpCIBDg4MGDeuuJCN9++y0cHR0hk8nQrVs33L9/v2oqy0q0ZMkStGnTBqamprC1tcU777yDwMBAvTJ8TquX1atXo1mzZrqJkNu3b4/jx4/r1vP5rN6WLFkCgUCAmTNn6pbxOa1evv32WwgEAr2Hvb29bj2fz+onKioKY8eOhZWVFYyMjNCiRQv4+vrq1vM5Zaz0OCCsBrKystC8eXOsXLmy0PU///wzfvvtN6xcuRI3btyAvb09evXqhYyMjEquKSsNb29vfPLJJ7h69Sq8vLygUqnQu3dvZGVl6crwOa1enJycsHTpUty8eRM3b95Ejx49MHjwYN3FB5/P6uvGjRtYt24dmjVrprecz2n107hxY8TExOged+/e1a3j81m9pKSkoGPHjpBIJDh+/DgePHiAX3/9FTVq1NCV4XPKWBkQq1YA0IEDB3R/azQasre3p6VLl+qW5ebmkrm5Oa1Zs6YKasjKKj4+ngCQt7c3EfE5fV1YWFjQhg0b+HxWYxkZGeTu7k5eXl7UtWtXmjFjBhHxZ7Q6WrhwITVv3rzQdXw+q58vvviCOnXqVOR6PqeMlQ23EFZzjx8/RmxsLHr37q1bJpVK0bVrV1y+fLkKa8ZKKy0tDQBgaWkJgM9pdadWq7Fr1y5kZWWhffv2fD6rsU8++QT9+/fHW2+9pbecz2n1FBQUBEdHR7i6uuK9995DaGgoAD6f1dHhw4fh4eGBESNGwNbWFi1btsT69et16/mcMlY2HBBWc7GxsQAAOzs7veV2dna6dezVRUSYPXs2OnXqhCZNmgDgc1pd3b17FyYmJpBKpfj4449x4MABNGrUiM9nNbVr1y74+flhyZIlBdbxOa1+2rVrhy1btuDkyZNYv349YmNj0aFDByQlJfH5rIZCQ0OxevVquLu74+TJk/j4448xffp0bNmyBQB/RhkrK3FVV4CVD4FAoPc3ERVYxl49n376Ke7cuQMfH58C6/icVi/169eHv78/UlNTsW/fPkyYMAHe3t669Xw+q4+IiAjMmDEDp06dgqGhYZHl+JxWH3379tX9f9OmTdG+fXvUqVMHmzdvhqenJwA+n9WJRqOBh4cHFi9eDABo2bIl7t+/j9WrV2P8+PG6cnxOGSsdbiGs5vKypD1/xys+Pr7AnTH2apk2bRoOHz6Mc+fOwcnJSbecz2n1ZGBggLp168LDwwNLlixB8+bNsWLFCj6f1ZCvry/i4+PRunVriMViiMVieHt7448//oBYLNadNz6n1ZexsTGaNm2KoKAg/oxWQw4ODmjUqJHesoYNGyI8PBwA/44yVlYcEFZzrq6usLe3h5eXl26ZQqGAt7c3OnToUIU1Y0UhInz66afYv38/zp49C1dXV731fE5fD0QEuVzO57Ma6tmzJ+7evQt/f3/dw8PDA2PGjIG/vz/c3Nz4nFZzcrkcAQEBcHBw4M9oNdSxY8cC0zU9evQItWrVAsC/o4yVFXcZrQYyMzMRHBys+/vx48fw9/eHpaUlXFxcMHPmTCxevBju7u5wd3fH4sWLYWRkhNGjR1dhrVlRPvnkE+zYsQOHDh2Cqamp7g6mubk5ZDKZbr4zPqfVx7x589C3b184OzsjIyMDu3btwvnz53HixAk+n9WQqampbkxvHmNjY1hZWemW8zmtXubOnYuBAwfCxcUF8fHx+OGHH5Ceno4JEybwZ7QamjVrFjp06IDFixfj3XffxfXr17Fu3TqsW7cOAPicMlZWVZbflJXauXPnCECBx4QJE4hIm1554cKFZG9vT1KplLp06UJ3796t2kqzIhV2LgHQpk2bdGX4nFYvkyZNolq1apGBgQHZ2NhQz5496dSpU7r1fD6rv/zTThDxOa1uRo4cSQ4ODiSRSMjR0ZGGDh1K9+/f163n81n9HDlyhJo0aUJSqZQaNGhA69at01vP55Sx0hMQEVVRLMoYY4wxxhhjrArxGELGGGOMMcYYe0NxQMgYY4wxxhhjbygOCBljjDHGGGPsDcUBIWOMMcYYY4y9oTggZIwxxhhjjLE3FAeEjDHGGGOMMfaG4oCQMcYYY4wxxt5QHBAyxhhjjDHG2BuKA0LGGGOMMcYYe0NxQMgYY4wxxhhjbygOCBljjDHGGGPsDcUBIWOMMcYYY4y9oTggZIwxxhhjjLE3FAeEjDHGGGOMMfaG4oCQMcYYY4wxxt5QHBAyxhhjjDHG2BuKA0LGGGOMMcYYe0NxQMgYY4wxxhhjbygOCBljjDHGGGPsDcUBIWOMMcYYY4y9oTggZIwxxhhjjLE3FAeEjDHGGGOMMfaG+j+cAzZqratPDgAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9f64e77933694d0ea97695c0d51244ed", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA6StJREFUeJzs3Xl8FPX9+PHXzF45SMIRQ6AiqChGQbEoh1qFcigFoVgLVkBRxFaU1IJIbTnrT8RaBYvf4lELylHqUa1WixwqKoecthHBEwSUAEIuSLLn/P7YmWF3c7C72SvJ+/l48NDMzs5+drO7mfe835/3R9E0TUMIIYQQQgghRLOjJnsAQgghhBBCCCGSQwJCIYQQQgghhGimJCAUQgghhBBCiGZKAkIhhBBCCCGEaKYkIBRCCCGEEEKIZkoCQiGEEEIIIYRopiQgFEIIIYQQQohmSgJCIYQQQgghhGimJCAUQgghhBBCiGZKAkIhhBBCCCGEaKYkIBRCCCGEEEKIZkoCQiGEEEIIIYRopiQgFEIIIYQQQohmSgJCIYQQQgghhGimJCAUQgghhBBCiGZKAkIhhBBCCCGEaKYkIBRCCCGEEEKIZkoCQiGEEEIIIYRopiQgFEIIIYQQQohmSgJCIYQQQgghhGimJCAUQgghhBBCiGZKAkIhhBBCCCGEaKYkIBRCCCGEEEKIZkoCQiGEEEIIIYRopiQgFEIIIYQQQohmSgJCIYQQQgghhGimJCAUQgghhBBCiGZKAkIhhBBCCCGEaKYkIBRCCCGEEEKIZkoCQiGEEEIIIYRopiQgFEIIIYQQQohmSgJCIYQQQgghhGimJCAUQgghhBBCiGZKAkIhhBBCCCGEaKYkIBRCCCGEEEKIZkoCQiGEEEIIIYRopiQgFEIIIYQQQohmSgJCIYQQQgghhGimJCAUQgghhBBCiGZKAkIhhBBCCCGEaKYkIBRCCCGEEEKIZkoCQiGEEEIIIYRopiQgFEIIIYQQQohmSgJCIYQQQgghhGimJCAUQgghhBBCiGZKAkIhhBBCCCGEaKasyR6AiJ6maZSXl1NRUUFWVhaKoiR7SEIIIYQQQjSYpmlUVFTQvn17VFVyWPEkAWEjVlFRQcuWLZM9DCGEEEIIIeLiwIEDnHnmmckeRpMmAWEjlpWVxYEDB+jQoQMHDhwgOzs72UMSQgghhBCiwcrLy+nQoQNZWVnJHkqTJwFhI6YoihkEZmdnm/+/YMECZs+ejaZp5OTksH79es4++2wGDhzI5s2b0TSNX/ziFzz77LNBx+vcuTOHDh1CURR69OjB+vXradmyJXv27CE/P9/cr7q6mq5du3L06FHOPvtsPv7446Dj3HHHHbzwwgtkZGTQsmVL9u3bF3T7Y489xuzZs1FVFU3TOHjwIHa7PeJjLliwgPvuu48xY8awZMkSWrZsiaZpeDweRowYwbJly2LzQofh3HPPZd++fXi93oQ9phBCCCFEUydTouJPCnKbmK+++orp06ezc+dOysrK+MlPfsKPf/xjAH7/+99TUVFBcXExS5cuxefz1bj/smXLKC0tZevWrWzdurXWx5g1axb5+fmUlZVRXV3N008/XWOf4cOHU1paWiMYBJg9ezb/+9//KCsr45NPPiEjIyPqY3bv3p0lS5aYP3/22WccOHCAlStXUllZeZpXK3a++uor0tLSEvZ4QgghhBBCxIIEhE3MI488wqBBgzj77LMBeOqppzh48CAul4u+ffsCkJGRUe/VFqvVyhlnnMH//vc/AK6//npatmzJxRdfDMC7777LqFGjzNveeOONGsd4/fXXycnJobCwsMZtFouFp556ivLycs466yysVmuDjxmodevWpKen8/XXX5vbFixYQJs2bWjXrh3p6elMmTKF/Px8MjMz2bVrV9D9d+/eTdu2bWnZsqX5OgYeJzc3l/z8fNLT03nllVfqHYsQQgghhBCpTALCJubAgQOce+65QdvS0tL4/PPPzZ9vvPFGfvSjH9XZsen48eMcPnyYK664AoAbbriB0tJSysvLWbZsGRUVFeTl5QFwxhlncPz48aD7z5gxg5MnT7J7927+9re/1Sj//Oc//8lLL71EmzZt6NatGx6Pp8HHDPTZZ59RXV3NBRdcUOO2Q4cOMWrUKP7+979TXFzMtddey8MPPxy0z+jRoxk3bhylpaV88cUXNY7h8/koLi5m1qxZzJ07t85xCCGEEEIIkepkDmET07Fjx6DMGPjn/J1//vkAzJs3j82bN7N///5a7z9mzBisViujRo2ioKAA8AeQAD/84Q/ZunUr2dnZHDlyBIDDhw/TunXrGmMAaN++PRdddBHr1q2je/fu5u0//vGP+frrr/F4PBQUFPDII49EdUyLxVJj/F26dEFRFH77299itQa/vY1sX+fOndm7d6+57dNPPw3a78CBA9x+++0ANY4BcM455wBw8cUX89xzz9V8EYUQQgiRdD6fD5fLlexhiDrYbLZaz+VE4klA2MRMnTqV7t27880339CxY0fuvvtuOnTogN1u51//+hcPP/wwn332Wa2BDvjnEI4YMSJo26uvvsr999/Pxx9/zA033EBaWhr/+Mc/mDRpEm+++SaTJ08O2v/gwYOceeaZuFwuPvvsM3r16hV0+5o1axg4cCBWq5WWLVvi9Xrp27dvxMfctm1bjfF/9tlnQQ1w6hJYMqtpWtBtZ511Fs8//zxz587F4/HU+VrVdl8hhBBCJJ/L5WLv3r219ksQqaNly5bk5+dL45gkk4CwiTn33HN58MEHueSSS4K6jAKMHz8ep9NpllL+73//46yzzjrtMV988UUeeughOnbsyJgxY6iuruaiiy4iJyeHTp06ceeddwJQUFDA7t27GTt2rNmQZuDAgVx11VVBx/v1r3/N/v37zbmKv/3tb/H5fBEfs7aAMBaWLVvGNddcw1/+8hfatGnDV199FZfHEUIIIUTsaZrGoUOHsFgsdOjQQRY1T0GaplFZWWlWh7Vr1y7JI2reFE1SHI1aeXk5OTk5lJWVNbt1CP/6178yadIkRo0aFdRpNBnOPfdcDh8+zIkTJ5I6DiGEEKK5c7vdfPnll7Rv356cnJxkD0fU49ixYxw5coTzzz+/Rvlocz7HTTTJEIpG64477uCOO+5I9jAAJIsohBBCpAhjTWC73Z7kkYjTycjIAPxBvMwnTB7JoQshhBBCiCZH5qWlPvkdpQYJCIUQQgghhBCimZKAUAghROIdPgzTpoF0ABRCiLC89957KIpCaWlpsocimhgJCIUQQsTdzp07GTp0KCNGjGDjxo1o778Pf/wj42+5JdlDE0IIIZo1aSojhBAi7goLC1m8eDFWq5WpU6fyt2++4a/AZ59/nuyhCSGEEM2aZAiFEELEnaIodO7cmU6dOvHSSy/xXXExEwCn05nsoQkhRMpwOp0UFhaSl5dHWloaV111lbkOs2HDhg1ccsklpKWl0atXL4qKiszbvvnmG66//npatWpFZmYmF110EW+99Vain4ZoZCQgFEIIEXd5eXns27fP/Pn6Tp24Bvjf7t1JG5MQQqSa+++/n1deeYXnn3+eHTt20LlzZ6699lqOHz9u7jN16lT+9Kc/sXXrVvLy8hg2bBhutxuAu+++G6fTyfvvv09RURGPPPIILVq0SNbTEY2ElIwKIYSIu5dffjnoZ4uqMga4/N//Ts6AhBDNSmVlJXv27En4415wwQXmWnunc/LkSRYtWsSSJUsYPHgwAM8++yxr1qzhueee4/LLLwdg1qxZDBw4EIDnn3+eM888k1dffZWRI0eyf/9+fvazn9GtWzcAzjnnnDg8K9HUSEAohBAi4az62lM+/aq2EELE0549e+jRo0fCH3f79u388Ic/DGvfr776CrfbzZVXXmlus9ls9OzZk927d5sBYZ8+fczbW7duTZcuXditV1sUFhZy1113sXr1agYMGMDPfvYzLr744hg+I9EUSUAohBAi4YzFiDWPJ8kjEUI0BxdccAHbt29PyuOGS9M0oOZi7ZqmnXYBd+P2O+64g2uvvZY333yT1atX8/DDD/PYY48xadKkCEcumhMJCIUQQiScZAiFEImUkZERdqYuWTp37ozdbufDDz/k5ptvBsDtdrNt2zbuvfdec7/Nmzdz1llnAVBSUsLnn38eFHh26NCBX/3qV/zqV7/igQce4Nlnn5WAUNSr2TWVef/997n++utp3749iqLw2muvBd0+btw4FEUJ+te7d++gfZxOJ5MmTSI3N5fMzEyGDRvGwYMHg/YpKSlh7Nix5OTkkJOTw9ixY2ssJLp//36uv/56MjMzyc3NpbCwEJfLFY+nLYQQKcWiB4QT/vCHJI9ECCFSQ2ZmJnfddRdTp05l1apVfPrpp0yYMIHKykrGjx9v7veHP/yBdevW8cknnzBu3Dhyc3P56U9/CsC9997L22+/zd69e9mxYwfvvPMOBQUFSXpGorFodhnCkydPcskll3Dbbbfxs5/9rNZ9rrvuOhYvXmz+bLfbg26/9957eeONN1i5ciVt2rRhypQpDB06lO3bt2OxWAC4+eabOXjwIKtWrQLgzjvvZOzYsbzxxhsAeL1ehgwZwhlnnMGHH37IsWPHuPXWW9E0jYULF8bjqQshRNKMHDky6Of9RUW8Cny5f39yBiSEEClo3rx5+Hw+xo4dS0VFBZdddhlvv/02rVq1Ctrn17/+NV988QWXXHIJr7/+unmu6vV6ufvuuzl48CDZ2dlcd911zJ8/P1lPRzQSimYULDdDiqLw6quvmldVwJ8hLC0trZE5NJSVlXHGGWewdOlSRo0aBcB3331Hhw4deOutt7j22mvZvXs3F154IZs3b6ZXr16AP73fp08f9uzZQ5cuXfjPf/7D0KFDOXDgAO3btwdg5cqVjBs3jiNHjpCdnR3WcygvLycnJ4eysrKw7yOEEIl29tln884776Cq/sKUt8aMYfCHHzLivPPYKYvTCyFiqLq6mr1793L22WeTlpaW7OGIetT3u5Jz3MRpdiWj4XjvvffIy8vj/PPPZ8KECRw5csS8bfv27bjdbgYNGmRua9++PV27dmXjxo0AbNq0iZycHDMYBOjduzc5OTlB+3Tt2tUMBgGuvfZanE5nUiY9CyFEPE2dOpWsrCw6duxIx44dyc/IoBNw449+lOyhCSGEEM1asysZPZ3Bgwfz85//nI4dO7J3715mzJjBj3/8Y7Zv347D4aC4uBi73R6Uugdo27YtxcXFABQXF5OXl1fj2Hl5eUH7tG3bNuj2Vq1aYbfbzX1q43Q6cTqd5s/l5eVRP1chhEiUiRMnBv2s6nMI+19ySTKGI4QQQgidBIQhjDJQgK5du3LZZZfRsWNH3nzzTW644YY67xfaEri29sDR7BPq4YcfZs6cOad9HkIIkcqMgNAjjbSEEEKIpJKS0dNo164dHTt25IsvvgAgPz8fl8tFSUlJ0H5HjhwxM375+fkcPny4xrGOHj0atE9oJrCkpAS3210jcxjogQceoKyszPx34MCBBj0/IYRIBov+X58EhEIIIURSSUB4GseOHePAgQO0a9cOgB49emCz2VizZo25z6FDh/jkk0+44oorAOjTpw9lZWVs2bLF3Oejjz6irKwsaJ9PPvmEQ4cOmfusXr0ah8NBjx496hyPw+EgOzs76J8QQjQ2xrITR48fT/JIhBBCiOat2QWEJ06c4OOPP+bjjz8GYO/evXz88cfs37+fEydOcN9997Fp0yb27dvHe++9x/XXX09ubi4jRowAICcnh/HjxzNlyhTWrVvHzp07GTNmDN26dWPAgAEAFBQUcN111zFhwgQ2b97M5s2bmTBhAkOHDqVLly4ADBo0iAsvvJCxY8eyc+dO1q1bx3333ceECRMkyBNCNHlGyejcV15J8kiEEEKI5q3ZzSHctm0b/fr1M3+ePHkyALfeeiuLFi2iqKiIF154gdLSUtq1a0e/fv34xz/+QVZWlnmf+fPnY7VaGTlyJFVVVfTv358lS5aYaxACLF++nMLCQrMb6bBhw3jyySfN2y0WC2+++SYTJ07kyiuvJD09nZtvvpk//elP8X4JhBAi4Xr27Bn0c/nnn5MFfBZQJSGEEEKIxGvW6xA2BbJGixCiMSgoKKCoqAir1X8d8r2hQ+n75ptc2qEDO2VxeiFEDMk6hI2HrEOYGppdyagQQojEmzt3LhUVFac2+HwAjPrhD5M0IiGEaFpmz55N9+7dkz0M0QhJQCiEiCmPx5PsIYgUNGLEiOD1W/WA8KJa1mwVQsTW6NGjkz0EIUQKa3ZzCIUQsVdUVMS0adMoLS3FarXidrvJzc1l7ty5dOvWLdnDa1J27tzJjBkzsNlsTJ061excPH78eJ577rkkjy4CekDoc7uTPBAhmo7777+/xjZN09i4cWMSRiOEaCwkQyiEaLCJEyfy9NNPs3HjRt5//302bdrE//3f/zFx4sRkD63JKSwsZMGCBcyfP5/58+fz+OOPA/D1118neWQR0gNCTTLKQsTM8uXLGTJkSNC/oUOH0qZNm2QPTYTJ5/PxyCOP0LlzZxwOB2eddRYPPfQQANOmTeP8888nIyODc845hxkzZuA+zUW1v/3tb1x00UU4HA7atWvHPffck4inIRoZyRAKIRrM6/WSk5MTtC07Oxuv15ukETVdiqLQuXNnAF566SVmz57NhAkTGl+prgSEQsTc7bffTkFBAXkhpdi33HJLkkYkIvXAAw/w7LPPMn/+fK666ioOHTrEnj17AMjKymLJkiW0b9+eoqIiJkyYQFZWVq2ZYYBFixYxefJk5s2bx+DBgykrK2PDhg2JfDqikZCAUAjRYPPmzWPo0KHY7Xays7MpKyvD4/HwyCOPJHtoTU5eXh779u2jU6dOgL+JwLJly1i6dGlyBxYhTQ8IkYsGQsTMgw8+WOv2wsLCBI9ERKOiooInnniCJ598kltvvRWAc889l6uuugqA6dOnm/t26tSJKVOm8I9//KPOgPD//b//x5QpU/j1r39tbrv88svj+AxEYyUBoRCiwa6++mref/99qqqqKC0tpVWrVtLqO05efvnlGtvGjBnDmDFjkjCaBpCAUAiRSJWVoGfaEuqCCyAjI6xdd+/ejdPppH///rXe/vLLL7NgwQK+/PJLTpw4gcfjqXM5hiNHjvDdd9/VeSwhAklAKISImfT0dNLT05M9DNEYSEAohEikPXugR4/EP+727RDm8jr1/f3cvHkzN910E3PmzOHaa68lJyeHlStX8thjj0V8LCFCSUAohBAi8TTN/18JCIUQiXDBBf7gLBmPG6bzzjuP9PR01q1bxx133BF024YNG+jYsSO///3vzW3ffPNNncfKysqiU6dOrFu3jn79+kU+btGsSEAohBCN0PHjxzl+/DitW7emdevWyR5O5IymMhIQChEza9asYfr06VgsFgoLC7npppsAGDJkCG+++WaSR5dkGRlhZ+qSJS0tjWnTpnH//fdjt9u58sorOXr0KLt27aJz587s37+flStXcvnll/Pmm2/y6quv1nu82bNn86tf/Yq8vDwGDx5MRUUFGzZsYNKkSQl6RqKxkGUnhBBxM2jQoGQPoclZt24dV155Jbfddhtz5szh1ltv5aqrrmLdunXJHlpk9IBQkYBQiJiZNWsWb7/9NmvXrmXLli1MmjQJn89HZWVlsocmwjRjxgymTJnCzJkzKSgoYNSoURw5coThw4fzm9/8hnvuuYfu3buzceNGZsyYUe+xbr31VhYsWMBf/vIXLrroIoYOHcoXX3yRoGciGhNF04y6HdEYlZeXk5OTQ1lZWZ0Ti4WIt5EjR9bYpmkaH374IYcOHUrCiJquK6+8klWrVpGVlWVuKy8vZ/DgwY2qnfi7l19Ov23b+Gf//tywdm2yhyNEk/CjH/2IDz74wPx5yZIlvPLKKxQXF7N169Ykjiyxqqur2bt3L2effbY0OEtx9f2u5Bw3caRkVAjRYFu3buWdd95BVU8VHWiaxtixY5M4qqZJVVWOHj0aFBAePXo06LVvFPRrkYrRXEYI0WDdu3c/tSxNdTXjbruNjjNmcNeLLyZ7aEKIFCYBoRCiwaZOnUpWVha5ublB2++5554kjajpeuaZZ5gyZQrFxcVomoaiKLRr145nnnkm2UOLiCJdRoWIuYULF5764eRJAPpt22YubC6EELWRgFAI0WATJ06sdfuoUaMSPJKmr6Cg4LSNBBoFCQiFiC+Lxf9fpzO54xBCpLxGVmMkhBCiSTACQikZFSI+jM9WdXVyxyGESHkSEAohhEg8Yw6hZAiFiA+jZ2B1NRUVFckdixAipUlAKISIm+Li4mQPocn77rvv+M1vfsO3336b7KFERkpGhYi5F154gW7duvHDH/6QeQsW+DdWVzN8+PCkjksIkdokIBRCxM0tt9yS7CE0eb/73e9YsGBBrUt/pDTpMipEzC1atIgdO3awY8cOMtLSuBGorKpCVhgTQtRHmsoIIRqsZ8+eNbZpmiYL4MZB6Gv97ddfcy7wv//9LzkDipIicwiFiDlVVbHZbAAUjh/PhdOnM/jbbzmemZnkkQkhUpkEhEKIBquoqKCoqAirNfgrZeDAgUkaUdMV+lr/t2tXLjl2jMs7dkzyyCIkGUIhYm7IkCGn1iH0+RgAtEtPZ8oPfpDsoQkhUpiUjAohGmzu3Lm1Ni2YPn16EkbTtIW+1haHA4BRAwYka0hRkXUIhYi93/3ud/5gEMzs+0VeL6tWrUreoETCzJ49m+7du8f1MZYsWULLli3j+hgi8SRDKIRosBEjRtS6/ZprrknwSJq+0NfaqgeE57Ztm4zhRE8yhELElyw7IYQIk2QIhRCx99FHsGxZskfRLKj6fKHK8vIkjyRCEhAKEV9GIxmPJ7njEEKkPAkIhRCx17s3jB2b7FE0Cz6LBQBXZWWSRxIZIxCUgFCIOJHPVqPk8/l45JFH6Ny5Mw6Hg7POOouHHnoIgGnTpnH++eeTkZHBOeecw4wZM3C73fUe729/+xsXXXQRDoeDdu3acc8999S7f0lJCbfccgutWrUiIyODwYMH19og7rXXXuP8888nLS2NgQMHcuDAAfO2//73v/Tr14+srCyys7Pp0aMH27Zti+LVEIkiAaEQQjRiPkUBGmFgJRlCIeJLPluN0gMPPMAjjzzCjBkz+PTTT1mxYgVt9SkBWVlZLFmyhE8//ZQnnniCZ599lvnz59d5rEWLFnH33Xdz5513UlRUxOuvv07nzp3rffxx48axbds2Xn/9dTZt2oSmafzkJz8JCjwrKyt56KGHeP7559mwYQPl5eXcdNNN5u2jR4/mzDPPZOvWrWzfvp3f/va3ZvdbkZpkDqEQQjRijTUglGUnhIgzWXuw0amoqOCJJ57gySef5NZbbwXg3HPP5aqrrgKCG7V16tSJKVOm8I9//IP777+/1uP9v//3/5gyZQq//vWvzW2XX355nY//xRdf8Prrr7NhwwauuOIKAJYvX06HDh147bXX+PnPfw6A2+3mySefpFevXgA8//zzFBQUsGXLFnr27Mn+/fuZOnUqF1xwAQDnnXdetC+JSBDJEAohRCNmBIRaI5snpOgnq6oEhELEh3y2Gp3du3fjdDrp379/rbe//PLLXHXVVeTn59OiRQtmzJjB/v37a933yJEjfPfdd3Ue61e/+hUtWrQw/xmPb7VazUAPoE2bNnTp0oXdu3eb26xWK5dddpn58wUXXEDLli3NfSZPnswdd9zBgAEDmDdvHl999VVkL4RIOMkQCiFEI+ZV/df11NPMI0k5UjIqRHzJZ6uGu/59F99WfJuwx/tB1g9YNHRR2Punp6fXedvmzZu56aabmDNnDtdeey05OTmsXLmSxx57LOJjAfzhD3/gvvvuC9qm1ZFV1jQNRb/4aAj9OXDb7Nmzufnmm3nzzTf5z3/+w6xZs1i5cmWdHclF8jW7gPD999/n0UcfZfv27Rw6dIhXX32Vn/70p4A/BT59+nTeeustvv76a3JycsyrG+3btzeP0bdvX9avXx903FGjRrFy5Urz55KSEgoLC3n99dcBGDZsGAsXLgxau2X//v3cfffdvPPOO6Snp3PzzTfzpz/9CbvdHr8XQAjRpBinfIoEhEKIQPLZqiGS4CwZzjvvPNLT01m3bh133HFH0G0bNmygY8eO/P73vze3ffPNN3UeKysri06dOrFu3Tr69etX4/a8vDzy8vKCtl144YV4PB4++ugjs2T02LFjfP755xQUFJj7eTwetm3bRs+ePQH47LPPKC0tNUtEAc4//3zOP/98fvOb3/CLX/yCxYsXS0CYwppdQHjy5EkuueQSbrvtNn72s58F3VZZWcmOHTuYMWMGl1xyCSUlJdx7770MGzasRnekCRMm8Ic//MH8OfRKzM0338zBgwfNxWDvvPNOxo4dyxtvvAGA1+tlyJAhnHHGGXz44YccO3aMW2+9FU3TWLhwYTyeuhAJ53a7ZSJ5nBkZQqWxlYxKl1Eh4kvmEDY6aWlpTJs2jfvvvx+73c6VV17J0aNH2bVrF507d2b//v2sXLmSyy+/nDfffJNXX3213uPNnj2bX/3qV+Tl5TF48GAqKirYsGEDkyZNqnX/8847j+HDhzNhwgSefvppsrKy+O1vf8sPfvADhg8fbu5ns9mYNGkSf/7zn7HZbNxzzz307t2bnj17UlVVxdSpU7nxxhs5++yzOXjwIFu3bq1xzi1SS7MLCAcPHszgwYNrvS0nJ4c1a9YEbVu4cKE5Qfass84yt2dkZJCfn1/rcXbv3s2qVavYvHmzWYf97LPP0qdPHz777DO6dOnC6tWr+fTTTzlw4ICZfXzssccYN24cDz30ENnZ2bF4ukIkVXl5OW3atEn2MJq0xpohNOYQKnLSKkR8yMWWRmnGjBlYrVZmzpzJd999R7t27fjVr37F+PHj+c1vfsM999yD0+lkyJAhzJgxg9mzZ9d5rFtvvZXq6mrmz5/PfffdR25uLjfeeGO9j7948WJ+/etfM3ToUFwuF1dffTVvvfVW0MXdjIwMpk2bZiY/rrrqKv72t78BYLFYOHbsGLfccguHDx8mNzeXG264gTlz5sTk9RHxoWh1FQw3A4qiBJWM1mbt2rUMGjSI0tJSM0jr27cvu3btQtM02rZty+DBg5k1axZZWVmAf82XyZMnU1paGnSsli1bMn/+fG677TZmzpzJv/71L/773/+at5eUlNC6dWveeeedWtP7tSkvLycnJ4eysjIJIkXq0OcRfP3VV5xzzjlJHkzTtmHIEK586y1WDB/Oza+9luzhhG1T27b0OXKEdWecQf8jR5I9HCGanv/+F7p39/9/MzvVq66uZu/evZx99tmkpaUleziiHvX9ruQcN3GaXYYwEtXV1fz2t7/l5ptvDnojjh49mrPPPpv8/Hw++eQTHnjgAf773/+a2cXi4uIaddngr9cuLi429zHWlTG0atUKu91u7lMbp9OJ0+k0fy4vL2/QcxQinspCLoqI2DNyAGpjKxmVDKEQ8SWfLSFEmCQgrIPb7eamm27C5/Pxl7/8Jei2CRMmmP/ftWtXzjvvPC677DJ27NjBD3/4Q6D27kuhXZrC2SfUww8/LGl30Wi4Tp5M9hCaPGPZicYaEMqyE0LEh8/jkbXFhBBhke+KWrjdbkaOHMnevXtZs2bNadPUP/zhD7HZbHzxxRcA5Ofnc/jw4Rr7HT161MwK5ufn18gElpSU4Ha7a2QOAz3wwAOUlZWZ/w4cOBDp0xMiYXwB2WwRH0bVf6NrKiMZQiHi6oRUEAkhwiQBYQgjGPziiy9Yu3ZtWA0xdu3ahdvtpl27dgD06dOHsrIytmzZYu7z0UcfUVZWZrbx7dOnD5988gmHDh0y91m9ejUOh4MePXrU+VgOh4Ps7Oygf0KkKs3lSvYQmjxNz7BJhlAIEUgutgghwtXsSkZPnDjBl19+af68d+9ePv74Y1q3bk379u258cYb2bFjB//+97/xer1mFq9169bY7Xa++uorli9fzk9+8hNyc3P59NNPmTJlCpdeeilXXnklAAUFBVx33XVm217wLzsxdOhQunTpAsCgQYO48MILGTt2LI8++ijHjx/nvvvuY8KECRLkiSZDAsIEaOwBoZy0ChEXPq832UMQQjQSzS5DuG3bNi699FIuvfRSACZPnsyll17KzJkzOXjwIK+//joHDx6ke/futGvXzvy3ceNGAOx2O+vWrePaa6+lS5cuFBYWMmjQINauXYvFYjEfZ/ny5XTr1o1BgwYxaNAgLr74YpYuXWrebrFYePPNN0lLS+PKK69k5MiR/PSnP+VPf/pTYl8QIeJISkYTwDjpa2SZNmOmtGQxhIgPTQJCmnEj/UZDfkepodllCPv27Vvvm+90b8wOHTqwfv360z5O69atWbZsWb37nHXWWfz73/8+7bGEaKwkQ5gAxgLvjezkTzKEQsRXcw4IjQv0LpeL9PT0JI9G1KeyshIgaJ1DkXjNLiAUQiSOBITxpxiZwcaWIZQ5hELEVXMuGbVarWRkZHD06FFsNhuq2uwK4lKepmlUVlZy5MgRWrZsGVRlJxJPAkIhRNxIQJgAjT0glAyhEHHRnDOEiqLQrl079u7dyzfffJPs4Yh6tGzZkvz8/GQPo9mTgFAIETcSECZAYy0ZNf4rAaEQcdGcA0Lw93w477zzcMnfoZRls9kkM5giJCAUQsSN5nYnewhNnxEQSoZQCBHA18g6D8eDqqqkpaUlexhCpDwpqhZCxI8EhPEnAaEQohbNeQ6hECIyEhAKIeLGJwFh/OmBoNbIAkJVAkIh4qq5l4wKIcInAaEQIm6kZDQBjIXpG1lAaJA/QkLEhwSEQohwyd9iIUTcaDKHJf6MDFsjO/mTklEh4ksCQiFEuCQgFELEjQSE8WdkBhtbt04jELQ0snEL0VjIHEIhRLgkIBRCxI8EhPHXSEtGjWUn5I+QEPEhGUIhRLjkb7EQIn4kIIw/I8PW2AJCKRkVIq4kIBRChEsCQiFE3EjJaPwpjXTZCeOPj5SMChEfja3zsBAieSQgFELEjXQZTYBGGhAamU3lNLsJIaIjGUIhRLgkIBRCxI+ckMSfEVg1skybmSFM6iiEaLoCA8LRo0cncSRCiFRnTfYAhBBNl2QI409prE1lZA6hEDF3//33m/9fsnkzrQAN2LhxY9LGJIRIfRIQCiHiRpEMYdw12jmExrITSR6HEE3J8uXLWbFiBQAHjx/nzA8+AODdNm2SOSwhRIqTgFAIEVsBGR9pKpMAjbRk1Jg7KAGhELFz++23U1BQQF5eHp+tX08Xffstt9yS1HEJIVKbzCEUQsRWYKZKMoRxF4sMYTLmF6mahgsJCIWIpQcffJC8vDz/DwHfv4WFhUkakRCiMZAMoRAitgIDE8kQxl8Ec/EC5xeduruWtPlFbvwBoc/nQ1Xl+qQQsSTLTgghwiUBoRAitiQgTCgzQxhGQBg4vyjQu+++G/NxnY4KeBQFm6ZJQChEHAQtO6FpoMgiL0KI2klAKISILSkZTSizW2cY2YDA+UWBkjG/SNE0vIpCmqbh9XqxWuXPkRCxJAGhECJccklWCBFbEhAmVgRNZYLmFwVIxvwiFfBwqmRUCNFwL774Ipdeeiljxozhtf/9jy7A5cDr//pXsocmhEhhcklWCBFbASf3suxE/KkRlIymElXTcCsKKuCV94kQMfHYY4+xYcMGKioq6HruuXwJpAED/vQnho0YkezhCSFSlGQIhRCxJRnCxGqkC7wrgFcPCH3yPhEiJtLT08nIyKBt27b0OvNMcgAHYLFIP18hRN0kIBRCxJYEhAllNJVpjAGhR28k43W5kjsYIZqI7t27mxn3hwcOBMAFtG7VKomjEkKkOgkIhRCxFVgyKl1G4y6SpjJr1qyhV69eXHHFFaxcudLcPmTIkLiNry6q3lQGwOd2J/zxhWiKFixYYGYDjWUn7MDyv/41iaMSQqQ6CQiFELEVGJhIs5C4UyIoGZ01axZvv/02a9euZcuWLUyaNAmfz0dlZWW8h1mDAnglQyhE/AR8/3rloosQoh4SEAohYkuayiRWBF1GLRYLLVu2JCMjg8cff5wePXpw/fXXc+LEiXiPsgYVzAyhJplkIWIucG6uBIRCiPpIQCiEiK2AkxAJCOPPzBCGsW/37t3Zt2+f+fMPfvAD3nrrLY4dOxafwdVDRTKEQsRVwPfvoUOHkjgQIUSqk4BQCBFbgRlCKRmNu0hKRhcuXEinTp3Mn7du3Qr45x0lmqppZkAoGUIhYk8L+P69a8qUJI5ECJHqml1A+P7773P99dfTvn17FEXhtddeC7pd0zRmz55N+/btSU9Pp2/fvuzatStoH6fTyaRJk8jNzSUzM5Nhw4Zx8ODBoH1KSkoYO3YsOTk55OTkMHbsWEpLS4P22b9/P9dffz2ZmZnk5uZSWFiIS66Ui8ZOSkYTSm1Al9H2paVogHb4cIxHFR6v3vxCMoRCxEbPnj3Nf2PfeIOe+Bem31FUlOyhCSFSWLMLCE+ePMkll1zCk08+Wevtf/zjH3n88cd58skn2bp1K/n5+QwcOJCKigpzn3vvvZdXX32VlStX8uGHH3LixAmGDh0atLjyzTffzMcff8yqVatYtWoVH3/8MWPHjjVv93q9DBkyhJMnT/Lhhx+ycuVKXnnlFabIVTzRyGlSMppQRobQEkVAWPDppwC02L07pmMKhwr4JEMoRExVVFSwceNGtmzZwgvXXccWYCtwyYUXJntoQogUZk32ABJt8ODBDB48uNbbNE1jwYIF/P73v+eGG24A4Pnnn6dt27asWLGCX/7yl5SVlfHcc8+xdOlSBgwYAMCyZcvo0KEDa9eu5dprr2X37t2sWrWKzZs306tXLwCeffZZ+vTpw2effUaXLl1YvXo1n376KQcOHKB9+/YAPPbYY4wbN46HHnqI7OzsBLwaQsSe5vWi6P8vJaPxZwSEymn2MzidTnbt2sXx48f5rrKSSwFvdXXcxleXwIBQGl4IERtz586loqKCVq1aoQVcJCq87bYkjkoIkeqaXYawPnv37qW4uJhBgwaZ2xwOB9dccw0bN24EYPv27bjd7qB92rdvT9euXc19Nm3aRE5OjhkMAvTu3ZucnJygfbp27WoGgwDXXnstTqeT7du31zlGp9NJeXl50D8hUkngyb1kCOPPCATDKRldunQp/fr14/nnn2f9+vW8+e239APWhJTFJ4JkCIWIvREjRtDKWIQ+4Pu358UXJ2lEQojGoNllCOtTXFwMQNu2bYO2t23blm+++cbcx263n/rCDdjHuH9xcTF5eXk1jp+Xlxe0T+jjtGrVCrvdbu5Tm4cffpg5c+ZE+MyESJzAktFwFksXDRNJyejTTz/Nhx9+iKoHYju//ZZun3/OJZ9+yqNxHWVNKuDT5xDKwvRCxEHA9698xoQQ9ZEMYS0UJbj4StO0GttChe5T2/7R7BPqgQceoKyszPx34MCBesclRKL59GyPFykZTYRIlp1IT09n/fr15s+a1cp6wHaa77d4kIBQiPjSJCAUQoRJAsIA+fn5ADUydEeOHDGzefn5+bhcLkpKSurd53AtXfuOHj0atE/o45SUlOB2u2tkDgM5HA6ys7OD/gmRSrx6QOgitQPC0aNHJ3sIMRFJhnDp0qX861//4sorr6R3796Mf+MN/g38OtHlZPpYjYBQSkaFiIOA71/p5CuEqI+UjAY4++yzyc/PZ82aNVx66aUAuFwu1q9fzyOPPAJAjx49sNlsrFmzhpEjRwL+BV8/+eQT/vjHPwLQp08fysrK2LJlCz179gTgo48+oqysjCuuuMLc56GHHuLQoUO0a9cOgNWrV+NwOOjRo0dCn7cQsaQFBISpUDJ6//3319imaZo5n7exUyPIEObn5wetOfjR3XfT6y9/4dVEZwj194XP6v8TJNkLIeJAMoRCiDA1u4DwxIkTfPnll+bPe/fu5eOPP6Z169acddZZ3HvvvcydO5fzzjuP8847j7lz55KRkcHNN98MQE5ODuPHj2fKlCm0adOG1q1bc99999GtWzez62hBQQHXXXcdEyZM4OmnnwbgzjvvZOjQoXTp0gWAQYMGceGFFzJ27FgeffRRjh8/zn333ceECRMk6ycaNaNk1E1qZAiXL1/OihUramx/9913kzCa2IskIAxlLgzvdMZwRGHQ3xeaZAiFiJvAklH5jAkh6tPsAsJt27bRr18/8+fJkycDcOutt7JkyRLuv/9+qqqqmDhxIiUlJfTq1YvVq1eTlZVl3mf+/PlYrVZGjhxJVVUV/fv3Z8mSJVj0kxvwn4QWFhaa3UiHDRsWtPahxWLhzTffZOLEiVx55ZWkp6dz880386c//SneL4EQcWVciU6VDOHtt99OQUFBjUZPt9xyS5JGFFvmHMIo1iH0GYvaJ7obbEhAKNkLIWIvsMGXJp8xIUQ9ml1A2Ldv36C1eUIpisLs2bOZPXt2nfukpaWxcOFCFi5cWOc+rVu3ZtmyZfWO5ayzzuLf//73accsRGPiS7GS0QcffLDW7YWFhQkeSXwYxZ6Weveqg37CmLSAUC8ZleyFEHEgJaNCiDBJUxkhREz59ODCrShm9krEj9lUJor7GhkES6ID95CAUE5WhYgDCQiFEGGSgFAIEVPGiYdXUVIiQ9jUqZqGl4ZlCC2JzhDqQaw5hzDRjy9EcyABoRAiTBIQCiFiyji5d6uqBIQJoOBv4KNCveXwtdJ/Vwlv/mM8npSMChE3gd8HModQCFEfCQiFEDFlLkyvKFE1OkkUo+FTY6dqGh78GUJvhJk2IxBTkj2HUDKEQsSeZAiFEGFqdk1lhBDxZZzce1QVRwpkCI31QgNpmkZRUVESRhN7qqbhVhTsmmZ2DQ2bvn+yAkIjQ+iTDKEQsefz4UOvHpDPmBCiHhIQCiFiyswQqmpKZAi3bt3KO++8g6qeKojQNI2xY8cmcVSxowAeRcGiabgjDQiNQDDBAaHm9fq7o0qGUIj48fnwAHYkQyiEqJ8EhEKImDICQo/FkvjlDGoxdepUsrKyyM3NDdp+zz33JGlEsaVqmj8gBKojzAKYJaMJzuSaAaHNBkiGUIi48Plw4Q8IZQ6hEKI+EhAKIWLKyPb4VBVLCpzoT5w4sdbto0aNSvBI4kPBv8QHRBFYJalkVDMeV88QJjpDKUSz4PNhhIFSMiqEqI80lRFCxFRQhjAFSkabOlXT8OoBoTfSLECSFqY3A1eZQyhE/DQwIPzuu+9iOx4hRMqSDKEQIqaMEw+fxYJFAsK4U/A38IEo5gkladkJc86gzCEUIm4042KRpp02IHzrrbdq3Hf27NnMmTOHn/zkJ/EcphAiBUhAKISIKePk3pviGcLi4mLy8/OTPYwGUwGfUTIaaUCoB4KJXi/SeI8o+hxCCQiFiIMIMoTjxo3jsssuo3fv3ub6haWlpWzbtk0CQiGaASkZFULElFH+57NaUzpDeMsttyR7CDGhalr0GcIkrUNoBICq3Q5IyagQ8aD4fHj0i0Wnayqzd+9efvSjH7Fnzx4GDRrErFmzOO+885g5c2YihiqESDLJEAohYspsKpMiJaM9e/assU3TNL744oskjCb2VPxLfEAjyhAaTWX0DKE0lREiDgIDwtNcdMnMzOSBBx6goqKCJ554gvnz51NaWpqAQQohUoEEhEKImDIDwhTJEFZUVFBUVITVGvx1N3DgwCSNKLZU/OW5EEWmzcjUJTggNMYpJaNCxJGm+S8Web1hX3TJyspi+vTplJeXs2fPnjgPUAiRKqRkVAgRUz79xEOzWrEkeSwAc+fOpaKiosb26dOnJ2E0sacYJ31EniE0mslIUxkhmiCfz+xAHGmX0ezs7FqrK4QQTZNkCIUQsWUEhDZbSjSVGTFiRK3br7nmmgSPJD5UQNMDwohby+uBoCXBAaFZqqrPIZSAUIg48PnM+cXIPF0hRD0kQyiEiCmjHFCz2VLzitOWLfDkk8keRcyo+OdrAnhdrsjuLCWjQjRdmoamKHiRz5gQon4SEAohYkoLKBlNhQxhDb16waRJyR5FzATOIYw0Q2iWjCb49yQlo0IkQEBAWFeGcP369QwYMIDJkyezevVqLr30Uvr27cumTZsAGDRoUOLGK4RIGgkIhRAxZZ7c2+2pmSFsYiycyhBG22U04SWjRgBqNPppIgGhR8ryRApRfL7TZginTZvG4sWL2bVrF8OHD+fMM8+kZcuWDB8+nJ///OcUFRUldtBCiKSQ8zUhREyZWSqbLSWayjRpmhZUMhppl1Fj/cFEZ3LNsmIjs9mIA8KioiKmTZtGaWkpVqsVt9tNbm4uc+fOpVu3bskenmjO9As9HqgzQ5iWlkaHDh34/PPP6d69O0/q5fS/+MUvePTRRxk7dmyCBiuESCYJCIUQMWWWjBoZQk0DvdOdiDE9kNOiLBlNVobQeI+Y6xAmOkMZQxMnTmTFihV06NDB3LZ//35Gjx7NBx98kMSRiWYvjJLR/Px8vF4vU6dOZeTIkeTm5uLxeHA4HHTq1Il77rknoUMWQiSHBIRCiJgyFh0n8GTfIrnCuNBfa00vvYx6YfokzSE0u6M24gyh1+slJycnaFt2djbeRvycRBOhB4Q+RamzLHvlypWA/8KGwWq1smbNGgBGjRoV/3EKIZJOAkIhREwZWSrF4fBv8HgkIIwXPaDzGc1ZomwqY0lWUxmLBR8BFxEaoXnz5jF06FDsdjvZ2dmUlZXh8Xh45JFHkj000cwpPp9ZneE4eTKi+1qtcnooRHMin3ghRGwZWSc9INQ8nlPBoYgtI0MYZVMZJUkZQrNEVA8IG3NTmauvvpr333+fqqoqSktLadWqFWlpackelhBmhrC1ptFbypeFEPWQgFAIEVM+rxcvYNFLRr1OJ9bMzOQOqqkKKRmNuPQySRlCnz5Oi5EhbMQBoSE9PZ309PRkD0OIU/SA0HToELRrV+fuTqeTXbt2cfz4cVrb7XTt1g17q1YJGKgQItlk2QkhRGx5vfgAi54VdFdXJ3c8dUnFNRIjZJaINrKSUXNh+iaQIRQiVRnLTvT9wQ/8G3btqrHPmjVr6NWrF+eddx7dunXj+eefZ/3q1dxwzTX0u+ACli1bluBRCyGSQQJCIURMaXpAaNUDQq/TmdwB1aUJBCHm8g16NjbaktFkzSFUrVZ8itIkMoTHjx/nyy+/5Pjx48keihB+eoYwPTfX/7PLVWOXWbNm8fbbb3PGGWcwZMgQfD4fc+64g7OB9SdP8tRTTyV2zEKIpJCSUSFETGk+X+PIEHo8pxZGb6R8Hg8Woi8ZNQJCa5JKRs0MYSNuKrNu3TpmzpxJbm4u2dnZfPPNNxw9epQnn3yS/v37J3t4ojnTl/xpZQSEtVQQWCwWWrZsSWZmJsOGDeObb75h+C9/SQWw3m6X+bBCNBON+2xICJFyUjlDqGka5oyaJpCVMksv9Qxh1CWjsR3WaWkhJaONucvozJkzWbVqFVlZWQAo+pytmTNnSkAokkoxmsqccYZ/Qy3fed27d2ffvn0sXbqUefPmsXXrVkqKi9kHvOF0SsmoEM2ElIyG6NSpE4qi1Ph39913AzBu3Lgat/Xu3TvoGE6nk0mTJpGbm2tedTt48GDQPiUlJYwdO5acnBxycnIYO3YspaWliXqaQsSPERDqV5a9tZQpJYsvMPCIdBH3FBRaMhpthjBZJaOKxeJvetGIA0JVVTl69Git24VIJmPZidZ5ef4NtXznLVy4kE6dOpGfn8+CBQvYsGEDn/7zn1QCv3O7yc/PT+yghRBJIRnCEFu3bg1aUPiTTz5h4MCB/PznPze3XXfddSxevNj82W63Bx3j3nvv5Y033mDlypW0adOGKVOmMHToULZv345Fbw9/8803c/DgQVatWgXAnXfeydixY3njjTfi+fSEiLvQDKEnhUpGvV7vqWxYEwoIlWibyuiBYMIzhMZyF02gqcwzzzzDlClTKC4uRgsIrJ955pkkjkoITi07UU+GsDZlx4+TA7ginJMshGi8JCAMcYbxxambN28e5557Ltdcc425zeFw1HnVrKysjOeee46lS5cyYMAAAJYtW0aHDh1Yu3Yt1157Lbt372bVqlVs3ryZXr16AfDss8/Sp08fPvvsM7p06RKnZydEAoR0GU2lklGPx4Nx+UZzu1Hq3Tv1mRlBo6lMlCWjif5D0JQyhAUFBbz66qvmz0bJaEFBQbKGJARwqmS0Tdu2ALirqrCFcb9yPSBUJMstRLMhn/Z6uFwuli1bxu23327+kQd47733yMvL4/zzz2fChAkcOXLEvG379u243W4GDRpkbmvfvj1du3Zl48aNAGzatImcnBwzGATo3bs3OTk55j51cTqdlJeXB/0TIpVoPp9/HUI9c55KJaOegIDJl0LjilboHMJIM23JCggDl53wQqPOEAqRsjQNTVXJ1QPCijCnpXhdLoqBxr8wjxAiXBIQ1uO1116jtLSUcePGmdsGDx7M8uXLeeedd3jsscfYunUrP/7xj3HqWZDi4mLsdjutQhZzbdu2LcXFxeY+eUZNf4C8vDxzn7o8/PDD5rzDnJwcOnTo0MBnKUSM6RlCVQ8IU6lk1BMQBKbSuKJlBlb6ax1xhlAvcbRBQtdlDFx2orFnCIVIVYqmoSgKZ+gVTeEGhJrbzS1IQChEcyIlo/V47rnnGDx4MO3btze3jRo1yvz/rl27ctlll9GxY0fefPNNbrjhhjqPpelfzIbA/69rn9o88MADTJ482fy5vLxcgkKRWkKWnYh0bbx4CsxWplIpa7TMOYNRZgjVgEBM83rNuYjxFlQyCk0yICwvLyc7OzvZwxDNmVEyesYZ+ICTZWU1dunZs2eNbdVHj7I/AcMTQqQOCQjr8M0337B27Vr++c9/1rtfu3bt6NixI1988QUA+fn5uFwuSkpKgrKER44c4YorrjD3OXz4cI1jHT16lLZ6aUddHA4HDv1EW4hUpHm9aASUjKZQ4OUJGEsqjStaoRnCiBd4D8gKep1OrEkICH2NPEP4wgsv8Oijj2Kz2Rg5cqS5ffjw4bz77rtJHJlo7hS9ZNThcOAFvLVcnKuoqKCoqCjos//lU09x1113SYZQiGZESkbrsHjxYvLy8hgyZEi9+x07dowDBw7Qrl07AHr06IHNZmPNmjXmPocOHeKTTz4xA8I+ffpQVlbGli1bzH0++ugjysrKzH2EaLR8PnyKYpaMptIcwiaXITRKL42AMMKSUVXTMELIRP6eAruMNvaS0UWLFrFjxw527NhBRkaGud0r8yJFkin6wvQ2mw0PoNXyGZ87dy4VFRVB27wuF9ORklEhmhMJCGvh8/lYvHgxt956a9BVsxMnTnDfffexadMm9u3bx3vvvcf1119Pbm4uI0aMACAnJ4fx48czZcoU1q1bx86dOxkzZgzdunUzu44WFBRw3XXXMWHCBDZv3szmzZuZMGECQ4cOlQ6jolHbuXMn9+3YwXhN479ffQX4m7eMHz8+ySPzC8wQNsU5hJFmCFWfD+MVSeTr0ZRKRlVVxaaX7BYWFnIW0BL4/vvvkzksIfwVAIqC1WrFS+0XjEaMGFGj54HmdnMNEhAK0ZxIyWgt1q5dy/79+7n99tuDtlssFoqKinjhhRcoLS2lXbt29OvXj3/84x9kZWWZ+82fPx+r1crIkSOpqqqif//+LFmyxFyDEGD58uUUFhaa3UiHDRvGk08+mZgnKEScFBYW8uvOnfnBsWPMfeMN9gN9XS6+/vrrZA8NCJ7PmEqZy2g1NEOoaBouIIPEZkyNQFa1Wv0lo404mzZkyBD27dtHp06dAJgGtAUW1tI4TIhEMpadMALCcOdzG98jEhAK0XxIQFiLQYMGBS0wbEhPT+ftt98+7f3T0tJYuHAhCxcurHOf1q1bs2zZsgaNU4hUoygKZzoctFcUnnnoIZ790Y/4w9//jidF5r02tZJRY06QkSGMNNOmaJqZIUzkMhxmyagREDbiDOHvfve7oJ9tQFfgr3/9a1LGI4TBmENotVqpJPwLRkbgKAGhEM2HlIwKIWImLy+PQ5WV/qvSDgezgUvPOoutW7cme2hAcBDYFNYhNE7wVD3gjngOoc+HS+9snNAAOWTZCSWBS17EmxVwANVNoCRZNG7GshM2m63OktHaSEAoRPMjAaEQImZefvll2tls/mUn9KzVoIKClDk5bmoZQqP00pKWBkQxh1DTcCchIDRLXZtAU5lQEhCKVGGUjFosFjwA4ZaMSkAoRLMjAaEQIrZ8Pn+G0AhSIsxaxVNg2/UmkSHUAytjzcdI5+IpAQFhIteLNEpGFT0gbEoZQguQBrhTaP1N0TwpmgaqiqIoEWUIZQ6hEM2PBIRCiNjSF6a36kFKKjVvCQwCm0JAaDZnibbLqKbhVv1/BhI6hzCwZBRQmmCG0NkEMtCicTPmEAL4iCAglAyhEM2ONJURQsSWz8dxwPXdd7Tn1MlFKvA20YBQ0Zc90KJoKpPUklGr1R+QNsGA0CUBoUgyBUD/fHsUBSIMCIUQzYcEhEKImFm3bh2/2b2bXK+X9k88QRmw78UXWTB8OP3790/28ILKIptCQGgGVvq8zUhLRlVNw60vh5OMDKGxDmFTKhm14i8bdVdVJXsoornTNBQjQxhJQJhCZf5CiMSQklEhRMzMnDmTx845hyftdpYtWcIbwEMDBjBz5sxkDw1oehnCwMDKS+QloxZNw5uEklEClp1oik1lANwnTiR1HEKo+sL0AF5FCf/7wShFj9fAhBApRz7vQoiYUVWVUpfLP/fE6j81LikvR1VT46umqc4hVKxWfIASaVMZwJvEDKHaBJvKGAGht7IyqeMQQoFTcwgVJfxlJ4zuxfEamBAi5UjJqBAiZp555hl+1asXpS4X6T/6EQDWbdt4dt26JI/ML6hktAnMkzFO8CxWa1QZQlXT8BgBYRK6jJoZQgkIhYg5Y9kJ8AeESriloPp3QWpcxhNCJIIEhEKImCkoKODhDh1osXcvF2/ezElVZcOll1JQUJDsoQHBQU9TaJwQmiGMZg6hR8/kJjRDaASEeoZQbSIlo5qmnQoIT55M6liEUDQNjAs+ihL+94OxnE0TulAjhKifXAASQsRWwFVpp6KgpFBzjSaXIQzo1umFiOfiqZqGLxklox4PPvwBoU9Vm0yG0OfzmQGhL4Xe96J5CpxD6FPV8ANCmUMoRLMjn3chRGzpC9ODHhCmUPv9oAxhE5hDGNStM5KmEToV8OoZwoRmTPW1KlVV9c8hbCIZQo/HY867koBQJJsKZobQG26GcPt2zvj881P3F0I0C1IyKoSIKbfHw6c+H9+vXYtTUbCm0IlxUy0ZbUiG0KuvYZjQOYReLz7AYrH4MxhNJEPo9XpPZQhlDqFIMkXTQG8qo6lqeHMIL7uMjvr/qk3kcymEOD25ACSEiJmlS5dyz8GDvOHxsH79elZqGlM++4xly5Yle2hA8PpaTSEgDCwZ1SDsdcYMFkAzMoQJXnZCQ88QqmqT6TIaGBBq1dVJHYsQamBAGMXyLnKCKETzIZ93IUTMPP300zzdvj1T0tN58MEH+W1aGk+ceSZPPfVUsocGBM+Ta2oBoTeaEz5Nw2c0lUlwl9GmWDIqAaFIJQqYAaFPVSNelkZOEIVoPuTzLoSImfT0dD6urDQbGbhUlU/Ky0lLS0vyyPyCSkYjzKbFmicGj288B8ViQYOIAysV0Ox2/7GSFBDSCNYhHD16dFj7eTweCQhFylA1DUWfQ6ipao0LRjt37mTo0KGMGDGCjRs3+jcqCuP122UdQiGaD5lDKISImaVLl3Lv+efzdGUl6b1746yqooumpWTJKEnIEBYVFTFt2jRKS0uxWq243W5yc3OZO3cu3bp1i/h4RobQYrfjjaapjKbhS0JAiD6H0Kaq/sxFigSE999/f41tmqadOlk+jcAMIRIQiiQLzBBqtXQZLSwsZPHixVitVqZOncrmzZuZbLXydcA6hD6fz3/hRgjRpElAKISImfz8fCa3bAlWKz03b2ZTfj42fXsqCJpDmIQM4cSJE1mxYgUdOnQwt+3fv5/Ro0fzwQcfRHy8wC6jPiLPEFoATW8qk6wuo6mUIVy+fDkrVqyosf3dd98N6/5BAWEKddcVzZMlYB1CaikpVxSFzp07A/DSSy8xe/ZsJvh8GN+MFvzvaQkIhWj6JCAUQsSWz+e/Gg14rFbSUihTYpSMOiEpGUKv10tOTk7QtuzsbLwRZvYMZobQZsOtKOaC7+GyACS5ZFRLoYDw9ttvp6CggLy8vKDtt9xyS1j3l4BQpJLQDGHoBaO8vDz27dtHp06dAJg9ezbLHnmEpcbcZPzvaZt+0UgI0XRJQCiEiClF0/AZiyHbbNhOnEjyiE4xsoJOiLi8MhbmzZvH0KFDsdvtZGdnU1ZWhsfj4ZFHHonqeEFdRhUlsqYRmuafRO5w+H9OZMbU6/XPeVSUlOoy+uCDD9a6vbCwMKz7ezwe0vX/V5vAOpeicQtch7C2gPDll1+ucZ8x6emM0S/iWQBXEr4nhRCJJwGhECK2fD6zqYxmtaKm0AmFERC6FCUpGcKrr76a999/n6qqKkpLS2nVqlWDGu4ElYxG2mVU31ex2fCR4AyhpvlLXBUlpUpGa6UoMH8+3HvvaXeVDKFIJaqmoQTOIQznoo/lVCsZldg0vxJCpD4pDBdCxJSiaWbJqGazYUmhJQXMDKGiJDYjFiI9PZ127do1uPtqYMloxF1GjeyizYaHBM+p1JvKgP9EVU2h90gQ42JGmMumBAaEahNY1kQ0bgoEzSEM63NmPZUnsABeCQiFaBYkIBRCxJam+RdBJnUDQleSA8KYCSgZjThDGHBfDyT29dAXpge9lC1xjxwZo9w5zMBdAkKRSlQ4NYfQYgnr++FkSGZbAkIhmgcJCIUQMaUGlIxis2FN1YAwhUpZo6UFZPmiLRm12O3+DGGCl50wX/0UKhlds2YNvXr14oorrmDlypVQUQHAkG++Cev+gesQyhxCkWwWCMoQhn7OXnzxRS699FLGjBnD888/T5cuXbiipITXA/bxSOmzEM2CBIRCiNgKKBnF4UipDKGRBXOrKkoSrnzXCDh0Q4YMiep4QSWjitKgktFEN5UxGg+lUlOZWbNm8fbbb7N27Vq2bNnCpGnT8AEVYb42gRlCi2RWRJKpEDSHMLRk9LHHHmPDhg089thj/Pa3v2XLli28ZLXyaMA+Xsl0C9EsSEAohIgpNWDZCcVmw5ZCAaGRIfQkqWS0RsAxaRI+n4/KysqojqfFoGRUsVr92boEl4ymYobQYrHQsmVLMjIyePzxx7nkrLMYDhwN8/fjDcgQSkAokk3F33DK/0PNCy/p6elkZGTQtm1b+vfvT05ODpkWS1C3Qa9kCIVoFiQgFELElBIwhxCHA2uKnOyDP4DyAF5VjWyJhhgJDTh69OjB8OHDORHl0hxmhlBfdiKqgNBiSfocQjVF3iPdu3dn37595s9DCwqYDIQbrnsDykQlIBTJFhQQWiw1AsLu3buba6AuW7YMAJ+m0SZgH6+UPgvRLEhAKISIKcXnM+etKHY7thQ52QfA48GnKJGv2RcjoQHHuHHjmDx5MhX6XLWI6Zk2VVXxRVoyauxrseAlsV1GFa8Xr3HRQFFSJiBcuHChuUg3QOn+/fQDlufnh3X/wJNnqwSEIok0TQuaQ1hbafaCBQuwBCwzAZAGBK5O6JOSUSGaBQkIhRAxpQYGhA4HtiSPJ4geiHhVNSlNZUIDDoB+/fqxZ8+eqI6n6cs3qKoa8RxC40RPsVr9JbSJfD18PnPZidpK2VJF2dGjAFgdjrD29wUGhE2gaZFovHz6BYnAktFwlp2w6J/F/YMHA1IyKkRzIQFhiNmzZ6MoStC//ICrw5qmMXv2bNq3b096ejp9+/Zl165dQcdwOp1MmjSJ3NxcMjMzGTZsGAcPHgzap6SkhLFjx5KTk0NOTg5jx46ltLQ0EU9RiLhSNM3f4hx/QGhP8niCeDx4AV+SSkZjTdMDK0XPehJBYBUYEHoVJbFNdny+4KYyiXvkiHirq4Hw/1BKQChShREQBi47Ec6FF4um8crll1P54x/7jyMZQiGaBQkIa3HRRRdx6NAh819RUZF52x//+Ecef/xxnnzySbZu3Up+fj4DBw4MKvm69957efXVV1m5ciUffvghJ06cYOjQoWatPsDNN9/Mxx9/zKpVq1i1ahUff/wxY8eOTejzFCIeAjOEqsOBFfCkyjwUvbul1kQCQjyeUwu8R5ghNMsbVTXhTWWUwGUnUjhDaCzFcSzMk2Jjf6+ipFQzJdH8eAMu+AD+DGEtnzOn08mOHTtYu3YtO3bswOPzoVmtqDZ/bYcvVb67hRBxZT39Ls2P1WoNygoaNE1jwYIF/P73v+eGG24A4Pnnn6dt27asWLGCX/7yl5SVlfHcc8+xdOlSBgwYAPgna3fo0IG1a9dy7bXXsnv3blatWsXmzZvp1asXAM8++yx9+vThs88+o0uXLol7skLEmKJpZpmSqpfauU6exGpPfq5Q0wNCn6pGNt8uhpxOJ7t27eL48eO0bt2arl27Yo/2tQno1hnpczJLyvQMYSJLRjWf71TjoRRqKhPKOBmec/Qog8PY3yivc9ls2JrCBQfRaJmfb6Pjs8VSIxO/dOlSFi1axOWXX052djalpaVs8/m4/PhxuuvfSVIyKiI1evRoli9fnuxhiAhJQFiLL774gvbt2+NwOOjVqxdz587lnHPOYe/evRQXFzNo0CBzX4fDwTXXXMPGjRv55S9/yfbt23G73UH7tG/fnq5du7Jx40auvfZaNm3aRE5OjhkMAvTu3ZucnBw2btwoAaFo1FRNMzOElvR0AJwnTpDRqlUyhwX4M1NmQJiEE/baTsB27NjBXXfdxZgxYyI+njGHEKLPEBqL2ie0ZDR0HcLEPXK9evbsGfRzxVdf0QLYE2aWxAggXXY7tpMnYz28lLRz505mzJiBzWZj6tSpXHHFFQCMHz+e5557Lsmja75qzRCGfD88/fTTfPjhh6jqqWKxk08+yWXFxdyrB4RSMirqcv/999fYpmkaGzduTMJoRENJQBiiV69evPDCC5x//vkcPnyY//f//h9XXHEFu3btori4GIC2bdsG3adt27Z88803ABQXF2O322kVcvLbtm1b8/7FxcXk5eXVeOy8vDxzn7o4nU6cAVfsysvLI3+SQsRRaMkogDtVTo6NQCRJGcLaTsA8Hg99+/aNLiAMaM7S0DmECW0qExAQplKGsKKigqKiIqz6SfT7P/sZV//zn/S2hven0igZ9TgcOE6cQNM0FCVVwt34KCwsZPHixVitVqZOncrmzZuZPHkyX3/9dbKHlhSpEiCbcwiNLqO1ZAjT09NZv349/fr18++jaXwI2CwWKRkVp7V8+XJWrFhRY/u7776bhNGIhpKAMMTgwacKg7p160afPn0499xzef755+nduzdAjT/w4fzRD92ntv3DOc7DDz/MnDlzTvs8hEiW2jKErijX2Ys5rxctiRnC2k7A1q9fT1paWnQH9HqD1/OLssuoN9HLcHi9ELjsROIeuV5z586loqLCvKBnBHh3htll1AwI09JwAC6XC0eY922sFEWhc+fOALz00kvMnj2bCRMm4Gmmy26kSoBsBISq0eCrlgsvS5cuZd68eUyfPh2v14vNZuMy4Nfdu6MYAaFkCEUdbr/9dgoKCmokOG655ZYkjUg0RKr8HU5ZmZmZdOvWjS+++MKcVxiaxTty5IiZNczPz8flclFSUlLvPocPH67xWEePHq2RfQz1wAMPUFZWZv47cOBA1M9NiHhQNc0sUzICQk9VVTKHdIrXi1dV8VksEQVPsbJ06VL+9a9/ceWVV9K7d2+uvvpq/v3vf5uLQkcssFtnhBlCo6RMTUZAGDjuMLsfJsKIESOCqjuMtRkvDzPLZ5Th+tLTcUBQNUdTlZeXF7S25uzZs7nmmmvYunVr8gaVREaA3KlTJ1566SXKy8uTEiCbF3zqWZg+Pz+fBQsWsGHDBjZv3swH773HfKB1ixZYjJJRyRCKOjz44IO1VrsVFhYmYTSioSQgPA2n08nu3btp164dZ599Nvn5+axZs8a83eVysX79erMspEePHthstqB9Dh06xCeffGLu06dPH8rKytiyZYu5z0cffURZWZm5T10cDgfZ2dlB/4RIJQqnTkIseubLmyIBoaJnCMNdkyvWapyAffAB8+fPr7WJVTiCSkYbkiFM9LqMPh8+o9mFqqbuHyL9ZNgS5mtjZAg1PSCs1petaMpefvnlGmtrjhkzplk899qkSoAcug6hYrGYawzWSX+fK1YrqgSEQjQrKft3OFnuu+8+1q9fz969e/noo4+48cYbKS8v59Zbb0VRFO69917mzp3Lq6++yieffMK4cePIyMjg5ptvBiAnJ4fx48czZcoU1q1bx86dOxkzZgzdunUzu44WFBRw3XXXMWHCBDZv3szmzZuZMGECQ4cOlYYyotELLBlV9HK5VAkIjUDEZ7FENYdw586dDB06lBEjRgRNnB8/fnx04zl6FI4fj+6+6AGu/v/RziFUbTZ/Q5oEl4wGdhlNlQxhDfpJdbgdQ82AMDOTNJpHhlAES5UA2ZxDaMx/rWUOYQ1GEGmznQoIpWRUhGn06NHJHoJoAJlDGOLgwYP84he/4Pvvv+eMM86gd+/ebN68mY4dOwL+rkpVVVVMnDiRkpISevXqxerVq8nKyjKPMX/+fKxWKyNHjqSqqor+/fuzZMkSLEbpBv7JuIWFhWY30mHDhvHkk08m9skKEQe1lYx6UyRb0NAMYcznB+XloVmtKNGedHm9/oYw+APCiDKEgctOqCpqAgNCJXTZiYQ9coT018ga5utqBIRKZiYO4FiKvO9F8xO67ASqevoMoTHv0GY7VTIqAaEIUV930Z07d3LppZcmYVSioSQgDLFy5cp6b1cUhdmzZzN79uw690lLS2PhwoUsXLiwzn1at24d/bwhIVKYJSAgNLqM+lLlxFjPEGoWS1SdLePRQKNByz0ELjsRYabNONGz2Gy4VBUSWULr9Zolo6nUZbQG/XdjD/O1McrrlKysZjOHUKSmwDnCAFitp88QGheFAjKEmgSEIoTRXfS1114L2u71ehk7diwTJ05k4sSJyRmciFrKXpgVQjROKphlSmaGMEVOjBWvF80ICKMIgFJlfpApMEMYZUBorEOY6AwhjShDGG5AaDShUbOzsQLVqdJdN47WrFlDr169uOKKK4IuqA4ZMiSJoxJabXMIT3engJJRiwSEog5Gd9HVq1ezceNGVq9eze7duznvvPP46quvWLhwIZs2bUr2MEWEUvbvsBCicbJw6qq00VTGlyJzCBWfD01VwWLBEkVAmCrzgwxa4Hp+ES5MHxQQJnpdxoCmMlgsqfuHSA+SHeEG2sZrqjf7cldUxGVYqWTWrFm8/fbbrF27li1btjBp0iR8Ph+VlZXJHlpKMaaHJEptTWVOe8FIv48lcA6hNJVJiPXr1zNgwAAmT57M6tWrufTSS+nbt29KBlZGd9FPPvmEY8eOceaZZ9KvXz8+/fRTevfuzYYNG3jggQeSPUwRISkZFULEjM/nwwI15hBqKZIhDCwZTdlGJhFQPJ5TyzdEmiEMmC/kS8YcwkZQMmqU84a7SqSRTVH1OeXNISC0WCy0bNkSgMcff5wlS5YwfPhwTjSD7GhtRo4cGbxh/360jz6iKMpOwtGqtcvoae6jeTz+LtE2Gxa93F9rputJJtq0adN46aWXKC0tZdCgQWzdupWMjAxuuOEG3nvvvWQPr1aKonDmmWfyn//8h+XLl+N2uzl58iStW7cO6pkhGgcJCIUQMePxeGoNCH0pEhCqPh+a1YoWTgv2eIvB4wdmCKMuGbVak5IhDCwZDW+VvyQwSkbxrzFolNHVxTh5tuTk+O/eDIKi7t27s2/fPjNzPm7cODp27Mhdd92V3IElydatW3nnnXdQjQsegwejAWPPPjuh49D0CzyqvsB8OJl4T3U1NkC120+91yUgTIi0tDQ6dOhAhw4dKCgo4MwzzwRI+cAqPz8fTdMYO3Yso0ePpri4GI/Hgy8JyzqJhpGAUAgRM0ZAaJyEmCWjKdJUxsxMWa3JDwhjUUbbgOYsQctOJHhdRjUwQ5jCJaOBWVNneTkZubn17m9kCC3NqGS0tuZp/fr1Y8+ePUkYTfJNnTqVrKwsco33yvffA3DPHXckdBzekIXpjQyhpmkoSu2XYLxOpz8gDMgQSpfRxMjPz8fr9WKxWHjnnXcAGkVgFThvWFVV2rdvDxC0FrdoHFL177AQohFyu91BGUJbZiYAWorMQ1F8PtDnEMayTDGq+UGxCBZClp1oSMloojOERkCYygvTB67N6CwrO/0djHULW7Xy/3jyZFzGJVLXxIkTTwWD4F9rFBh1/fUJHYeZIdS/ixWrFQvUG2B49At3gRlCaSqTGCtXrqyRDbRarY0qsAr8O2i1Sr6psZHfmBAiZuoqGU2VOYQNzRDWmB+E/4p7UVFRxMdylZVhFCC6XC7spylHrI3i8Zjr+UVaMqoFBoRRdl2NlqJp/sAc/OujJeyRIxRlQGiUjKZKMyWRAhJ8UcwXmiG0WlHBzELVxquPUbXbTy07ISWjSZWKgVXg30Gv10t5eTlOp5NPP/006r9lIvlS750mhGi0PB4PVk6VjNoyMoDUCQhVnw/NYvF3GY0iIKwxPwjM+RORqq6oMAPCysrK6P6IBnbrjLZk1GpNeMlobV1G6ytlSxbV68WLv3Ouq7z8tPsb2RSr3mQlJmXBjVRxcTH5CW6kkspcJ0+SyNPkGhlCvWTUWU/zKGN5INVuN5cOkoCw6fJ4PFEFnMbfwddee41ly5Zx8cUX06JFC7788kv69evHXXfdxZgxY+IwYhFPqVqpI4RohNzGCYUeEFodDrykUMmokZmyWqMqGTXmB3Xs2NH816lTJ+65556Ij1UdEGA4o5xjqQTMIYy0c6rZAMVuT3iGUPX5UAIDWeovZUsWxevFaAsTTkBoruOmdxnVmnFAeMsttyR7CCml+NtvE/p4ZpfRgIXpVcBbT4BnlIxa7HbQs4ip0hBMxEZRURE/+clPuOKKK/jxj39Mnz59uP766yOqcjH+Dr7yyitMnTqVjz/+mJKSEn7605/y/fffc9ddd/H666/H8VmIeJAMoRAiZjz6yYNiBIRWKy5IeLlUXSw+Hz6LBcVqjerLb+LEibVuHzVqVMTHcges0+aqqIAosimK12uWjKKqEWU9A0tGNVWNal3GaCmadmoOoZ4hrK+ULVkUn48qVSXH5/P/jk7HONnW586SIs2U4qlnz541tmmaxhdffJGE0STfCy+8wKOPPorNZmPkyJH8Vt/+i8mT2bBzZ8LGEThHGEDVP1veeuYEmiWjDoeZIXTF8KLGd999ZzYdEcFefPFFHn74YS666CIGDhzI3Llzyc7OZsaMGQwbNixmjzNx4kRWrFhBhw4dzG379+9n9OjRfPDBB2EfAyA9PZ05c+awfft2Kioq6N69O0899RRPPPEEjz76aEzHLeJPAkIhRMwYJxQW4yREVVMqIDSWnYg2QxhLnoCA0B1O9qk2Iev5RVJw6QvIEMa6yc7pKEbpLsEBYapRvV6qrFZwuXBFMIeQFi38/20GAWFFRQVFRUU1Ss8GDhyYpBEl16JFi9ixYwc2m40///nP3Ai8QP2BWDwYj2cJaCoD4Knnu9goGQ3MELqjfA+/9dZbQT9rmsbs2bOZM2cOP/nJT6I6ZlP22GOPsWHDBjOw2rNnD2lpaQwYMCCmgZXX6yVHn+NsyM7Ojur7d+nSpVx22WUMHDgQr9eL1+vlvffeY8WKFfziF7+I1ZBFgkhAKISIGePkwVz7CnCROp3qLJrmP9Gx2ZL+5ecNuPIe7fIEitdrBoRahHMIzZLRJDWVUUIyhO4UDAgVnw+X3Q4uF5XHj592f3O+lT53tjkEhHPnzqWiooJWemdVw/Tp05M0ouRSVRWb/v1XWFjIhb/+NYOBY6WlCR2HGRDqYzGay3jDCAhVmw0UBS/RB4Tjxo3jsssuo3fv3mj691JpaSnbtm2TgLAW6enpZGRkkJGRQf/+/c2gLdZNZebNm8fQoUOx2+1kZ2dTVlaGx+PhkUceifhY+fn53HjjjTz22GNB1R0ul4s2bdrEctgiAWQOoRAiZsySo4CA0KMoKKmSIdQDQsViwXb63WvldDrZsWMHa9euZceOHbiifG6ewIAwygyhEtJUJtouo4nOEAauQ2g0u0jJDKHPh0dfS7MqjBN6xevFA9CMFvUeMWJEjWAQ4Jprrkn4WHbu3MnQoUMZMWIEGzduNLePHz8+YWMYMmQI+/btM38eAPwFyNXnldbFE+P3ipntMwJCPbCoL1NpNJqy6u95r6IEVTJEYu/evfzoRz9iz549DBo0iFmzZnHeeecxc+bMqI4XK+vXr2fAgAFMnjyZ1atXc+mll9K3b182bdqU1HF1797d/A5ctmwZEJ/A6uqrr+b999/njTfe4P/+7/948803Wb9+PT/60Y8iOo4R5C9YsICjR49SFlBBYbfbefnll2M6bhF/yb5ILoRoQmoLCN2QMiWjFk3zlyoa4zPWJQzT0qVLWbRoEZdffjnZ2dmUlpayY8eOqLqq+QKuvHujXK9OCSkZjSpDaLejRdl1NVqKkakloB1+CgZPFq8Xjz4f0BlOhsfjwasoWPXnliqZ8eaisLCQxYsXY7VamTp1Kps3b2by5Ml8/fXXCRvD7373uxrbLgIeGT26xvaioiKmTZtGaWkpVqsVt9tNbm4uc+fOpVu3bg0ah0//zrXqS/8Y3UbrW2jezBDqi9JXWyyoUQaEmZmZPPDAA1RUVPDEE08wf/58ShOcJa3NtGnTeOmllygtLWXQoEFs3bqVjIwMbrjhBt57772kjWvBggU1tsUzsEpPTyddf29E6oknnuDZZ5/l3HPPpWfPnrz22mtkZmYyevRoJkyYEOORikSRgFAIETOewLblOreipEymxKJpYLWe6rzn8ZzK5oTh6aef5sMPPwxadsLj8dC3b9+IA0JvQEDoaUjJqDF+vfQyXEZb+qQFhEaGMIzMRbKoPh9O/fUNp8uo4vXiVRRQ1ZTqrttcKIpC586dAXjppZeYPXs2EyZMiHn2LRrOWj7jsWjwURcjILTo2T6j0Vd9JaO+kDngJ+12bFEGhIasrCymT59OeXk5e/bsadCxYiEtLY0OHTrQoUMHCgoKOPPMMwFSrqFVKluxYgVFRUVUVlbSpUsXvv76a2w2G1dffbUEhI2YlIwKIWImtKkMpF7JqGa1nspgRniimJ6ezvr1682fNU1j/fr1pOknXZGISYYwoFtn1BlCm80fECZy2YnADKH+u/Ck4Hw7VdNw69mScLuMGoWvHkWRDGGC5eXlBZVrzp49m2uuuYatW7cmb1A654kTNbbFssFHKCMTaNHfv2ZAWM8yEt6QktFqhwN7jLqMZj/9ND1ToIwwPz/ffH3feecdwH9RLxWXvUmUnRF2v01PT0dRFDIzM7npppuw2+0oihI037G4uDjWwxRxJhlCIUTM1BYQulUVJQWu0MOpDGHgosuRdOZcunQp8+bNY/r06Xi9Xmw2G5dddpk55yMSgRlCby0ni+EI7NYZTVMZH3oXwkR3GTVKdzmVIfSlyEWDQKrPh9dmw60o4f2OjAwh+ANDCQgTqrbyujFjxqTEItmeWgKrWDb4CGWsHxgaENb3OQu9jzMtjbRYXai5/37/f//4x9gcL8DOnTuZMWMGNpuNqVOncsUVVwD+uaPPPfdc0L4rV66scX+r1cqaNWtiPq5IOZ1Odu3axfHjx2ndujVdu3bFHkEFSzj+8pe/BP2saRqLFi1i4sSJdS6rFGrw4MHmMkF/+tOfAP98x4suusjc55ZbbmH16tWxG7iIOwkIhRAx46llDqFXUVBS4MRY0zT/F57FEnS1PJIvwfz8/OC5Hh4PHDwY1RqCWsCVel+UZVmqz4c3pFtn2I+vZ7MsFgua1Yo1kU1lAruMhpG5SBajK61LVVHCODFWPB7z9+FR1ZQplRbJV9sC70aDj6qqKkpLS2nVqlVU1Qa10UKyfYoeWNQbEOq32Yz7tGqF+tln+Hy+oDL5SBw/ftwf4ACtozrC6cVi7misu3lGKpbz0+vzf//3f3Ts2JGRI0ei6BevVFWlhbFUThjGjh1rltiGrkPas2fPZr0OaWMmAaEQIma8IVeYIXUyhF6v1/+FZ7OZAWukAWENkybBU0/Bnj3QpUtEd/XFICBsSIYQjwcP+tyZCIPJhqqtZLS+ZhfJYvH5wGr1B4RhBKxKYIZQUSRDKEzeei4oNKTBR13MpjJ6cKeGkyEMKTNtk5VFF6+Xzz/6iPP79Ino8detW8fMmTPJzc31BzhACTBn3Tr69+8f2ZM5jVSeOxquWM5Pr88nn3zC3//+d1566SVGjhzJqFGj+Mc//sEtt9xS6/6nW09S1iFtOmQOoRAiZsySo4Cr3F5VRU2BP8wejwcr/hLFcBoshKWoyP/fo0cjvmvgHEItyjmEakCX1EgzhHg8uNEDQqs14U1llNCAMBVLRvU5p26LBTWM8SleL77AgDAF3vfN0fHjx/nyyy85HsbakXEVMBcw0Rnw0Ayh0eirvnGYTWX0gNCnZ3+qje+5CMycOZNVq1bxr3/9i6VLl/IG8Ja+PdZSee5ouGI5P70+iqJw880388orr+DxeBg2bBjff/99nfuPGzeOJ598km3btrF161a2bdtmricJp9YhDdVc1yFtzCQgFELEjC+kbTn4A8JUyBAaASEBTWVi1sgkiuNoLhdVgC/K+4MesBjd8VQ1si90t/tUhtBq9b82CQoKrZpmlrClckBo0TSUCALCoDmEUjKacOvWrePKK6/ktttuY86cOdx6661cddVVrFu3LjkDCsgQa0kKCNXQz1k9WWvjPkbJqOuGG/z/jWK5CFVVOWpcKNO/V47q22Pt5ZdfplOnTkHbxowZQ3UE36uDBg2K8agis3TpUv71r39x5ZVX0rt3b66++mr+/e9/RzU/PRyqqjJ27Fhef/11XnvttTr3O916kqm0DqloGCkZFULETG0ZQo/FQnoKnBgbAaEzhhlCTdP8TWmi6MSnOZ248AeEWgPmEBqll5E2htHcbtz4TwzMoNLrNRvuxJPZ3IfUDgit+jg9VitqGOWfis+HTz/h9SlKSlwIaU6MrFRWwCLw5eXlDB48OOZlimEJeM/UNofwxRdf5OGHH+aiiy5i4MCBzJ07l+zsbGbMmMGwYcMa9NDm50n/nBmBYX1LoZgL0+sX9NJb+2f9RbMszjPPPMOUKVMoLi5G83pRgHb69mQaOXJkjW2aplEURRY0lmrMT08QVVVp3759nben6nqSIvYkIBRCxEzoYsiQOiWjbrfbXzJqt8eskclXX31FZ/zLRkS6ipXmduNCLy2MchyBC7xHPA/Q68X4rQSty5iAgNAWkCFUw2h2kSyWgIDQEkZAqAaWjEqGMOGMrFRgQHj06NG4ZKXCEvieqeUz/thjj7FhwwYqKiro3r07e/bsIS0tjQEDBjQ4IDSWlTEvvITxOdPcbryAVd83Tc/8uMNYgzNUQUEBr776qv+4ZWUoLVsaN0R8rFjaunUr77zzTtB7QtM0xo4dm8RRpb5UW09SxJ4EhEKImAltWw56QBiDdbUayul0YsO/EHs482nCUaqfKO3/7DPOjnxAeNADwmSUjLpcZnkjgQFhAhiBOaT2shNGEyKvzYY1zDmERpdRX4q875uToKyUpqEoCu3atUteViogIKytKVF6ejoZGRlkZGTQv39/c03CmHS8NN6v+veDxcgQnqZk1AvY9Atm6W3aANEvi2OoLC0ls0FHiJ2pU6eSlZVFbm5u0PZ77rknSSNKvIYsb5GdnV2js6hoGmQOoRAiZoxypKCmMlYrlhQ4Ma6ursaKP1hVY1Qy6tBP3JzRlNC4XLgVBZeihNXBsjZBpZcWS0RZSs3txhMaECbg96RpGjaomSFMwY6cFk07FRCeJljeuXMnc4qL+VVVFRs3bvSXjnq9jB8/PkGjFUZWatOmTWzevJlNmzbxz3/+k4JkZaUC3tNqLRd9unfvbi6SbswVc7lctNEDsQbRuwhjLC0QZobQw6mAVE1Px0fDA0JXFCWnkXjxxRe59NJLGTNmDM8//zxdunTh8ssv5/XXX6+x78SJE2sEgwCjRo2K6xgjVl0N330X88MuXbqUfv368fzzz7N+/XoWL15Mv379op6ruH79egYMGMDkyZNZvXo1l156KX379mXTpk0xHrmIN8kQCiFipraA0Keq4TXkiDOnvsSExeEwm940NCuVps/Zc0VRUmUEZD5VjbpkVPX5UI1gLtJ1CN1uM0NolNAmIkPo9XqDAsKUnkOIf3w+mw3raYLlwsJCfpWTQ6fKSubPn895bjd9vN6I1kITseU7ehSlTRtzzctE09xu9Esutc5BrW3OmN1u5+WXX47JY3s4dZIXTkDo0zOEZjmlolAN+KLsgmxwB9y/+Ntvyf/BDxp0vFDxLL1Nml/8Al57LeaNvmK9vMW0adN46aWXKC0tZdCgQWzdupWMjAxuuOEG3nvvvRiOXMSbZAiFEDFjlIwqAeUnvhTJEAYFhHoQ1dCSUbv+xzqaOTaKy4VbVXFbLChRBkOKpp0K5lQ1snmMAQFhIktG3S6XPyDUg3I1jFK2ZNA0zVymxOtwYDvNe1hRFM5UVdrbbLz00kucAJ48frxRrYXWlGg+H2peHv8877ykjSFw7UFLgi94BFUAEObnTG80pQTcz6mqUTe9MrgCMox1rXfXEEbpbdu2bc3SW4fDkfTF5hvkX/+Ky2EjXd5izZo19OrViyuuuIKVK1ea24cMGQJAWloaHTp0oFu3bhQUFHDmmWfSunVrc+F60Xg04k+LECLVmCcbAX+IvVarf4HvJAsKCGNUpmjXgwRPNCVVekDmCXdJg1qogQGhzea/whewNuFpH9/YL4EBoauyknROnaCmalMZn89nznXU7Hbzd12XvLw8Du/eTQf9Nb0nK4tnqqp4shGthdaUuE+exA5c//XXVFRUBDWaSRRPVZV5khXOHNTYPrjn1AUfwgsIjc7DgaINCAPnmTlLS3EAGvCFvn5dLBmltxaLJerS22S9R+oUpyWAli5dyrx585g+fbq/WsNm47LLLquzZHTWrFm8/fbb2O12pk+fzoYNG3jiiSeo1N8T+fn55mv/zjvvAP6Moy8F/uaLyEiGUAgRM2ZLcyNIATSLJbUyhGlpZoOFhgYhRpDgjaKkSnG7zQxhOEsa1MaiaeZ8SCOoq629fa08HjMgVBKZIdRPJNQUzxCamUyrFc3hwHaaE5yXX36ZdkYJMP73/QCbLaK10ETDvPDCC3Tr1o0f/vCHzH3oIQDswPDhw5MyHuO9XgkRXfQpLi5u+IN7PAR+61rCKJNX9HnNgVwWC0oU7+GKigo2btzIli1bePkPf2ALsBW4vHv3iI91OgsWLKiRkaqr9DbwPTJv3jxze7LeI6cV48DKWN5iw4YNbN68mQ8++ID58+eTn59f6/4Wi4WWLVuSkZHB448/To8ePRg+fDgn9IugK1eurPHaW61W1qxZE9Nxi/iTgDDEww8/zOWXX05WVhZ5eXn89Kc/5bPPPgvaZ9y4cSiKEvSvd+/eQfs4nU4mTZpEbm4umZmZDBs2jIMHDwbtU1JSwtixY8nJySEnJ4exY8fK+i6iUastIPRZrVhT4Gqhs6oKC/41toxgpKElo0aQoEUzx0YPyDwWS1TlZJqmYSeg9FL/ryfcNRE9HjN4SeQcQrc+PjNDqD92qgWEHv13otrtaA4HjjDew4rXa3Z99VkszbPLaEUFo5O0yPeiRYvYsWMHO3bswK4o3Ig/GNPilG05HaNktMpqxRdBli0WZZWaxxNUMhpul1FPLQGhGsX35Ny5c6nQm8kEziGcPnFixMeKpcD3SEZGBjfeeCOVlZVJe4+cVgP/RjVU9+7d2bdvn/nzuHHjmDx5svm7rUujLtdtpuQ3FmL9+vXcfffdXH755Xg8Hn7/+98zaNAgPv30UzIzTzVOvu6661i8eLH5c2jL3nvvvZc33niDlStX0qZNG6ZMmcLQoUPZvn27eTXl5ptv5uDBg6xatQqAO++8k7Fjx/LGG28k4JkKEQfGyUZgQGizpUTJqEsPRKxpaWYQ0tCSUSNI0KJYmF7VSza9ViuOKMbhcrmwAxhLfOjfQZ6qKsJqIF5bQJiAAMYIWI3GQ6laMmpkdxSbDdLSzPmi9VG8XrPNv2axoKTA+z6e7r///hrbtPfeY+PWrXDoELRrl9DxqKpqLplw6/XX03PePAYDx7//PqHjMBjvIVdaGpYTJ6isrCQjI8O8vbb2/Zqm8cUXXzT4sRWPx1wTE059zuq96ONy4QkpN/dYLChRfD+NGDHC/H9vwPfjVRdfHPGxYinwPVJYWMiFF17I4MGDOX78eFLHVSenEwLW9U20hQsX1tjWr18/WYuwCZKAMIQRnBkWL15MXl4e27dv5+qrrza3OxyOOlPsZWVlPPfccyxdupQBAwYA/pbSHTp0YO3atVx77bXs3r2bVatWsXnzZnr16gXAs88+S58+ffjss8/o0qVLnJ6hEHFUS0CoWSwpkSEMDAhjUjKqaTj0ICGaK+iKx4PHYsFjs5EZxTiMgDB0Ll7KZwjrKhlNseYrHj27o9jtkJZGGphzZeqi+Hxo+pVxLcy5s+vXr+fBBx/k4osv5rrrrmPatGnk5OTw8MMP06dPn5g8l3hZvnw5K1asCNpWsns37wK88w6MHp3Q8QwZMoR9+/bRqVMnXOXlDADaAb9JcGBqMDKEvhYtGHriBF/985+cG9DJsaKigqKiohrZlIEDBzb8wQNKwuHU5+10TWVCM4TeKAPCoKEEZEed5eVk1LNvLBUXF9c4Twt8jwAMGDCAdu3aMWXKlASNKkJSci4SREpGT6OsrAyA1q1bB21/7733yMvL4/zzz2fChAkcOXLEvG379u243W4GBZTNtG/fnq5du7Jx40YANm3aRE5OjhkMAvTu3ZucnBxzHyEaG7MEM+AER7PZsKZAOY4RiNjS00/Np2nIiU7AH+pomsKoHg9eiwWvzYYlimDIDAiNTFuEJaOqx4NPD24SufRDXRnCVCsZNd7Lqt2Okp5OGv6pAHVZs2YNd588ydhDh1i5ciWa1Yrq85nd+Ooybdo0Fi9ezG233catt97KG2+8wT//+U8eeOCBWD6duLj99tspKCjgmmuuMf8d+vhjbgGqjx5N+Hh+97vfmSf6bn2O00UQ1B0xkYz3ep5eXpd2331BtweWVQaaPn16DB48uKmMJZwLL4GNpnQ+iwW1gRdrAjOE8V6TMFBtpbeB7xHDRRddVCMZkDJSPCA8XRdS0XhIhrAemqYxefJkrrrqKrp27WpuHzx4MD//+c/p2LEje/fuZcaMGfz4xz9m+/btOBwOiouLsdvttGrVKuh4bdu2NSeLFxcXk5eXV+Mx8/Ly6p1Q7nQ6g05KyqNody9EvHirq/ECloCTCi1F5hAac9esDkdYDRZOK7ClfBTBjOL14rVYwlrjrjYupxMH0QeEeL01AkKv0xn3q4TG+IzxWsLJXCSBkSEMDQgDS/4CzZo1iz/ZbOSedRYrt2zh9SNH+KXXa3bjq4vRtr1Dhw5m23agUbRtf/DBB2tsy7JaGQMcKS6m9kb2iRHY+beioqLGRd2EjEF/r5f37Embd99lf0YGgSvwBZZVBrrmmmsa/Nia221WAIC/MsLYXhellpJRn8WCEsOAsFq/yB5L8Sy9TbokzyGsi5F9PV0XUtF4SEBYj3vuuYf//e9/fPjhh0HbR40aZf5/165dueyyy+jYsSNvvvkmN9xwQ53H0zQtaH0fJaQ0o7Z9Qj388MPMmTMnkqchRMJ4qqrwKErQeniazYYtBTKERtmSGlAy2qAgRA8YygFrFMex6Bk6n82GLZoMoRFYhQaEYf4hNjKUcKrLqNfpxFbfnWLAOEm26vNiUjVD6NJfR2taGqSnkw58X8/JmcViIUfTSLfbefzxx3nw5Zf5fWkpztMsSdLU2ra30N9LFUePUvOSZ+K4AzJRp2uAEbcx6O+hQ7/7HQf/+1+0BJ7ca243WkBwF86FFyWgjNzgs1qjKokPFBgQuqNZouc04lp6m2xxyhB6PJ4GNX655ZZbWL16tdmFFODxxx9nyZIlQV1IReMhAWEdJk2axOuvv877779vXrGtS7t27ejYsaN5NSo/Px+Xy0VJSUlQlvDIkSNcccUV5j6HDx+ucayjR4/Stm3bOh/rgQceYPLkyebP5eXldOjQIaLnJkS8+JzOGiVH2O3+klFNg3oudsSb2ekuMEPYkCBEP8kpAaxRBHSq14svLQ2f3R5VBtVY7Dk0IPSGeQKheL1mI5pENnYxxmeUjJonqik2h9AMCB0OfOnpWIHqeoLt7t27c2TTJrL1bOuwtm3J/fZbnjhNMFJbOWNjbtveQv/8VyapkYshKEOYpEoaI8tsz8ykND0dNYHlf0pASTicKhmtd55wyH1AnwsbTRflAL44l4wapbehVVkxKb1NAk3TMP9SxvAiQlFREdOmTaO0tBSr1Yrb7SY3N5e5c+fSrVu3Wu9zuuyr0YXUKMMdN24cHTt25K677orZuEViSEAYQtM0Jk2axKuvvsp7773H2Weffdr7HDt2jAMHDtBOn7jeo0cPbDYba9asYeTIkQAcOnSITz75hD/+8Y8A9OnTh7KyMrZs2WJ+4D766CPKysrMoLE2DocDh9FVUIgU460lINSMBdO93qC5hYlmXqW222NSpug9eRILUAo4oghmLPoSBZrDgT2KgNAIcC1Gpk0PsMIOCH2+UyWj+smiNxFzCI2A0GgqYzS0SbUMoR5QWDMy8Oqvsaueq94LFy5k+1/+gmZkPG02+gB3RdmNr7G2bTfmw3qTlJUzeAOC95NJ6iBpfOfYMjIgLQ1LIgNTtzsouFOtVv+6hPV8VwVWDRg0m63By6f4Ar6T4pEhjGfpbTK43W6zU7RWVUWsLqNOnDiRFStWBCUR9u/fz+jRo/nggw9qvc/psq/ShbTpkKYyIe6++26WLVvGihUryMrKori4mOLiYqr0L/YTJ05w3333sWnTJvbt28d7773H9ddfT25urvmllJOTw/jx45kyZQrr1q1j586djBkzhm7dupldRwsKCrjuuuuYMGECmzdvZvPmzUyYMIGhQ4dKh1HRaPmczholR0YWiiQvK2BepXY4YtJl1KWf3FXYbNiiOGGyeL349EXPowkIjdJQIyC0RBgQql6v2REzJl1Xw2SU0dn1ZXxSdg6hkSHMzMSizxusLyAE/Jlw4/2eIqXSiaZWVzMI/wWTZAp8/MqSkpgcc/369QwYMIDJkyezevVqLr30Uvr27cumTZtqH4Oe3bFnZqJlZGBL4Hvc4nbjsQUXgHuoPxMfmlUEf0BoSfGAsKmpDnjvumN4YcXr9ZKTkxO0LTs7G289v9+IGh95vfDqq/5qINHoNM5LkHG0aNEiAPr27Ru0ffHixYwbNw6LxUJRUREvvPACpaWltGvXjn79+vGPf/yDrKwsc//58+djtVoZOXIkVVVV9O/fnyVLlgQ1Cli+fDmFhYVmN9Jhw4bx5JNPxv9JChEnmstVMyBMkQxQYIbQbLDQgDJFd3k56UClw4E9ilIw1ViioKEBoR6sRBMQGhlbIyjzJKCkzZhD6GjRIuixtRRbxN2jn5TZMjNBf41PdzJr0zQ8RobQbm/yAaFRARPoyPff8xmgJTsgDMgQVsUoIJw2bRovvfQSpaWlDBo0iK1bt5KRkcENN9zAe++9V3MM+ufJ0aIFSkYG9gSWRVs8Hrwh1UQeqPfCnOrx4A5tZhSDdWQ1pxM3YCP8Oc7NWXV5Odn6/7sqKsJbVzYM8+bNY+jQodjtdrKzsykrK8Pj8fDII4/UeZ+Isq/Ll8Ott8J//gPXXRejUYtEkYAwhHaaP+Dp6em8/fbbpz1OWloaCxcurDWdbmjdujXLli2LeIxCpCrF6axxVdoMCJOdITSCHbs9Jk1ljAxhdVoajihOcqw+H5rN5g8IowgcjJJRozmLkSkMOyAMWDPPCJC9CWh6UVeGMNkXDEIZJ662Fi3w6a+tu54gx+v1ogG7q6o4snYtR6qquJzTNwqry6BBg1i9enU0Q0+YrVu38s4776AGXATa+p//8ITLhRJut9s48QV8JqtLS2NyzEg7whoXP9IyM1EzM7HXcdGjoQ0+amNzu/EGXKQGcOLvJFoX1es13+smuz0mAeEJoBXJzxw3Bs6A0mJneTktYnTcq6++mvfff5+qqipKS0tp1aoVaWkx7AW8a5f/v0VFVFx5ZVCSRKQ+CQiFEDFjcbnwhgSExty2ZJ/wB5aMWmPQVMbIFrkyM3EcOxbx/S0+Hz6bDdLScAD4fBCaXa3v8Y2A0MgQGs8pzKDO6vVCyNIPicgQGpkbh36yYLFacUHKrbcVmCH06sFrfQHhkiVLWAR0OXyYc9av54tDh5gP3P3884wbN67O+9WWZdM0jaKiooYMPyGmTp1KVlYWubm55rbDPh/3QNJ/n1pAQLrg4Ye5debMBh8z0o6wPqcTF+BIS4OMDNI1zbxAEE2Dj0hYvV7/90sAl6LU+3tR9XnNQaJsehX8wC5cqorX5+OyZ57hyF13kde9e8OO2YQFlqZ74jAXNz09nfTQwD9KL7zwAo8++ig2l4uRn3/ObwEOHmT48OHmZ0Q0DhIQCiFiRnW7zQYc5jYjA5TsDKERKNntWG02f/lUA0q4PPpVXE92NmlRZPisPh/YbCjG6+V0QgR/pI3gxCi9NDKF4QaENp8PTf/d2PSgPSFdRo1mLdn+oihFUagGtFQLCI1MZosWZkBYX7nbX//6V94Avr/8cro9+CA7v/yS9l9/zYhnnqk3IKwty6ZpGmPHjo3J84iniRMn1thm83oZBexM8vppgQGho7o67Ezt6NGjWb58ea23RdoR1qeXSmZYrSiZmWSgNwyx26Nq8BEJm9drfr4NTlWt93MWOK/YZLdji0GG0KOqZqax+Gc/I++rrxp0zKYsMCBM9TmXixYtYseOHdj+7//4829+w43AHz/55LTVdiL1SEAohIgZm9uNL+QkxMwQJjkg1AJKRq16VqqhXUYBtJwcHPjnwCkRLCZu8/n8S040MCC0G3PxIpxDaPf5zAyhUTKaiAyhWcoXsMC7U1FSLiA0Msr2rCw8RkBYT4bQbrezFTjXeP/bbGzRt9entiwb+NfBbYyMssj0JJeMBmbC8sAskTPcf//9Ne6iaRobN26M+KHqKvc0AkJFUcyAsLq6GrvdHlWDj0jYvF48Id/Fboul3gyh1ev1l7EHUOx2LA09uXe58AQE421jvDj9zp07mTFjBjabjalTp5qd2sePH89zzz0X08dKhMAgMJZNZeJBVVVsNhtf79jBCPxdt0du2IDzvPOSPDIRKQkIhYix+q4wN3U2j6fGVWkjINRcrpi1z46KkbFwOFBVlWr8cx6jZaxzpuonma7ychwh62DVx6FpaHY7qjH37+RJLPoCv+EwM4R66WWkGUKHz2dmJ23GGBIRtBtBVUDw61IUc13HVGEuGZCZ6W8sQ/0Zwvnz5/Ncjx5sXLUKR+/euPbt4yo4baOw2rJsAKNGjYpu4ElmNEjKSXaAX11NscVCW5+PPE3j6NGjQQHh8uXLWbFiRY27vfvuuzEbgi8gEFIyM3EAZSdPkp2dHVWDj0jYfT7coQGhqta7rp3FmNccQHE4sAM+ny8oix0RtxuPxWJOG/DFeL5kYWEhixcvxmq1MnXqVDZv3szkyZP5+uuvY/o4iRKYIfQmoAlPQ+YrDxkyhH379nHsyy9JAzoBM9PS+MsPfhDLIYoEkIBQiCjF8gpzU+Dz+fxliCGT1K0BDTli1S0tGlpAySj4Gyw0ZNFf38mTVAF2PYirLimJKCC06yWbqtHBsqKC8POLAcsi6Pe36f8NOyDUtOQEhFVVuAB7QDbVdZoT1WQwmhApaWnY9KDbW0/QmpOTwxPAlzfdxAULFvC/SZO4+Mkn+S6C90RTkObzsV9Vae/z4ayqwhGjuUoRq66mSlVRvF7+Cmw4epTzzz/fvPn222+noKCAvLy8oLvdcsstMRuC5nSaAaFFz+Q7S0uhXbu4N/hw+HycDDmex2pFPU1ASOgccD0gdLlcUY9PcbnwBASTriiaLNV7fEWhc+fOALz00kvMnj2bCRMm4ElgV9dYCpyrHMsmPPGYr/y73/0OgKOlpZQCJcCVLherVq2K+pgiOSQgFCJKibjC3JhUVVWRDjXKHo2AJdkBoVmyql81dylKwwLCykqqgTQ9IHRGUgbl8+EAlPR0MyB0VVQQyemWeaKgn6RZAjKxp6NpGmmAoj+2UTIabjDZIFVVVKtq0HvBbbGkXkAYsEyJEWzXFxBWnTiBFf+6heAPJOFUp8mmyGwoYbMxcuRIpk2bRhowTFXZ5PPx5datXHD11UkZm+Jy4QrISh397rug2x988MFa71dYWFjnMdesWcP06dOxWCwUFhZy0003Af4syZtvvlljfy0gQ6jqFxVcIR1PY9ngI5BD08zvBoPHaq23y6jD60ULGYuRIXQ6ndEHhG43XouFsrPPJmfv3pivOZqXl8e+ffvo1KkTALNnz2bZsmUsXbo0po+TKIGl6cqxY7B/P5x1VoOPG8/5ympFBUqrVlx04YVk1rEup0htsjC9EFEyrjBfc801Qf9ieYW5MamsrCQdTjVJ0RnLIbiTvf6UEXDoV8AbWqboq6ykCkhv3dp/+Eha2+tjsQQseu6JtHmAsb8egBhljVoYgZWzqgoHmOWqdqPcNAEZQqWqCmdI6ZlHVevNXCRD4DIlitHBtZ73S7U+18f4PRjv+8AW8nVxOp3s2LGDtWvXsmPHDlxJnm8bLqOhxI4dO8z1+HxgNuH55q9/rfV+kS7wHg3F6cRjseDRL9q59+9v8DFnzZrF22+/zdq1a9myZQuTJk3C5/NRWcd3m9FMBcBaR0AYD06nkzT83y+BvFYrlnreW2k+n/l9YlDT0rDpx4yWqgeEOR9/zM42bbDG+LP+8ssvm8GgYcyYMVQnu2w5SoGl6ee/9RZ07BiT4xrzlTt27Gj+69SpU0zmK9tOnMCXlYXjzDNp7fPhbaTZ2eZMMoRCRCmaK8xN2cmTJ0kDM+NlsKZKQKhfrbfqJ2inm09zOpqeIczQA0JXGCf+5n2rqlDQA0JjSYMImwdooQGhw0E1hNXuv7qszP+7Mu5rt+MlMesQKk4nzpDmO+7TZC6SQauuxgNYLRYzq1xfw55q/fdvNPkx/lt1mszx0qVLWbRoEZdffjnZ2dmUlpayY8cO7rrrLsaMGRODZxI/RkMJ8H/vnXXWWfz8tdc4rqp85XCQ9t//1nq/SBd4j2psLhceiwWrvoSDduBAg49psVhoqVcEPP744yxZsoThw4dzoo6LOUp1tT9LyamA0B3B98R3331H+/btIx5nhV5tYA1ZB85rs6HWk51L1zTzO8GgpqeTBpQ04LtB8XjwWSyQnc1XeXn8YO/eqI8VjWhfx2Qx5g1WALFcyS+e85VbVFVx9KyzyD7nHOxA8Z495Hft2uDjisSRgFAIERNGhjD0hMLImNRXbpcIit7YwPjSa2iZolEy2uKMMwBwRVAy6tQDMmuLFlj1wCHSgFCprPTPxdPnRNpsNsoBNYzA21io23hsu92Oh8RkCNWAk2SDx2JBTbGA0FNZiVtR/O8X/TX21RMQOkMDQv1kvPo0AcDTTz/Nhx9+eKqMy+2mevNmBjzwQMoHhEZDCSM70/uyy1gE3JmdTbnPh62Oz0SkC7xHw+J247HZwAgEiosbfMzu3bsHPd9x48bRsWNH7rrrrlr3V6qrcesNVGx6R1FjuZrQ8tNsfRmWWbNmMWfOHDRNY/bs2cyZM4ef/OQnEY2zoqyM1oBNP6bBZ7djr+N72Of1kgmoLYKXQVdbtMAKOBuw/IHqduPVXwctPR17HLNHb731VtDPDXkdk8VYmqdUUcgyOryePFkje5to9TXMO8Pl4su2bcm+4AIAvv/f/2ISEB46dKjBxxDhkYBQCBETlZWVtKZmmZI12pLIGLMGnJSAPyBsSJdRrbISp6KQrWcMIllAuLq0lDTAlpVlzjmrb0mD2qiVlVRbLOZcPKvVSiVAGAGhkc00fldmQBjjuT21UQNOkg0emw1LAh47Er6qKtyq6p8XqweEWn0loyEBodH9tfo0FwrS09NZv349/fr1A2DVL3+Jungx9quuauAziD+joYShuqSEi4CnxozhxOLFpNXxmY90gfdoqB6P//Ou/z68IaWaL774Ig8//DAXXXQRAwcOZO7cuWRnZzNjxgyGDRtW6zEXLlxYY1u/fv3Ys2dP7WNwuczvnNCA0Cg/tdvtTJ8+naeeeoprrrmG77//nq1btwL+pTK2bdsWcSBTeeQIKmBt0yZou89ux1pHMFZVUkImYAnJKhoX+NwNWCpC9XrxGXOcMzJwxGhpjdqMGzeOyy67jN69e5tr4UX7OsZbXZlLY2meClUF47U6fBjOOSe2Axg0CM48E/72t6DNkTbM08rL/YHrmWfSRs/Il+3eHfFwagvmZ8yYEfFxRHQkIBRCxERlZSVnAWrIVWljAXJvktdTslRX4w5YE87bwDJFraoKt8WCXX9+kWT4jAydPTvbzNJF2l5craqiymIh8NWuUlW0MAJLI5tplJTZbDZcJChD6HTiCVmbz2e1YkuxOSe+6upTnRH1ktH61ko01g5z6O8Ho+Ps6U6kly5dyrx585g+fTper5dvt2zhRmDBnXc28BkknnGhwdqiBc7sbFrWMW8v0gXeo2F1u3FlZIDdjkdR8IZkah977DE2bNhARUUF3bt3Z8+ePaSlpTFgwIA6A8JIqS6XP0sJ2PWA0PgeDC0/7dKlCwsWLKC8vJxBgwbRp08fPvroI2bOnBnx41bp2VC7Xr1g0NLS6gwIK7//nkxOfV8bjACxIQGhxePBZ3QvzcwkXdPA54Nol7EIEZht/eMf/8ihQ4coKipi3759bNy4MerXMZYiyVwa3+GlcQgINU1D0RsdFa9ZQzqQExIQRtowr2L3brIBW8eOtL7wQgCqo1jyo7ZgvizGa1aKuklAKESMNWRNn8asorycHKAqZIFt4wTDl+SA0Op04glY589rsWBtSFZKz3QZJ3qRZgjBnyE0AkpvhBlUS1UVzpBMW7WqooQRWFaVlACnyhrtdjsVENb8w4ZKr6rCGTq3yW5P/kLmIbTqajzG62u14lIUlHrGaJww2/RA0KFnZ1z6a12X/Px8FixYYP78oKIwA9jXCEulzPd1djbeVq3I+fLLiO5f1wLv0QgMQqotllNzbnXp6elkZGSQkZFB//79zUXiYzkGq8uFR8+MGRcIjM95aPnpL3/5S84//3x++ctfsm7dOubPn09plA1onIcP+x+zbdug7UpmJml1ZQiPHfOPuY6AMJLvt1AWr9fMlCpGBUlVVcxKIEOzrW63m0WLFtG9e3dGjhwZ9esYSxFlLquq8AEnAjOpMaiweeKJJ3j22Wc599xz6XnZZbwGZAKjn32WCRMmmPtFuiTLiW3byAbSunVDdTj4XlXxRjFnd+/evfz5z3+mqKiISZMm0adPHzZs2NBo15NsbCQgFCJK8VjTpzErP3LEv5RCSAmMIz2dSqhxQpZImqZhczrNsiXwN1iwNyAgVJxOPFarueyEL4KST2OJCkdODg4joIywZFSprMQdsmaY02KpN2gxnDxyBIAW+h98i8XCCfxZx3jLcDqpzs8P2uaz27GlWMmopboaZ8DrW62qWOoJmH36Saein0Cn6QGhN8Ir3GeoKvh8eD//PMIRJ1/18eMAOFq2RG3VihZJzPra3G5zCRyn1YoWcqGke/fuZtnqsmXLAP9ae21CyixDOZ1Odu3axfHjx2ndujVdu3Y15/GGsrrduPXPd7rxftADq7rKTz/Xf+/l5eV1lqKejvv77wFICwkIadmSFnWUaxq/O3vARTOITYWH6vXi07Ps5hzFysqYBYS1NfsZM2YMubm5/PWvf63/dTxyBEICn3ioLdipM3NZVUW1ouAMKKF2l5Ziq7lnRFasWEFRURGVlZV06dyZrwEbcPULLwQFhJE2zHN//DHHgZwuXQA4np6OJYo5u5mZmTzwwANUVFTwxBNPMH/+fMkQJpAEhEJEKZ5r+jRGJ7/9FgB7yB9Xh8PBScCXxIDw5MmTZAJawAmIz2bD0oAASHU68dpsNU70wmGUlzpyckjXT7ginWNpqa7Go59kGVxWK+nhdBnV/1hndehgbjupKGE1pGmoFh4PJ0IyhFp2Nun79sX9sSNhCykxdqoqan0BoVGSqJ/wGoFhaKni6bTRy7mUBHdijAVj6ZX0Vq2wtWpFBuD1eLDEMOsWLofbbf4uPHZ7jfd2YFbWYLfbefnll+s8ZqQdYW0eD079M2qWhof5PZGdnU3Pnj3D2jeUS7/gkxlycU5t3ZocTcPj8dTIhDr1TLaRyTTEIiC0ejx49dfBnKN48iSElLRGq75mP/W+jnv2QEEBvPYaDB8ek7HUpbZgp87MZXU1TkXBaTSUwR+wNzQgTE9PR1EUMjMzuenaa7E//zzQ8GZOvm++4Wugk34B4kR2NmmnqYyoT1ZWFtOnT6e8vJzt27fz4x//uEHjE+GRgFCIKBlr+uSGlEjGYk2fxsiYt0LIFWa73c5J8J8AJElZWRktwDxBBD0gbMhJjj4Xzp6eThWRlcQaZYRprVqRnpFBFZHPIcyoqsIZckLlttnICqNRjnHC2ELv7ghQqShkJiBDmO3x8K2eNTFY2rQhI8XmENpcLjwBgWu11Yqlntc2NCA0sh++CAPC1vpJoF2/wNKYuPQsU3peHo7WrbECxw4fps0PfhDW/WNZbu/wes3F4D0OR0yy3zU6wuJvhtO3b9/aA0KvF824aKOq/s95Ai6MVerlxrbQ8v02bUij9t9JxXffAZAdEkTaYhAQpnm9OPXmYkZA6DtxImYLYUfa7MdkXITaujXuAaEhMNipa3xKdTVOi4UvAjKEzuPHG7wExeDBg82s+KMTJsDzz+MCOgT8HYiG9v33HAN+aCzB1KYN2V980cDR+i+K9OjRo8HHEeGRgFCIKMVzTZ/GyAgyCDnZz8zM5FvAlsQ5hGVlZf6W6gEn+D6Ho0GNTOwuFy79avpJRYmoJNZ59CgAWWeeSZpeUhtJySlAlsuFK+S1dtnt9S48bfAcO4YPUAPuX2WxkBXvDKGm0VLT0EIvGuTlkaNpVFdXkxZQ1ptMDpcLb8BYXFYr1npeWyMYMgNC/QQ4kgyh2+2mlX4SmKnPA2tMPHrGIy03l3S9UqDk4MEawUe8y+09Hg8ZmoZVf59509KwxCAQC+0Iq33wAes/+KDO96zd64WA26rra/pUVASaxjc5Objdblq3bk1r/QQ7Up7vvqNSVckIKcm0GxmcWn4nJ/UGQG30sj+D0R010u+nQBk+H2VGAyv9eM6SEn8H32QyMnQBmbhEqS9zqVRX41JVLvj73/nbyy8z6pVXTjsXORzTpk0z/7/0wAFaAXbgjp/+tEHHVUtKOOFwmBdKtHbtaLNrV1ADG5H6JCAUQsSEVw9yCCk5ys7O5jMgJ8JMSSwZGUJLQADkTU+vs8FCONJcLjz6SX+lqqJEcMLpPnYML5CVl4eiqpTgX+YgEq3cbg6FvNYuh4O0MF5nraSEk6pKVkCmw1lLWV2suY4dww4oIZmLtPx80oEDBw7Q4bzz4jqGcNnd7qASY/dpAkJ3SQluRcFmlJlaLFSrKp4I5sCUl5fTBjgC5JaVgdsNtoYWiiWOMV/SkpNDpp69LtczT4HiXW5fXl5OC8CmB4Raenqtv7tI5gNCzY6wto8+4jJgWR0NgBxeL4r+HQHBAeELL7zAo48+is1mY+TIkVz+wAPMBD7PzeW6666jtLSUkpIS5syZQ//+/SN6/pbDhylJSyMjZHuaPne34sAB6NUr6LbqgwfxAtbQz6YelHqi/P52u93+6gyjgZX+nVV59GhCA8Lass+Hd+6kLfDVzp2cm8CxnI7qcuGyWhlx0018evHFnHzllQZ1ea1N2cGDGH89vi8qghtvNG+LdEkWe3k5VQHVN7aOHWmvaRw9fJgzQuaLh+P48ePmZzKWTZ5E/eSVFkLEhFJc7M86hTQyUFUVp8WS1DmExcXFdMGfuTBo2dlkNiQgdLvNJTaqLBaUCK6ge0pKqFAUWupzN5yKUu8ad6E0TaO1pvFtSAOMysxMsoxMbX1KSzlhtQaVILkdjgbNqQzH8aIi8gF7SPv0TD1bcXzv3pQICH0+Hw6PByXgJMd1msY33rIynDZb0Dyfaqs1oqYyZWVl5AEbrVYGeTzwzTfQuXMUzyA5zGxoZiYtjOCjluYS8S63Lzl6lNaAw8iwZWaS7vXidrux6QF2pPMBIbgjbEVFBVlGR85aTno1TSNd07AEdO10WSz+7prAokWL2LFjBzabjT//+c+MAnYBN51/PkuXLgX8ge3gwYMjDgjTSko4GdItFKDN+ef7X59aGhZ5Dx+m3GKhVch8MrNbrt6FNFInT5wgi1MX44wLBVVRHu90ArPPxlzJurLP33/6KW2BEynWwEmpqjK7smZnZ1NJ5M2pTqcy4HPpffVVuO020OdgRrokS9rJkyj6fQE6/OQn8Ne/snfWLM54+umwx7Ru3TpmzpxJbm6u+Zn8Xm+QJOJPAkIhGiDSK8xNmf3oUU5kZJBdS0bDZbejJjEg/Pbbb7kCSAuYK6G0akVWAxbCzvB6seonnE6rNazungZfWRknLRZa6j+7FKXeNe5ClRUX0xKwhATf1VlZ5Lhc/hKoekp1bOXlVIa8Tz3p6VjjnCEs/eQT8oHsgoKg7UZzm7IUaaRy4sQJWhC8pqbHbsda33u4vBx3SJOfarsdNYLMSvnRo5wDHD77bPjiC45t2kSbRhQQauXlOBUFh81Gdrt2AJyspfQ13uX25frJrhHMkJ1NNnoGVt9WYz7gc8/hcTjo+9RTdQaEgQ5/8415QcVdUmIuN2I4UV5OS0ANuGjjDvieUFXVDE4LCwt59te/5nqgKuCCztGjR4OyqOHKPnECVy3vmzaXXALAydrmrh0/zom0NFqFbrfZKFcUNKMCJEInv//e/12lZ2uNzsaVMTzRD8y27tu3j+3bt6OqKr/4xS/4+9//Xmf2+eTBgwBkGOXecRS4VmJhYSE33XQTAEOGDOHNN98M2ld1Os2GYVlZWRwk9lMunN9/jwd/EDCyqAhXnz7Y9Ux3REuyaBotnE7sARdF2o4YwW6rFXXr1ojGNHPmTFatWkVWwNSOgwcP0iGg+ZmIn1jN6RWi2Vm6dCn9+vXj+eefZ/369SxevJh+/fqZLcybE03TaFFeTlUdc15OpKfjSOIcwkPffksuwdlLS6tWOABfFEGQ5nSSBjj0DIfTZsMaSXatvJzqgMDZraoRrQH4/bZtAKRfcEHwuNq0wa5pp12zqkV5OaWhawFmZITVobQhqvRGA7kXXxy0vaW+mHHVV1/F9fHDVVJSQgvAGniSn5GBtZ6mMuknT1IdkpWpzMoiI4ILIZX62l3dx43jJPDdunWRDDv5TpygUg9gjOxcVRKu8J/QA8J0/fOptGpFDsGLXBvzAQ3aHXew/rHHSAuzRDcwy/bd5s01bi//9lssgDWg67LbZjM71Q4ZMoR9RlMTr5cXgSzgwKFD9O7dmz59+jB16lSeeeaZsMZj8Hq9nOly4a7lJFrJzqZMVfHWcuElvaSEyoCMeKAymw0lyqCpSg8kLfpnqYX+HeyMYRBmZFt37NhB//79KSws5IwzzsDhcNCxY0c6depUa/ZZ0efl5SSg4ZmxVuLatWvZsmULkyZNwufz/f/27ju8rep+/PhbW5Ylecg7HnH2HpCdQhgJEMr8smkptKWDQsts6eBXZlmFQpgpUCgNkACljBDIAEoW2XsvO97b2lu65/eHZdV27MR2nDjjvJ4nT5I7j+Wre+/njM/B187zJ8HvjyfhMZvNTdM29fDzM9TQQAMQmjwZAH11dXx+xOYpWYAjTskiXC70gCk/v9XygxYLSV2cS1WtVlPXpuJBthAeP7KFUJK6qasZ505lTqeTvEiEcKxVoC1/YiKmHhgU312OoiI00Gq+qeYMfJ6KCqxd7KboqqggCTDGuj+F9XoMXQimVG53PB09xDJYdiEwdW/dCkDSmDGtluubE0XU1sbH7LQn1eultkUXHwB/cjIpBw4csXXxaCh791IG5LRJaKEvLAQgUlJyTM7bVQ67ncFATYtabyUpCXMHAWskEiElGCTc5oUpmJyMtQtd4wKx8XZ9Ro9mv0aDsmNH1wvfixSXi2BzK0IsuAj0wgtdfJ7NWPChsdlIBhpatNYeMh4QmsYDPvJIp87hajFZtmPLFgpmzmy13hNL0mJocQ1FDAbUsUqFP/7xj/HlSk0NQ4GvgbI//Ym8P/yhcz9oO2pKSsgDHG2SwzSrN5nQtZPBNsPtxtPBPl6DAW03uyx6YkFB87ycyenpRIBQD04W37K19cMPP+Srr75i5syZNLYIOttrfdbGgqzUUAiiUTjK6RcOp725Ei+//HI87VQYmUIhgrHxyxqNBo9aTVIPB4RKQwMujYbMxYt5bdgwfl5WRn1FBem5uV2aksVXVkYirXvfANhTU0ntYqbk1157jXvvvZfqWHCqUqkO6VYuHTuyhVCSuumQGmYhWLp06QmTJfF4qqioYAgg2rRYNYukpGA+DlMadCQQezlrGRAaYi+L7m6k96+PBQbmWIr2kMGAoRPTPTRTO51EWwRsLp0OQxdqqcO7dxMEMtoGhLHANnSEMTEZwSD+Ng/asM2GQVHgGCb/0RcVUZKQcOi8V0YjjRoNovn31Mtc5eUYAX3LVpa0NFIikXgteksNDQ1kAaLtBNdZWaSGQgQ6WVkQjrVsmQsKcFssqLoxuXOvcrsJNVd0xFqElC4EhNU99PMGY4G1KfaSqktPP6SFsHk84MqVK5k/dy7LgecAcydbrnwtKi+8GzYcst4fu68YW0zjoEpIaLdredXmzfF/N+7c2anzd6R0yRLUQHIHGSzrMzLIaNMKoygK+aEQoTatPM18iYnd7uHRGGuNtMUqfSyxMXHhHgwIW7W2ApMWLOClX/+aPkeY7kTv91NBU8uIGDUKjmHlRfNcic1uueUW7rnnHtztfK6WcJhoi94Gbr0ebQ/fl0VjIz6DAcxmpscqIErXru3ycRz79wOQ2KZFOmqzNU2B1IUMrkOHDuXjjz9m1apVrF69mlWrVvHuu+92uUxS98iAUJK6ac6cOXz66adMnTqVSZMmcfbZZ/P555+fll1Gq/fuJR8wxsaotGXIzSUxGoUuBE09SdUc9LVowUyIvSx4ujFurS7WcpM2fDgAQbOZxC60ECZ5PERbBA/uhAQSuhAQanfuZI9WS0KbLl6WkSOJAK52XlCbibo6UhWFQJsHuC72MijayQrZU1KrqmjoYDLqxqQkVCdIl9H62Et5cosWE3VmJumAq52Wkrq6OrIBTZs53PSFheQBZZ0MdKOxli19djaBlBRMPZxI4lgzejz4mzOzGgz4NRroQgvpj370ox4pRzQ2blET+74bMjKwAs4Ogr3KWBdsAHuL4OxwwrHviReY8u9/s/W551qtbw4IE1uOW7ZY0LZzn6jfvj3+79HvvAP//W+nytCexiVLUIC8Sy9td727f38GeL1NLWIxpStXYgMSOpjzLWyzYe1mQOKOdRNPjlUWqtVq7CpVjwZff/zjH+OT0iseD+bnn2fkNdewcOHCw+6XGAxSEWu1U+3ciWfevB4rU1svvvhivIzNOpor0aooKC2m5vHq9eh7uFurxuEgEHt+ZJ9xBgDVmzZ1+TieWMWIJRbwN1NlZjYNX+jFoSJS18iAUJK6qWUN8+rVq1m+fDnPPfccWd1Is3yyC3/3HQBJ06e3u94Uy24XitUmHm8pdXVENBpoUQPeJzZ2oqEbD0FnrAUuIzYWTrHZmpK5dILH4yEjGkXTIiALWa2YuvDATykupryd8RzDRo/mAOBYtarDfbfGalyzL7yw1fK0WGujM9YdtcfZ7fTxeHDEroW2AoWFZDY0tNsCd7w1xAL+hBYvcLqcHPRAY4ta/vj2paXkAro2yXISx40jFSjfuLFT5xX19SgAyclEMjJI7sVW9e6w+nwEWkzt4umgq+GECRMO+TN+/HjWdqOFol3NiWxi35GE2D3Z30ELpLdFi3reQw91ajyvUl2NX63mi9jYtNBHH7VaX79pEwqQ3mK8rJKZSXo4TKRNdmN37L743uDBbAQW3X8/GzduJNTJe0pLxo0bOWgytUqI1JJm2jTMQtDQIljaERunmHPVVe3uEy0sJD8YRGkRRHZWuKQEBVC1eC46DAZU3UxScyQ1LcZzhltkBW7b+hyJREhWFKKxSj2Ag4sWHZMydYUSjZIsRKvpm/wJCRh7OOGXweMhGgs6E2JZnx27dh12H7fbDe++C3/5y//KFgsIk9skMUpq7q0SS9wjnfhkQChJPaW4GE6yGv2eolq+HIdajX7kyHbXZ59zDtA7D9yGhgYKAgG82dmtxoik9O2LU6XC3Y1xWr6iIiKALvaSo87MJDkabVXr3pGS4mKygIT+/5v5KpqSgrmzracOB/l2O3XtBFZ9+vRhd2Ii6sO0ELoXL8YFjL/hhlbLc6dOxQs0Ll/euXJ0UTjW6qH93vfaXa+MGMEwRaHhGLZQdlZk166mwKxFBUJS7POuaydgrl+xoqmb3pQprZZnTJsGQHUnk8MEKitxaTSg0aDJzcUWiSCOYmqU4y0pFCLSoqLCn5CAvp0xUm63m++++461a9fG/6xbt47x48f3SDnClZU4tVqIjWfUxVpuwx10Dw/Gegk8H/t/ZYsJvDuiq6ujwWjkmhdf5OuUFEwtxhQChHbupM5oRN1iHkJ1QQF5QE2b4MS7fz9/B542GrkXWLhtW/eSlCkKQ0pLKWtxb7A9bUMR/8umPPimm6gGSh5+GGga6iA++ogiqzVewXXIzzpiBMlAZTcqz6isxK7TtZpP02M2oztGmT1rW1SGbWzx77atz3UlJSQDxhZda4PtZV89zhr270fH/65ZgIjViqmHK4dMgcD/MuCmpeHVaBB79gBNWVtHjhzJGWecwZNPPhnf5/LLLoMf/hAeeCDeFTSybx/VQEZBQavjZ8QC7eotW3q03NKxIwNCSeoJQkC/fhDLlnhaEYLCbdvYlZcHHaRIHzVzJm6gcsmS41s2YMeOHUwExNixh6yrt1gIH6FWtD2h4mIcBkP859Xl5KAGQp0YA1W3Zg1aWieEUTIzsUajnapQcH34IRog8fLL210fnDiR/Joaoh2UJWvzZjZaLKjaZFMcPHQoO1QqwodpXTwa7rlzOQDkn3tuu+s1M2ZgAhrnzz8m5+8Kc0kJ9VYrtJiYPv2sswDwtuhe2Cy8ciVhwNCmy5160CDCKhXeTqZfV8rL8cS6cRkLC9EA7jaBxonK7XaTriitXmSDFku7XaEff/zxdsdOPfDAAz1SFlVlZfxzBFA1B/axLK5tKeXlOFUq7H/+M4sA5xG6GgKY7XZcsXHAgT59sLYJcJKqq3G0acVPGzOGRGBXrEdFs9CePbyu0TTNg3j22TwVCPDic8+xdOlSZs+efcSyNCuZM4ecaBRNi7n4Gv2NuIP/+6xz8vNZMWYMw9atY88nn/DAJZdwkd9P4MYbOzzugNi6La+80umyNDPX1ByS0TiUnIzpGHUlvOG555gATABuueoqJowb127rc0Osm27iwIFQVcXyvDz0x6jVslkwGGTjxo189dVXHbYAN8TKaWkx/EKdkYEpEulSJurDcblcpEejGJu/FyoV1ZmZJMcqRlpmbTWZTFx99dX4fD5Ey1bKWMWd6uBBqgyGeFKfZnlTpwJQf5jKybY6CkSl40MGhJLUE5prFisr4TjMaXQiCSxfziCfD/vFF3e4jU6vZ6/NRmIX5yXqCftWr2YsYG6TBRAgMHw4+VVVeLs4PiOpogJ7i7FwhlhrX2fGHwViAVdqi8mmm+cME51IKBGYNYtVwKQO5mzre++9CGB7Oy/Xyv799KuqYms7WVV1Oh3bs7Pps307HGYC9m5xu7F8/jlzgOEjRgAQVVq3pmZdcAHVQF0vj8EVQtCvoQF7mwQbCX370qBSQTs13pmbNlGckdEqgARAq6XeZsPQybGRlvp6fLFkR9bY+MX2WiRPROU7dpABGFsklgqkp5PVTsv3lVdeSUqbefsoLmZarEX1aCiKQmZDA+6WY2T79EGh4y7r6ooK6vR6Hn74YbyFhVg70c3N4nIRjCVm0g4YQGYwGG/NFYrCKJcLR5skWxlnnw1AeYt55yKRCKbqagxGI0uXLiXjrLPQAzVr1nQpSVkoFGLfLbewFRh3552t1jmDrSua+j//PPuAnCuv5A9ffMFWYODTT3d47JSRIym1WNB9/HGnytJSod1ObZvxyqE+fcj2eruUcKSzvD4fX6hUrAV21dczV61ut/XZGXtmJw0ZAllZiNxcLMdwrtzOTlPlid1f0iZOjC9Tmsfn9dAY64MbN5ICJLbo0aOMG8cZXi+lJSWHzJH5y1/+kpkzZ1LRoru8+4oraExNpc++fdS3/S4D2YMGUQ/4utADp6NAVDo+ZEAoST2g6l//iv/b/dVXvViS489x//0cBAp++cvDbhe68ELGNDSw7tNPj0u5mpnnz0cFaK+88pB1qVdeyShg7fvvd/p4jY2N9Pd6ibRoDU6N1YY6Vq484v7qb7+l3GCIJ7wAyDnvPMJA6X/+c/idly4lY8cO5vbpQ26bNN/Nxl10EatsNtLnzGk9oF8IKm+8kTpg2IMPtrtv3ZQpmEMhRIvsuT1BvPgi6mCQ+enppMbmp9M+qm01XtCWns6BoUPp99131Hcj82tPKdu8mQnRKMG2XVtVKvbl5JDRplKjYs0avud24+2gQiQ0ciSjPR72xLpjdaSuro6ccBh17OXPFgucHUeZdfJ4caxYAYA19l0ACOTn0z8aJXKECgbHrFnQrx/RNhN0d8f+PXsYEY2ia5mBV6+n0WTC0M74TwBLaSmNzUmehg0j2+dDHKaSyO/z0T8UQsQqVizjxqEDamLfm40vvEAGoGlTCaUaMQK3Votu2bL4sm1btzJQUXjxggv49NNP+d38+UwCLrj++i4lKfv4ssuYDnx77rkYW3RTBXAGWgeEY6dNo29REQf/7/8oufFG8vbuRXeYaWoA7Ndfz3kOB3M6OS0HwOYFCxgYDhOMJS1pZpo6lSQhqG1n/sajdbvBwObUVLyxpGGm2Pjdtq3P9lhLf0asVd8wcCDZ0SieHsx+2lLzNFWzZs3i0Ucf5cUXX2y3BVi1di2lQFqLIQXa2NjkaDd6s7Sn5JtvAMhq8V3NuPlmcoCtc+YckrV1+vTpvPLKK6QGgxwEAoBl/XpS7XaygkGCkyYdcg6VSkW1yYS6C3kD2gtEr7766m78hFK3COmk5nQ6BSCcTmdvF+W0tm/oUPE1iGoQxT/4QW8X57hR/vlPIUDcX1h4xG0jDQ3Co1aLv4J46KGHjkPphIi4XKJaqxXLCwraXa+43cKpUokvx43r9DG/efVVIUBUvvxyfFkgEBB7QWycOPGw+/qqqkQjiOVTprQuZyQivjUYxP6sLCEUpf2dS0uFNz1drAAx9913D3ue+bNmCTeIsoEDhVi/XthXrRKbx40TAsQVIJQOzvHvDz8U20AU5+V1XI6uWr9ehHU68VcQjz/+eHwxDyEafA2tNq345hsRBfF8fr7YvXt3z5y/i76YMkUEQTS2c/41f/yjECBW/Pa3QgghQh6P2JaTI2pAOMrK2j1e6J13hADxwDXXHPa8SxcuFAEQFb//fdN+Pp8IgPj2qquO8ic6Pr6cOlW4VSoR8XrjyzY8+KAQIHYuWHDYfdfbbEKAqO3XT4j6+qMqx0e/+Y0QIJxfftlq+Y7Ro8U6tVoEAoFWy+tqa0UNiNUXXCCEEGLVrFlCgDjwwQcdnmPnl18KAWL7E08IIYTYv3mziIBYdsMNorasTKxUq8UBg0Eokcgh+26eNEnUgvjwhReEEEK8fOedQoAI/vvfTRtEo8KuVov5Z5whotHokX/gcFjY//xnEQbxTf/+h6zmIcTykuVHPs4RBBsaRJXBINaAePr3vxeVlZXC7/d3uH1FRYV4JyVFeFUqEaqtbbWucscOEQDx4aRJR12ulpwOh6gE8d255wrR2CjW/OIXQoAoXrfukG0/799flBqN8f/vjN3Xdxzm9340pk+fLr755pv4/xVFEV999ZU4//zz/7dRNCoqTSaxICen1b5r16wRFSAOXn11j5RlzsSJIqRSCeF2/29hICA8arX46MwzD90hFBJKNCr2m0xiSZ8+4sAZZwgBYkHfvuJbEI7S0nbPs3TUKHFQoxHhcLhT5frLX/4iiouLWy1bvXq1fMc9TmRAeJKTAeEJIBAQXo1G/GPAAPGJRiNK2nkon3IiESGeekpE1WrxDxDzP/usU7u5fv97EQXxQxDjxo0TkXZemHqM1yv2jxolPCDWz5vX4WbLx48XXhCPXXtth4FSs2AgIBZaLKJerRaKx9Nq3evJyaIRRKCDwECEQmJNfr5wg9g4f/4hq9+65hohQFT89KdCtHyAulwi/Morwm+1ioMgBuj1wtPm3G1FIhHxyIwZorypU1bTCzKIn4C49tprO9xPURTxzx/8QAgQi0aOFDUVFYc9z2EpihBz54qIxSLWaTTi0vPOa7WahxDbarYdstunffuKIIjvg/joo4+6f/5uqFiwQHhBLBk9ut31Qb9frMjIEAEQH4PYCyII4u0f/ajjg/r9wmW1iq9A3HfnneLgwYOHbBKNRsXDkycLASKyYUN8+bbERLGig8qME0nU5RJlGo1YPWhQq+XBujoRBPHpYV78vbW1wgdiCYgwiIbCQiE6Ewi1w1NTIzYYDKLUaj3kGCXPPScEiH9ddlmr5R/dfbcQIOz/+Y8QQghfXZ3wg/j2kks6PM83550n/CC8se96JBIR80HUgtgDIgBi1VNPtbtvpKJCNBiNYh+I/wfiOxANOl2rl/NVAweKWhC/1evFxnnzxMb164WiKCIQCIiVK1cKe2Wl2P3WW2LZBReICrNZREG8rNMJV2PjIefjIcTnez7v1Od3JP4VK4THaBRVIH4PYiSIq664Qnz77bdi1qxZ4tVXXxWvvvqqOCMlRcyK3XdK7ruv3WMt7NNHOEAsev75I953O+s/Tz/dVLHw2mtCCCHcu3YJAeKNNveeipISsR/EthYVgc6SEhEF8c5ZZ/VIWdqqqqoSd955p5gyZYqYOHGi+N73vifuuusuUVVVFd+m9k9/EgLE3LvvbrWvoijineRk4TAYhKipOapyNNbViTUgduflHbJuc79+Yr1O1+r5Et6zR3hMJlGt0wkBYvUf/tD0fCorE8FgUNQcpjz7XnhBCBAf/vjH3S6vfMc9fmRAeAJ4+eWXRd++fYXBYBBnnHGGWLZsWaf3bf6yLF68WDidTrFu3TpRVFQkSktLxfbt20VtrGbO5XId9qZ7TF/MT2GKooiPYy/Q/7z/fvFCQYHwazRChEK9XbSeFw4LsWWLEI8/Lvx5eUKAeBLEr37+884/0KNRofz4x0LEXqgvBKED8dvf/lZ8/fXXorGdF5ouq6gQ/mefFY3JycIHYvbMmYcvktstytLShAPEMzabePnuu8Xc994TH3zwgXjnnXfEyy+/LJZ9/bXY/c474t+xl5zV7bzkbFiwQFSDKNLrxdyZM8XvLrpI7PjkE3Fwzhyx+OKLxU6VSoRAzGrzctKsuLhY/EmlEgKEz2AQB2w2UZWWJsJqtRAg3gUxpV+/wz6AW3K5XOKm664TD0ybJv72/e+Lt198Uaxdu/awtfpCCBEMBsWn06eLCIgdIO4GcePQoWL+vHlixYoVory8XOzcuVP4/X7R2Ngo/H6/cDgcwuVyCV9lpVjzt7+JNZdeKnbFXiDeB5EEYtu21sEfDyEW7V90yPn379wptvXvLwSI90BM1+lEVnq6yMrKEi+++KLYtGmTqG/RiuTz+Y76hdJRVCSWX3GFcKlUYrNOJ2qLijrc1tvQIJ5NSxOLQbyr1YqPO9HarXz9tQiDWAfiehD33HCDePrpp8XTTz8tzj/3XPHDAQPELhB1BQWtWma/Oess4QJRsnLlUf18x4yiiNDq1eJAZmZTRcf77x+yyapx40QQxFPZ2aJ8yxYRDAZbrV8wc2bTd2rePPH7SZOEAFH26KOdLoLH6RSBHTvEZ9//vtij1QoXiN1vvXXohtGo2DZihIiA+NZiEfMGDhRfDB4s6kDsT0xsquSK+TozU9SBeDI/Xyx//HGxefZs8c7Pfy52/vGPYt3w4SIK4r9jxrQ6/H9eeEG8C+JtEP9+4IHDlrlm+XKxwmYTtSBKUlOF8/PWAZtv3z6xs7BQBFpU5qwFsRFEJYhIbLkHxCcWi7hj4kQxd+7cds/FQ4h3tx6+R0GXlJQIx9VXi7BWKwSIEIhiENtj94uGFmXbddttHR5GsdtFidksvLHPbPb48eKz++8X/3nmGVG0Y4c4cOCAePvtt0VDQ1MvgnA4LFwulxBCiFAoJCKRiFAURRQXF4vV//2v+O7VV8W3JpNwarVCtGilLsnLE7tAPDFpkvjN+PHiD0OHiu9sNhEG4f7221Zl2j94sCgC8c+f/EQU79snqqqqhN/v73QLV3vcbrcIdfA+EPB4RNGyZWLPU0+JjYMHCwHireTkdp+Dc558UlSCOKjTid333SdWvvmm8DscTZ+lorRqTW6+HzafNxoKicqNG8WbV14plppMIgJi3bPPHnKOslgAtzAjQ7w5fbqYe911Yl3s9+wBsS07Wyhd+SwURewqKBBeECvOOkvMu+028ex994m9e/aIoqIioSiK8Pv9Ys+ePcLj8YiysjKhKIpwOBxi165d4r133xVfffWVDAiPE5UQJ8CkT6ex999/n5tuuolXXnmFqVOn8ve//5033niDnTt3kt8mqUF7XC4XSUlJPAjoAQEosb+b/202m3F6PFgsFgLBICqNhlSbjdr6eowmE4FgEK/PR3pGBsk2G1VVVThcLkaPHUtycjIOl4vKqir6DRhAeUUFmdnZRBUFlVpNaloapWVl+INBXG43uXl5ZGZnU1JaSnJqKn0LC3F7PARCIXR6PXank1179jB5yhR27d5Nv/79SU5NpU9eHgIIhcPUNzQQDIcZM3Ys/mCQA0VFBMNhRo0ejT8QwGgyUV5RgdFkIqdPH0pKS8krKMDldhMVApVajdliQahUpGdk4PZ6UWs07N67l0GDB+MPBLAkJYFKhS09Ha1Ox779+1FpNChCkGKzoQiB2WolHImgUqkIeb1kpqRwcN8+Kg8ehFCIjd98w96PP+b+YJBqq5Xh1dV88Oc/c/Mzz/DlsGHk/OEPpI8axa6DB8kuKCA9O5vNW7aQkZFBNBrl448/Zvr06VgsFgoKCrBarWzduhWNRsOIESNwu91UVVXhcrnIy8vD6/WSkZFBcnIyO3fuxGw2c/DgQTIyMtDpdFitVsrLy0lPT6eiogK1Wk3R/v1ceN557Ny6FXU0SjQYpOLgQYr27iXi93PWhAn4GhpIBNSBAF/Pn89ZZ55Jfmoqaz77jL4JCeTr9fj37KHA7cYgBD61ms8Uhb8CP335ZX7xi1+gaTGdwxEJAXPn4vntbzFXVhIEdgH7gFpA2GzY1Wp8kQhGq5Uho0fjDoXwer0U5uUR9HoxarVE/H5wOnEXF5OuUmGqqWGISkVmOEwU+FStZuu11/L7t946YmIG4XSy+7LLKFy2DCPgBOoAP2CGpmkigErggylTuKuDsYJr5swheuutTGmTPS4ELAS2X3UVd779Noltk4/EfPfddzx5442MLCmhL6BOSGCj388CYPL11zNr1iwyWkxofyzt/Oc/qb3nHibb7Rhiy+xAAxCm6WdSAYmAKfZ388xnLmAR8ArgGD2aBx96iCuuuKLV8VUPq3j3/97lxpHtZDeMRhFvvYX7/vuxNjbiBXYDB4FyoDp2Dk/sjyUri/5DhuD2+VDpdNgyMtixahUFmZmMGzUKn91ORnIyUZ8PT1UVaoeDBJ8Pm0pFQmUlg0MhFOAjq5Wh8+czOpb8oyNCCFQqVVc+Thq++ILQXXeRHZuo2wv4gBRACzRkZWH79luIJZMBqNq2DWXMGBIVhdUZGTRkZaHk5OBRq0nOzMScloY5LY1AOMzy5cvJyMwkv6CAVJuN9IwMdHo9B4qK8Pn9GIxGBhQWsnPbNvpkZiIiEfweD6polLSUFBz19eRmZ3Ngzx6yMzII+nw01tbicTqxWSzo/H68VVVYgXBtLZG9exkiBOnhMAeAbb//PVc88cQhP3fFwYMsHDyYW0IhNECtRkPQaiUYjWIIBskLBtkwdixnbtyI3+/nm8xMLnC72W024zWbcXg8aDQa+uTm4m5sRB8OYxQCi0aD2uEgPRRCB0SAtUlJJLzwAmM7mOA+7Pfz+vjxDN6xg4FAVKNhd3Y2+W+/zfDzzotv9/mbb6L89KdcwqGJFnYCa0aM4Ifr1qFrc19RFAV1B5mWO3K4a8lRXs6/f/1rSj77jP4aDbbMTEz9+nEgGMQ7cCC3vfwyxg7mG2ymeljF3y/5Oz8/8+ddKtcR+f2wahXu9espXbmSXJsNFfDdgQOE+vXj4r/9DW07yUZaCjY08PmMGQzetIlhtP6snTTdf6MqFUKjIagohGKfr0ZR0AN6lQqdEDTncrUD+/78ZybEptQACG/eTN3ZZ5PTYjz1fmDHj37E5W+/3ao8od27aTjrLLLr6wkCVTTd74KAxmjEaLUSEQK1Wo2iKLg9HqxJSQjAZDbj8/moq69Ho9WSnZGBDqguK0MdjaIDEnU6RDiMRacjWVFIaTFN0T5gy4UXct6775Lazhyz4XCY9x97jPxnnmGqz0fzE9ehVuMRAq8QaM1mvB4PWiBBr4dQiBQgucVxirRawk88weD77jv0FyIE23/9a1Jff52c2DOsSqtl6W23Mejmmxk7diyqLl7fvvp6Fk+cyLSiIpqvhhDgBnwqFR5o+kxp+v0b1GoSFAUzTc/cm4B5gNPpxHqEa106OjIg7GUTJ07kjDPO4NVXX40vGzp0KFdccQVPtPNwbas5ICxNTSUhEkGv1aJEo2jVapRolGg4jArQ63REQyGi0ShCUdCq1ahVqqYbsBCoABQl/nfzMjVNL31deN0/7ezKzaXPokVYhw0jEAgwOyODO9xutG22U2i6EbYM2Fv+6Wj5kbahnX+bgTS6nzVKoSk4q6Lp5bsS2ArU5+TQOGgQBYMHc+eddzK0zUTcXSIEbNuGd8ECKpcswbN1K9ZgELPfT5KioI89JA7HTVPgVg+UASUJCejPPJODAwdy58MPk9cmu92R7FmzhtyyMra99x7mUIi0xESsOTkc9Pmoys7GPXw4l1111WFf+vx+P0ptLaVff03Z/v0ELRZSx4/nzO99r9MZA/1+Pw6Hg6ysLMLhMHq9vks/R08KOp1E1q2jcsUKlJISDm7ahAiHSU9KItFs5kBVFQ2BAB5FIX/SJIb83/9hPOMMzCkpJCUldfiyq3pYxZuXvcmPx/6445MLAWvWwHffoezcSXD/flw7dpDgdJIQjaJTlI73bUeEpgCyAWikaeJ0p9lM/cCBXPDCC+T30Dx4h1VaCuvXE9y/n6r9+/EnJBDp35+Rt93Waq62Zo179rD9Jz8hb/dubHY71l56ZPsBt0qFUwg8Gg1F0SjenBw055/PwF/+kglt5mBsa/0nn/Dxb36Dze0mQwgsiYnoU1PRTZrE+a++iio2Z6CntpbVt96Ke9kyDE4nRq0WvU6H3+8nBBiSk7GHQrijUdSpqdQajegGDeKc3/+esbH5To8kFAqh1WpRqVQdXp+BQABHZSUbPv4YjRCU19RgKCzkiptuwnKEBCwniqgSxfKEhaemP8WvJ/66t4tzeD4frs2bUdfUsHnRInwHDmAAaioqSDQYSDQa0QIiGsUTDLJ9715Uej2eYJDEAQMYMGMGlz32GJp2KtuUaJTNCxawddkyzrrsMnInTMDQ0b04GqX600/ZO3cuddu2oXW5aKiqQgdkWK3oNBqikQiKEGjUakQ0SsDvR1EUtBoNKApCCHRGI75QCKHVotLricYqcXbu24ei0eBLSOCAx0P2qFH0v+oqhl90ERNazInYEUVRWPHZZ5R8+inGmhqSgkHqy8pwV1eTnZICKhUOjwdTUhKWlBT8BgOatDSCZjMjbrqJIRdeCJ2ozArV1RFyuzEXFnZq+yNxNDRQ++23ZHi9bF+4EHdVFcGGBkyKQmVFBSkpKWj1elw+H3V+P7lDhnBxcTEVw4czYPFiGRAeBzIg7EWhUAiTycSHH37IlS0yIN55551s3ryZpe1k+gsGgwRbpPFubj06ll+WxsZGUlJSUKlURCMRNCoVCIHH5SLRZEKJRlEJgdPhICUpibraWqwWC9FwmLra2vj2kXCYvvn5VJSXg6KgVqmwmM24HA7Ky8rwuN0c2LePUDDI9ddey5rVq0lJSsKg1+Ow27E3NJCTnY3f6yU1JYVoJILL4SAYCOBobCQ/L68peFWrMer1uBwO9u7Z05QRrrAQn9eLQacjKzOTSDjM7p0748GxCuhXWIgaCPj9BHw+tBoNdTU1TS2EQqA3m6lzOpkwdSqZeXmorFaSxo4lqcW8W9B0w17y/vuYy8tx7N6NOhzGZjbjtdshGMRqNmM0GtFrtfh9PvQ6HXW1tSjRKNmZmWjUarZv20aazYYutk16WhoHDhwg3WbD0diI0WBAo1aTnZ1NOBQiGAgQCAYJBQLYbDb0ViuexESMFgv1TidGiwVzcjIqnQ6rzUaCxUJICGrdbhzBIEnZ2XiiUfKHDKHW46HKbufMcePIzMxk3759JCYmEo1GO9Vq3VOUaJRwINDUOhUMQqymOCwEUbUaY2IikWiUcDhMQkICdrs9fp1KJzYhBLpHdbx08Uv8ctzhs9MeVigEXi94PBCJEA0GUUWjuB0OthYVkZqbS07fviQkJ/Pl118z/cILiUajmEwmtFptl1tzelskEsFbW0uiEGjCYRzV1agCAXQaDQ67vakiobGRzZs2EQ6FGDpkCIMHDSIYCFBbU4NKqyUCeAMBPIEAZ06YQEVNDS6vF3NyMvV2O4OHDSMQieD2+aiqq2PU2LHkFhYS1WiwWq2EQiH0en23WsO6QghBaWkpWVlZGAyGeBB3sv3OepM35GXQS4O4a+Jd/Hbqb3u7OKcsIQR+vx+TyUQ4HCYajWI0Gjv8jkSjUdRqtXxWHcnNN+NatIikmhoZEB4HbRsxpOOovr6eaDRKZmzeqWaZmZlUdzCp9BNPPMHDLbpDHA/NaeIBNNr/XTLm2PLm1sOU2ETA6S1qTwtiqZ9b6pOV1er/ZiBn8mQAzmux/OLYsqPxvcOsm3iYdUdDrVZz4Q03dGmfIW3+37+dbY7FlPeZ7SxrO5nBoEGDjsGZj0yt0WBoru2N/a2iqWt0M12LNNUtr1PpxBZWwlgMFgKRo5xoWa9v+hPrmtZ8L0oCzmqRUh3gylMgfblWq21VAZXSt2/83y3bRca1s2/fdpYBdK0NnXhr9bEOzFQqFQUFBYecV+o8X9hHijGFYPTQuSClnqNSqTDFpvrQ6XTxZ1JH35EuDbE4nV1/fdMczzU1vV2S04KsajsBtK0lOtyYgj/84Q84nc74n7KysuNRREmSpB7jC/tITUg9+oBQkqQOded7tqV6C2sr1h7DUklSJ82cCUuW9HYpThuyhbAXpaWlodFoDmkNrK2tPaTVsJnBYMBgMLS7TpIk6WTgD/tJMabIgFCSjiF/xE9KQgrBSOdbCJeWLMUT8jChz5HHs0mSdOqQLYS9SK/Xc+aZZ7KkTQ3IkiVLmHKEAfqSJElHSxFdS8rSU3xhHykJMiCUpGOpuctoIBLgJ5/+pFP7lDnLKHGUHOOSSUdS76vnme+e6e1iSKcRGRD2snvuuYc33niDN998k127dnH33XdTWlrKL395FIkWJEmSOkHziIY6b91xP6/sMiqdLlaVrWJ3/e5eOXfz9ywYDfLW5rc6VQFU5iqj0lPZ42UJR8Py+94F5a5yfrtEJgKSjh8ZEPay6667jueff55HHnmEMWPGsGzZMr744otWg+kl6WQSVaIkPZnU28U4rJ5KrvybL3+DI+DokWN117UfXst/dv2n2/uvqVjTg6XpHH/ET6oxtUtd2STpZPTl/i9ZVrKsV87d3DXbHWqag88VdB1xH2/YiwpVj/ceeHTZo1w+7/IePeapLBwN93YRpNOMDAhPAL/61a84ePAgwWCQDRs2cPYRJkWWpBOZM+jEFXRR7WkaGxtRIqyvXN/Lpfqf9ZXr6Turb48c68W1L1JkL+qRY3XXhzs/xBPydGtfg8bQK+WPdxmNyhYD6dR20HGQg46DvXLu5u/ZgcYDADT6G4+4jwoVW2q2kPlM+3kMussVdFHuKu/RY57KfGEfAKFoiJs/ubnHKjElqSMyIJQkqUc1v3QU24sB2FC5gfGvjycUDfVmseJC0RClzlKcAedRHae5Bn3Oljk9Uaxu06q18ZeHrvCGvGQkZuANeY9BqQ6v5dgmSTqVVXuqKXH2zpi85u9ZqbMUrVpLg6+hU/slG5Op99X3aCuhTq2TrV5d4A170al1lLvK+WLfFzKYlo45GRBKktSj7H47g2yD4i9BW2u2Uphc2Gu15G35wj5m9JvB48sfP6rjlLvKGZA6gOfXPN/t/edum3tUZQBI0CZ0KyCs99XTN7kv3nBTQPjBjg+w++1HXZ7OOJnGED787cOdfpGWmjz73bMnTAVQbzNoDZ1qwVeE0uOtQP6IH7PeTK23lkG2QUdsIVSEgkqlIlGXSEZiBqvLV/dYWTRqDRElQpG9iH0N+3rsuKcqb8jL8Izh7G3YS6O/kY1VG3v8HOWu8h67t8kWzJOfDAglSepRjf5GRmWOoszZNEfmvsZ9XDzw4ni3pd7mC/u4Ztg1bK7ZfFQPsT31e7hj/B1cMuiSbh1n9vrZ3Dr/1m6fH5rGmVgMFvxhP9DUGrG/cX+n9rUH7ORac+MthA988wBf7v/yqMrTWf6wH6vBSkSJHJfzHY3lpcup8lT1djFOKu9tf48qt/zMoKkLZmfuD48te4wb/3Njj57bF/aRoEtAIBiWPoxab+1ht3cEHCQZkjDrzZyZfSYVrooeK4sn5MGsN/PUiqdOqLGEvd3DoyO+sI/BtsGsr1zPmdlnsqFqQ4+fI++5PD7c+WGX9nEGnIc8y1eWruSRpY+w+MBiBr04KH69yyDx5CIDQknqIUX2om611Jxq7AE7+db8eMtTrbeW8wvPZ2vN1l4uWRNf2EeiPpGhaUPZ27C328fZ27CXQbZBWA3Wbh1nV/0uZvSbwZ76PcxeP5v3tr3X5WM4Ag76WPrEr7s7F97J3Yvu7nD7lgFYo7+RPGse3rCX2z6/jTRTGosOLOrxh7jdbyeqRPl418f8bsnvgP+9qKpQ9ei5joUSZ8lxbyE8662z+PfOfx/Xc/akYnvxSRdEByIBXln3So8es7nFrTMa/Y2sKV+DI+Dose+gL+wjQZsAwKiMUUf8nZQ4SihIKsCsN5Ntzo7fw3uCPWAn2ZhMakJqPMlNb4soEX71xa+6PQb7WPKGvfRL6cfWmq3M6DeDLTVbevT4Qoh4N959Dfs6nRzt0WWPMn3O9FbL1leu55uD3/Dkiie5aMBFbK7ezLqKdfzpmz/1aJmlY0sGhNIp73jUUr237T0uee8SEh9P5B8b/3HMz3c82f12Kt2VbKzayIrSFby16S2e+e4ZHl/+OPcvuZ/bPr+NRfsXxbd3BpxkJGbEuwPaA3am95vO2sq1x7ScwUgQIQTekJdaby1CCOp99Yds5w15MelMjM8Zz6ryVV06R8suV80BYbWnmiEvD+E3X/7miDXqjf7G+LicQCTA1LypTHhjArctuI2/LP8Li/Yv4oMdH7C9djuV7koCkQAbKjfw8a6PuXfRvfzy818y8MWBXPXBVWyv3U6Dv4Fcay6+sA9vyEs4GqaPpQ87anfgDrr5ZPcn8VaBYnsxA14YwLjXxnHu2+dy0HGQvKSmgHD2htkMSx9GlbuKc98+t0e+M46Ag9Xlq5n2z2kMfHEgf/3urxTZi1i4fyG+sA+TzhTfdkPlBkLRULy18liMNerOz6QIhTJnGTXemlbLo0q0p4rVLo1Kw2PLHuv1cUOH+8w6WucMNCWVKnGUxLsGdqYlePb62SzYu6BV8H00WWjD0TBLDiw58oYxSw8u5c6Fd3Lb57exvXY7NZ6aI+7jDDgpcZRw0HGQF9a8EG+pb+YIOEg2JqNSqeL3p44csB9gaPpQUp5K4d1t7x72vOFouNVnuvTgUrZUb8Eb8rYaG23320lNSCXZmMzQ9KG8uPZFfGEfBx0H2628bL6nmfVmsi3ZPVrB6Qq6yE/KZ0fdDgamDuyxMdxtCSHY27AXIcQhv4+2dtXtIqJE2F67ndsX3N6pLKxHKo8Q4rD3ByEEnpAnfj24gi6EEPE/u+t34w/78YV9FCYXsqVmC32T+yKEYEXpim6Xr61KdyUjMkbQ4G9g9vrZzN8zv8Ntm+/P0FTxnWvNpcHXQKmzlHpfPQv2LUCn1nH7+Ns5u+Bs1leuZ03FGpaWLO2x8krHnra3CyD1DLvfzsbGjQxLH0aNp4aMxAwEgj31e7AH7EzsM5HN1ZvxR/ysrVjLqMxR5Fpz0ag0hJUw2eZsttVuI6JESNAmUOIsQQiBI+DggP0Ag22DETTd6NJMaZh0JjZUbSBRl0iiPpFcay57G/Zi1pspcZSQn5RPva8eZ9CJUWvEorcQioYYmTmSVWWrMGqNmHQmEvWJNPobqXBXEIqGaPA14I/4uW74dXx78FtsJhtWvZXGQCP1vnryk/JxBBykm9JRq9RUuCtIN6WzoWoDZ2afiUFjIKyE0Wv0BCIByl3luIIusi3ZaNVatGotqcZUIkqECncFwWgQRSgkG5OxJdhI1CXS4G96IfFH/Nj9dlISUvCH/ahUKspd5UzJnUKSMQm7306CLoE+lj7M3T6X/978X7RqLXcuvJPHVzzO1Lyp2AN2+iX3w2qwUu4uJ92UTmpCKkIIMhIzcIfcaNVaShwleEIehmcMR6/R83Xx1+SYc0hPTMcVdJFuSqfYUYxZb6bcVU5GYgbhaJizC86mzldHMBKk0l2J1WDFqDWi1+ip8lSRmpDKpupNJBuaamYBkoxNXYK8IS9F9iK8YS+KUGjwN5BtzqbR34g75CaiRJquIyHYUrMFRSj8cOQP6Z/an2RjMvlJ+ejUOtIT03nmu2cIK2EuGXQJ3rAXm8lGtaeanXU7WbR/ERaDBRUqXtvwGj8a/SOMWiOekAd30M2+xn2Eo2EcAQeOgAN3yI0/7CcYDVLqLCXbnE22JRuTzkSxvZiwEsYT8mDRW9jXuA97wE5EibCzbidD04Zi0BpIM6VR76vHlmBjb8NeZl00i7MKzgKaas3zdHmc0/ccrph3BVnmLIrsRWSZs/hw54dcPfRqlpUsY0reFPKT8klJSGHB3gWsKFvBJ7s/YeaAmfzsjJ9R7CimILkg/qCMKBFyn8vlgv4XUJhcSJ41jzUVa3AFXUSUCI6Ag4gSwR1yM++qeRg0BoamDyWiRHjl4leY0GcCr298nX4p/VhyYAkV7grUKjUDUwdS7i7n7PyzGZk5kjsm3IFapeauhXfx4LQHybXm4o/4eXLFk2Sbs7lvyn1c8f4V+MN+si3ZvLX5LSrdlRg0BkqcJfx07E/587d/piCpgCuGXBEf22lLsPHnaX/mgx0fcPY/z2ZSn0k4Ag5yLDkYtAb0Gj22BBuf7f2MfGs+NpONjMQMtlRvoTHQiC/sQ6fWMSB1AJuqN7G9djvTCqYx58o5DLQNxKQz4Q/7uXTupYzNGsvkvMkIml6Qx70+jmcveJZ7F9/LeYXnkWJM4bkLn4t/D7PN2Ri0BgB21++O35vKXeUMtA3EordQ56tjT/0eoKnr7Nztc8m15jLYNphMcyaz1sxiWsE0FKEQVsKEo2HCShij1ojdb6dvcl/2NuwlQZfA8PThzL5kNnXeOiwGC9f9+zquGXYN/9ryL97f8T7lrnKyLdnY/XaC0SB9LH349PpP0Wl0Hd6jy13lbKraxEUDLmJn3U4ANldvjmfkvW/KfSQbkxEIzHozj577KDd+dCM2k410Uzq51lycASdVnirGZo0lKqI4Ag5UqDDpTNR6a1GpVPjCPg7YDxCOhsmx5DDYNphQNEStrxZPyINWrcUddCMQDEodRLW3GlfQhVFrpNJdybC0YdT76/GEPGyv3U7/lP70Te5LIBIg2ZhMuascvUZPibOELHMWGpWGqIgSVaL8ctwvGWQbxOS8yfz0s5/iDXt55JxHeGvzW0zoM4FN1ZtIN6WTkpACNL0cpySkEIqG6GPpgzvoZvaG2eg1ejwhDxWuCoamD8WoNVLhqkClavpZA5EAKlSoVer4PdyWYMOoNaLT6Lh38r2UOEq4bN5luH7vwmKwAPD53s+ZvX429b56+qX0w6g1Uu4qZ+aAmfxj0z/Y8PMNzFo9i4vfvZgyVxnXj7ieOm8dVoOVEmcJGpWGRH0iGpWGmQNmAnDfkvvISMzg6qFXY3rcREFSAXlJeQgh+NkZP8OWYMPutzP4pcH8dcZfOb/f+XxT/A2rylZR4a7g3L7nMjprNBqVhtvG3cbZ+Wfz8rqXOdB4gL7JfXlx7YuEoiGGZwzHG/JyVv5ZLNi3AJVKRZY5C0/IQ7opnb0Ne9lWu43BtsE8cf4TnN/vfOp99aSZ0mj4XQPBSJBrPryGJ5Y/wXOrn8OkM3HHhDtQhMInuz9hcNpgMkwZ/GTsT/iu7LumFsKQly/3fcn5/c7nlXWvkGZKY0TGCAwaA32T+1Lvq6fGW8Omqk2cV3ge7pCbX3z+CxJ1idwy5hZMOhMPL32YhT9YiBCCERkj+Mvyv7DgxgVc8M4FzBwwky01W1ChYmreVFxBF4UphWyq2kS5u5zv5X2PL/d/icVgIcOUQUZiBnW+OpIMSby5+U0yEzMRCAamDkQRClaDlTxrHgsPLOTqoVfz9HdPc/v42xmZMZJP9nzCwv0LuWnUTWys2sgtY26hwdfAD0b+gPu/up9GfyMXvXMRd026i3JXOQcaD5CoT2Rf4z6K7EWY9WZMOhMGjQGBQK/Rk6hLjFfyNbemGjQGSp2l9E3uS0SJkJ6Yjlatpc5bR/+U/ry1+S3G5YzDoDVQbC8mPTGdBG1C/JiDbYPZXrudc/uey5isMext2EuWOYtHzn2EOxfeiVlvjt+7AJIMSahUKirdlaQmpJKgTSCshPGH/UzsM5HdDbuJKlHsATvD0oYRiAbYXL2ZuyfdzUUDLqLB10CRowiB4Nrh1/Lx7o/ZVrMtnlioyFHEqrJVmPVmhqQNwaw3k2fN48ef/phlJctwBp0su2VZ/PlabC+m3wv9GJczjiFpQ3hs2WPsqNvR9Cwx53DRgItYWbYSnVrH1tqm/AJatZZAJEBqQiqbqzeTa81Fp9YxImMEV/e/uvsvxlKXqITs5HtSc7lcJCUlceEbFzIgewC763dTkFSAP+LHG/ZSkFTAgNQBbKjawJjMMTT6GxmWPoxAJECRvQiD1kBUiVLkKGJy7mQsegvlrnJSElLIMmeRbc7GYrCw5MASxuWMo85XF89qmJ+Uj16jp9Zby/7G/aSb0jHpTBQkF7CpahP9UvpRkFxAo7+RBl8DRq2Rak813rCXMVljqPZUo1FpsJlsFCQVoAiFUDSEI+DgoOMgU/On4g/7qXBXoEJFflI+7pAbs94cn0w725LNvoZ9DLINot5XT1gJxwO/qBIlIzGDRn8jifpEdtbtpH9Kf/wRfzxosugtaNQaypxlKELBH/GTZkojFA2RbEwmqkTjL62pCanUemup9dYSVaJERZSDjoPsqtvFvVPuxag1AsRfVj0hDwm6BHbU7sCoNZKakMru+t3oNXoMWgOf7/2cybmT0Wv0ZCRmkGxMZmvNVjRqDeNzxtPob6TEWUIgEsCWYCMqoiQbk8k2Z7O2Yi02k41ddbvINGcihCA/KZ8SZwlWg5VGfyMFSQXsrt/NVcOu4kDjgfgDpM5bR6O/samFKn8qUaXpuIn6RNZXrmdg6kD6JvelylOFXqMnzZSGIhTUqo47FAQiAa798Fo+u+EzHln6CCMzRrKkaAmZiZk8tPQhxIOCcDTMy+te5umVT9MvpR+ekIe8pDw2V2/m0kGX4g17STGmMDVvKjpNU3a1gakDSTYmU+utpcHfwOjM0YSiIWwmG+6gmxxLTvxztxqs7XbP2tewj+dWP8cr32/qDvbkiic5K/8spuZP5auir3h/+/tM6DOBclc55/c7n7UVa1Ghwhv24gq6qPfVc2H/C7ly6JVUuavY07CHZ1c9ixCCr370Fb6wD6PWiFqlJhAJEIwE2dOwh0X7F3Hb+NtIMiShCAV7oKm2vtxVzoTXJ/DQOQ9xXuF5XPn+ley5Y0+Xv/s/n/9zxmaNxR1ys712O3O2zuFPZ/2Jx857rKn2GRH/bKJKFLVKHa8seWXdKzyx4gm+vflbzv7n2VS6K3lq+lP8bmpTl05FKHxV9BUmnYkKVwXLSpZxyaBLqPJU0cfSh2pPNX2T++IIOMi15mI1WBEI8qx57G/czyDbIPQafbu/j7+t+hvv73if1y99nT998yfm3zCfi95peklIMabwl/P+worSFeyo20FeUh7haJhSZynVnmqGZwyPVwZlJGagUWn4tuRbzsw+kzxrHlaDlUAkEG81zUjMoDClkCp3FWfmnElEiRCKhjBoDGjUmnggmZqQiiPgwJZgo8hexJ+//TMPn/Mwdr+dB/77AIsPLGbvHXv58ac/5h+X/QOrwRp/MbWZbCzcv5D1let5cvqTh/y8y0qW8dLal5rud2oNBo2BkRkjCUaD5FpzWXRgEZcOupSvi7+m3lfPLaNvYVvtNl66+CWCkSARJUK1p5o6Xx0qVKSZ0thVv4sEbQIWg4VEXSK+sI8iexFGrZF+Kf3QqDUkGZJI0CWwq24XAkGKMYW8pDx21e2iMKWQiBLB7rdj0pnISMzAHrCTY8lhR+0OBqcNRq1S4wv7qPfVk2JMIUGXgN1vJ8ucRVgJI4RArVLHg+BQNMRlcy/jR6N/hDfk5aDjINtqt3HlkCu5cMCFLNq/iPP7nU9qQipmvRlouldWuCswaAykJ6bHPzNPyIM/3HQv3lKzhQRtAoPTBmP32zHrzYSiIRL1iQQigXiZarw1BCIBokqUn83/GflJ+URFlFvH3sq0vtNYXb6aR5c9yl9n/JV+Kf3YXruddFM63rCXV9e9SrGjmPk3zI8H1bvqduEKuhiVOQqBYFvNNs4uaJoSSq1S84vPf8Gq8lUsuHFB/Hex+MBi0k3pRJQIr65/lbnb5/LB1R8wZ+sc5u+dzztXvsP8vfNJN6UzNX8qBUkFzNs+j39t/RcLf7CQibkTAfhv8X+p89VR6a7k/4b+HzvrdpKakEqaKY3/Fv+X6f2mk56YjjPgJNuSDTS17u1t2MvUvKlcMvcSnp7+NM+uepb3r34//jtaW7GWR5c9ypwr56BWqVlXsY5N1Zsoshexp2EPqQmpfHjNh6woXRG/B/xt1d/4/qDvk23OxhPyIISIB0qhaIjC5EKmFUzj0z2fkm3OZkTGCJ5f8zw3jLgBi97C1tqt8THD1w6/lhlzZiAeFPjCPl5e+zIzB86k1ltLnbeOvsl9KXYUMzpzNFER5euir7l2+LUk6hOp8dRQ6iylILmAak81udZcss3ZrCpfhRCCAakDaPQ38sGOD/jd1N+R/FQyn1z3CctLl5NtzmZa32nUeGpYVb6K+6bcx+z1s9nTsIf/d/b/45oPr+Gjaz/iwncu5OqhV3NO33NIT0ynwlXBQNtAIkqEPGseifpEQtEQilDwhDw4A04KUwrxhX1Y9BYUobC3YS9D0obE732ry1ejVqnJMmcRiASwGqykmdLQqrU0+hvjz400UxrQlDX6nkX3sLJsJZ9d/xlZz2ax7mfrGJczDiEE7pAbq8HK9trtDLY1fU/tAXv8fafYUUw4GiY/KZ8NVRsYmDqQRH0iQggWHVjEuJxxvLP1Hd7c9Cb/vvbf/Gz+z8ix5LCydCXDM4ZzTsE5XDHkCkqcJRQmF2LSmRicNhh30E2Dv6Hp3cBdxdfFX5NnzWOQbVD8Gmxm99t5Zd0r/PGsPzJ/73z6JvdlRMYINlZtZMmBJVw44EI8IQ9jssZQ4apgVfmq+D17Rr8Z7KjbgSvo4v6v7ufxqY9z0YiLcDqdWK3WLj8npS4Q0knN6XQKQDidzt4uinSau+S9S0QoEhK/W/w7sfTgUvHjT34sfv7Zz8X2mu2ttnMGnKKosUhUu6uFEEJEopFjXrYZ/5ohFEURQgjx/775f2Jj5cajOp4n6BGVrspu71/lrhKKoghvyCsuee+Sbh3j7+v/Lq6Yd4V4d+u74qr3rxI8hPjLsr90al9/2C9KHCVCCCG0j2jFiFdGiDc2vNGtcnTVsoPLhOohlXAGnPGf/ZL3Lol/Hh05HtdJs1Vlq8Stn94qnl/1vPjnpn+Kl9a8JK778Drxr83/6nCfi9+9+JBlBxoPiAvmXCCK7cWdOu+cLXPEiFdGiJfXvtzdoveqtza9JQqeKxDflX7Xq+XYWr1V8BDis92fiVmrZwkhhLj101vFvoZ9PXYOZ8Ap5myZE7+vtBWMBMWBxgMiHA2Ly+ZeJhL/kiiu//f14u6Fd7e7bU/aWbtTjH9tvLj0vUs7vY+iKK3KsbN2p7hy3pUi65ksMfKVkd0ui6IoIufZHPHquldFJBoRFa6Kbh+rK25fcHuHv5sT3eL9iwUPNb2e3/LJLaLOW3dMzqMoiuAhxOqy1eK3i38rGn2Nx+Q83fXJrk/E40sel++4x4nsMipJUo84I+sMNlVvwhv2kpqQSjAapNZby7D0Ya22sxqsWA3/q+nTqDXHvGzD0oexr7GpJbl5DOHRSNQ3dZXurixzFgAmnYn/XPufbh1jZMZI/vTNn/j1hF/HEwJ0NmunUWskPyk/vs9No25ier/pR9irZ4zNHkteUlNrXsukMs3dATtyPK6TZpNyJ/HoskfZUbeDL3/wJdtqt3HHl3fwzAXPdLiPSWc6ZGzk25vf5g/f+wN9k/t26rw/HPVDJvSZQKKu+9dWb/rhqB8yMHUgk/Mm92o5RmaO5JkZz1CQXMDnez9n8EuDKUwuZEDqgB47h9Vg5Yejftjher1GT7+UfkDTuOV+Kf2Yt30ea289dCy1XqPvsXIBDE0fytissV0aw6VSqVqVw6QzsbZiLXdNvCveotsdKpWKvXfsxag1olFryLHkdPtYXfHSxS8dl/McCzP6z6DoN0UAvHX5W8fsPCqVCufvnVgN1njr9IlkfJ/xzF45u7eLcdqQSWUkSeoRZxWcxfKS5fGAsHlAf2ez7B1L43PGs65iHQAN/gZsJlsvl+h/Djfu7HAG2gbGxwjV+Zq6UHd3GofBtsEUJBd0a9+uMuvNfHjN/1Kdv7P1neNy3q4akzmGJGMSScYkxmSN4cdjfkyuNbfD7Wf0m8G87fNaLVtZtpJpBdO6dN5BtkH0sfbpVpl7m1atZWr+1N4uBgD3TrmXdFM6r218jb0New+pmDqeqj3VTOwzkVvH3soZ2Wccl3NePPBixmaP7fb+ifpEKtwVnF1wNrdPuP2oypKoTzyuFTqngsKUwuNynpaVsyeaHEsO71/zfm8X47QhA0JJknrEpNxJrK5YjSfkIcWYwtaarQxMHdjbxQKaahrXVjTVzDf6G+MJdk5mtgQbtgQbIzJG0OhvJN2Uzox+M7p8nLcuf4szc848BiXs2IQ+EwAQCG76+KbDjk/tLY+d9xifXPcJ0BTEvnn5m4fd/saRN7aax7HR30iOJeeEqBA5XTVX/Cz+4WIuHnhxr5WjylNFv5R+vH7Z68ctMLp8yOXMvWput/dvbukekTGip4okSdIJTHYZlSSpR5j1ZvxhP2qVGqPWyAH7AWb073qAciwMSB3AfnvThO0CcUIGIF2lUqmo/13TtBpqlZr7p94fz/TWFbeMuaWHS9Z1J2IttUqlimc27Qyz3owr6CIQCWDQGLjonYsYnzP+GJZQOpLmLpC9fR9q9DcyMnNkr5ahqxK0CXxy3SfxDK2SJJ3aZEAoSVKP2duwl32N++KtIp0dO3WsqVXqpilWjsH8dicCk850VON8eotW3fQISjYk925Besjlgy/ni31fMLHPRMJKmOtHXN/bRTrtzf5+749Bev3S1zmn7zm9XYwuUalUXD7k8t4uhiRJx4kMCCVJ6jF/OutPrWrC003ph9n6+BqePpwddTtaJTI5VZysAWHzmMdkY3LvFqSHFCYXctBxkEZ/IzMHzOxWi63Us34x7he9XQRuPePW3i6CJEnSYZ38/aYkSTph3Dzm5lZJE06ksXoFyQVsrdkanxT7VJKgTTgpA8LmxEOnSkCYkZjBkyufpMRZQorx1LvOJEmSpFOTDAglSTpmTqTMctnmbDZXbyYzMbO3i9LjTtYWwubJyE+lgLDUWcobG984oSpDJEmSJOlwZEAoSdIxsfSWzs+BdTxkW07dgDBBd3K2EP7rin9x/9T7T6mAEODTPZ+eki3RkiRJ0qlJBoSSJB0TZxec3dtFaKVvcl9Wlq08bvOAHU8mnYlE/ck3mblOo+PsgrMZZBvU20XpEQatAeXPCipUpJnSers4kiRJktQpMqmMJEmnhYzEDIIPBHu7GMfEyTqGEOjV+eGOBZVKRfCBYDyDqiRJkiSd6OQTS5Ik6SR3/9T7ybPm9XYxpBidRtfbRZAkSZKkTpMBoSRJ0klucNrg3i6CJEmSJEknKTmGUJIkSZIkSZIk6TQlA0JJkiRJkiRJkqTTlAwIJUmSJEmSJEmSTlMyIJQkSZIkSZIkSTpNyYBQkiRJkiRJkiTpNCUDQkmSJEmSJEmSpNOUDAglSZIkSZIkSZJOUzIglCRJkiRJkiRJOk3JgFCSJEmSJEmSJOk0JQNCSZIkSZIkSZKk05QMCCVJkiRJkiRJkk5T2t4ugNR9QghcLhdA/G9JkiRJkiRJOtk1v9sKIXq5JKc+lZCf8kmrrq6OjIyM3i6GJEmSJEmSJB0TZWVl5Obm9nYxTmmyhfAkptfrAdi5cyc5OTmoVKpeLpF0qnK5XOTl5VFWVobVau3t4kinMHmtSceDvM6k40Vea90nhMDtdpOTk9PbRTnlyYDwJNYcAPbp00feZKTjwmq1ymtNOi7ktSYdD/I6k44Xea11T1JSUm8X4bQgk8pIkiRJkiRJkiSdpmRAKEmSJEmSJEmSdJqSAeFJzGAw8OCDD2IwGHq7KNIpTl5r0vEirzXpeJDXmXS8yGtNOhnILKOSJEmSJEmSJEmnKdlCKEmSJEmSJEmSdJqSAaEkSZIkSZIkSdJpSgaEkiRJkiRJkiRJpykZEEqSJEmSJEmSJJ2mZEB4Eli2bBmXXnopOTk5qFQqPvnkk1brhRA89NBD5OTkkJCQwDnnnMOOHTt6p7DSSeuJJ55g/PjxWCwWMjIyuOKKK9izZ0+rbeS1JvWEV199lVGjRsUnap48eTJffvllfL28zqRj4YknnkClUnHXXXfFl8lrTeoJDz30ECqVqtWfrKys+Hp5nUknOhkQngS8Xi+jR4/mpZdeanf9008/zd/+9jdeeukl1q1bR1ZWFjNmzMDtdh/nkkons6VLl3L77bezevVqlixZQiQS4YILLsDr9ca3kdea1BNyc3N58sknWb9+PevXr+e8887j8ssvj78gyetM6mnr1q3jtddeY9SoUa2Wy2tN6inDhw+nqqoq/mfbtm3xdfI6k054QjqpAOLjjz+O/19RFJGVlSWefPLJ+LJAICCSkpLE7Nmze6GE0qmitrZWAGLp0qVCCHmtScdWSkqKeOONN+R1JvU4t9stBg4cKJYsWSKmTZsm7rzzTiGEvKdJPefBBx8Uo0ePbnedvM6kk4FsITzJFRcXU11dzQUXXBBfZjAYmDZtGt99910vlkw62TmdTgBSU1MBea1Jx0Y0GmXevHl4vV4mT54srzOpx91+++18//vfZ/r06a2Wy2tN6kn79u0jJyeHwsJCrr/+eoqKigB5nUknB21vF0A6OtXV1QBkZma2Wp6ZmUlJSUlvFEk6BQghuOeee/je977HiBEjAHmtST1r27ZtTJ48mUAggNls5uOPP2bYsGHxFyR5nUk9Yd68eWzcuJF169Ydsk7e06SeMnHiRP71r38xaNAgampqeOyxx5gyZQo7duyQ15l0UpAB4SlCpVK1+r8Q4pBlktRZd9xxB1u3bmXFihWHrJPXmtQTBg8ezObNm3E4HHz00UfcfPPNLF26NL5eXmfS0SorK+POO+9k8eLFGI3GDreT15p0tGbOnBn/98iRI5k8eTL9+/fn7bffZtKkSYC8zqQTm+wyepJrzmLVXAPVrLa29pDaKEnqjF//+td89tln/Pe//yU3Nze+XF5rUk/S6/UMGDCAcePG8cQTTzB69GhmzZolrzOpx2zYsIHa2lrOPPNMtFotWq2WpUuX8sILL6DVauPXk7zWpJ6WmJjIyJEj2bdvn7ynSScFGRCe5AoLC8nKymLJkiXxZaFQiKVLlzJlypReLJl0shFCcMcdd/Cf//yHb775hsLCwlbr5bUmHUtCCILBoLzOpB5z/vnns23bNjZv3hz/M27cOH7wgx+wefNm+vXrJ6816ZgIBoPs2rWL7OxseU+TTgqyy+hJwOPxsH///vj/i4uL2bx5M6mpqeTn53PXXXfx+OOPM3DgQAYOHMjjjz+OyWTixhtv7MVSSyeb22+/nffee49PP/0Ui8USr81MSkoiISEhPn+XvNako/XHP/6RmTNnkpeXh9vtZt68eXz77bcsXLhQXmdSj7FYLPEx0M0SExOx2Wzx5fJak3rCfffdx6WXXkp+fj61tbU89thjuFwubr75ZnlPk04KMiA8Caxfv55zzz03/v977rkHgJtvvpl//vOf/O53v8Pv9/OrX/0Ku93OxIkTWbx4MRaLpbeKLJ2EXn31VQDOOeecVsvfeustbrnlFgB5rUk9oqamhptuuomqqiqSkpIYNWoUCxcuZMaMGYC8zqTjR15rUk8oLy/nhhtuoL6+nvT0dCZNmsTq1aspKCgA5HUmnfhUQgjR24WQJEmSJEmSJEmSjj85hlCSJEmSJEmSJOk0JQNCSZIkSZIkSZKk05QMCCVJkiRJkiRJkk5TMiCUJEmSJEmSJEk6TcmAUJIkSZIkSZIk6TQlA0JJkiRJkiRJkqTTlAwIJUmSJEmSJEmSTlMyIJQkSZIkSZIkSTpNyYBQkiRJkiRJkiTpNCUDQkmSJEmSJEmSpNOUDAglSZIkSZIkSZJOUzIglCRJkiRJkiRJOk3JgFCSJEmSJEmSJOk0JQNCSZIkSZIkSZKk05QMCCVJkiRJkiRJkk5TMiCUJEmSJEmSJEk6TcmAUJIkSZIkSZIk6TQlA0JJkiRJkiRJkqTTlAwIJUmSJEmSJEmSTlMyIJQkSZIkSZIkSTpNyYBQkiRJkiRJkiTpNCUDQkmSJEmSJEmSpNPU/wdJMgxr9SGQ/gAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pn.plot(fig=None, diff=True)\n", "px.plot(fig=None, diff=True)\n", "mc.RestoreParamSet(3, update_display=True)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Save results to CIF and Fox (.xmlgz) formats" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "tags": [] }, "outputs": [], "source": [ "# Save result so it can be opened by Fox\n", "xml_cryst_file_save_global('result-pbso4.xmlgz')\n", "# Also export to the CIF format\n", "c.CIFOutput(\"result-pbso4.cif\")\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "objcryst", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.5" } }, "nbformat": 4, "nbformat_minor": 4 }